# Objective
- Implement pipelined rendering
- Fixes#5082
- Fixes#4718
## User Facing Description
Bevy now implements piplelined rendering! Pipelined rendering allows the app logic and rendering logic to run on different threads leading to large gains in performance.
![image](https://user-images.githubusercontent.com/2180432/202049871-3c00b801-58ab-448f-93fd-471e30aba55f.png)
*tracy capture of many_foxes example*
To use pipelined rendering, you just need to add the `PipelinedRenderingPlugin`. If you're using `DefaultPlugins` then it will automatically be added for you on all platforms except wasm. Bevy does not currently support multithreading on wasm which is needed for this feature to work. If you aren't using `DefaultPlugins` you can add the plugin manually.
```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;
fn main() {
App::new()
// whatever other plugins you need
.add_plugin(RenderPlugin)
// needs to be added after RenderPlugin
.add_plugin(PipelinedRenderingPlugin)
.run();
}
```
If for some reason pipelined rendering needs to be removed. You can also disable the plugin the normal way.
```rust
use bevy::prelude::*;
use bevy::render::pipelined_rendering::PipelinedRenderingPlugin;
fn main() {
App::new.add_plugins(DefaultPlugins.build().disable::<PipelinedRenderingPlugin>());
}
```
### A setup function was added to plugins
A optional plugin lifecycle function was added to the `Plugin trait`. This function is called after all plugins have been built, but before the app runner is called. This allows for some final setup to be done. In the case of pipelined rendering, the function removes the sub app from the main app and sends it to the render thread.
```rust
struct MyPlugin;
impl Plugin for MyPlugin {
fn build(&self, app: &mut App) {
}
// optional function
fn setup(&self, app: &mut App) {
// do some final setup before runner is called
}
}
```
### A Stage for Frame Pacing
In the `RenderExtractApp` there is a stage labelled `BeforeIoAfterRenderStart` that systems can be added to. The specific use case for this stage is for a frame pacing system that can delay the start of main app processing in render bound apps to reduce input latency i.e. "frame pacing". This is not currently built into bevy, but exists as `bevy`
```text
|-------------------------------------------------------------------|
| | BeforeIoAfterRenderStart | winit events | main schedule |
| extract |---------------------------------------------------------|
| | extract commands | rendering schedule |
|-------------------------------------------------------------------|
```
### Small API additions
* `Schedule::remove_stage`
* `App::insert_sub_app`
* `App::remove_sub_app`
* `TaskPool::scope_with_executor`
## Problems and Solutions
### Moving render app to another thread
Most of the hard bits for this were done with the render redo. This PR just sends the render app back and forth through channels which seems to work ok. I originally experimented with using a scope to run the render task. It was cuter, but that approach didn't allow render to start before i/o processing. So I switched to using channels. There is much complexity in the coordination that needs to be done, but it's worth it. By moving rendering during i/o processing the frame times should be much more consistent in render bound apps. See https://github.com/bevyengine/bevy/issues/4691.
### Unsoundness with Sending World with NonSend resources
Dropping !Send things on threads other than the thread they were spawned on is considered unsound. The render world doesn't have any nonsend resources. So if we tell the users to "pretty please don't spawn nonsend resource on the render world", we can avoid this problem.
More seriously there is this https://github.com/bevyengine/bevy/pull/6534 pr, which patches the unsoundness by aborting the app if a nonsend resource is dropped on the wrong thread. ~~That PR should probably be merged before this one.~~ For a longer term solution we have this discussion going https://github.com/bevyengine/bevy/discussions/6552.
### NonSend Systems in render world
The render world doesn't have any !Send resources, but it does have a non send system. While Window is Send, winit does have some API's that can only be accessed on the main thread. `prepare_windows` in the render schedule thus needs to be scheduled on the main thread. Currently we run nonsend systems by running them on the thread the TaskPool::scope runs on. When we move render to another thread this no longer works.
To fix this, a new `scope_with_executor` method was added that takes a optional `TheadExecutor` that can only be ticked on the thread it was initialized on. The render world then holds a `MainThreadExecutor` resource which can be passed to the scope in the parallel executor that it uses to spawn it's non send systems on.
### Scopes executors between render and main should not share tasks
Since the render world and the app world share the `ComputeTaskPool`. Because `scope` has executors for the ComputeTaskPool a system from the main world could run on the render thread or a render system could run on the main thread. This can cause performance problems because it can delay a stage from finishing. See https://github.com/bevyengine/bevy/pull/6503#issuecomment-1309791442 for more details.
To avoid this problem, `TaskPool::scope` has been changed to not tick the ComputeTaskPool when it's used by the parallel executor. In the future when we move closer to the 1 thread to 1 logical core model we may want to overprovide threads, because the render and main app threads don't do much when executing the schedule.
## Performance
My machine is Windows 11, AMD Ryzen 5600x, RX 6600
### Examples
#### This PR with pipelining vs Main
> Note that these were run on an older version of main and the performance profile has probably changed due to optimizations
Seeing a perf gain from 29% on many lights to 7% on many sprites.
<html>
<body>
<!--StartFragment--><google-sheets-html-origin>
| percent | | | Diff | | | Main | | | PR | |
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | 27.01% | 27.34% | -47.09% | 1.58 | 1.55 | -1.78 | 5.85 | 5.67 | 3.78 | 4.27 | 4.12 | 5.56
many lights | 29.35% | 29.94% | -10.84% | 3.02 | 3.03 | -0.57 | 10.29 | 10.12 | 5.26 | 7.27 | 7.09 | 5.83
many animated sprites | 13.97% | 15.69% | 14.20% | 3.79 | 4.17 | 1.41 | 27.12 | 26.57 | 9.93 | 23.33 | 22.4 | 8.52
3d scene | 25.79% | 26.78% | 7.46% | 0.49 | 0.49 | 0.15 | 1.9 | 1.83 | 2.01 | 1.41 | 1.34 | 1.86
many cubes | 11.97% | 11.28% | 14.51% | 1.93 | 1.78 | 1.31 | 16.13 | 15.78 | 9.03 | 14.2 | 14 | 7.72
many sprites | 7.14% | 9.42% | -85.42% | 1.72 | 2.23 | -6.15 | 24.09 | 23.68 | 7.2 | 22.37 | 21.45 | 13.35
<!--EndFragment-->
</body>
</html>
#### This PR with pipelining disabled vs Main
Mostly regressions here. I don't think this should be a problem as users that are disabling pipelined rendering are probably running single threaded and not using the parallel executor. The regression is probably mostly due to the switch to use `async_executor::run` instead of `try_tick` and also having one less thread to run systems on. I'll do a writeup on why switching to `run` causes regressions, so we can try to eventually fix it. Using try_tick causes issues when pipeline rendering is enable as seen [here](https://github.com/bevyengine/bevy/pull/6503#issuecomment-1380803518)
<html>
<body>
<!--StartFragment--><google-sheets-html-origin>
| percent | | | Diff | | | Main | | | PR no pipelining | |
-- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | --
tracy frame time | mean | median | sigma | mean | median | sigma | mean | median | sigma | mean | median | sigma
many foxes | -3.72% | -4.42% | -1.07% | -0.21 | -0.24 | -0.04 | 5.64 | 5.43 | 3.74 | 5.85 | 5.67 | 3.78
many lights | 0.29% | -0.30% | 4.75% | 0.03 | -0.03 | 0.25 | 10.29 | 10.12 | 5.26 | 10.26 | 10.15 | 5.01
many animated sprites | 0.22% | 1.81% | -2.72% | 0.06 | 0.48 | -0.27 | 27.12 | 26.57 | 9.93 | 27.06 | 26.09 | 10.2
3d scene | -15.79% | -14.75% | -31.34% | -0.3 | -0.27 | -0.63 | 1.9 | 1.83 | 2.01 | 2.2 | 2.1 | 2.64
many cubes | -2.85% | -3.30% | 0.00% | -0.46 | -0.52 | 0 | 16.13 | 15.78 | 9.03 | 16.59 | 16.3 | 9.03
many sprites | 2.49% | 2.41% | 0.69% | 0.6 | 0.57 | 0.05 | 24.09 | 23.68 | 7.2 | 23.49 | 23.11 | 7.15
<!--EndFragment-->
</body>
</html>
### Benchmarks
Mostly the same except empty_systems has got a touch slower. The maybe_pipelining+1 column has the compute task pool with an extra thread over default added. This is because pipelining loses one thread over main to execute systems on, since the main thread no longer runs normal systems.
<details>
<summary>Click Me</summary>
```text
group main maybe-pipelining+1
----- ------------------------- ------------------
busy_systems/01x_entities_03_systems 1.07 30.7±1.32µs ? ?/sec 1.00 28.6±1.35µs ? ?/sec
busy_systems/01x_entities_06_systems 1.10 52.1±1.10µs ? ?/sec 1.00 47.2±1.08µs ? ?/sec
busy_systems/01x_entities_09_systems 1.00 74.6±1.36µs ? ?/sec 1.00 75.0±1.93µs ? ?/sec
busy_systems/01x_entities_12_systems 1.03 100.6±6.68µs ? ?/sec 1.00 98.0±1.46µs ? ?/sec
busy_systems/01x_entities_15_systems 1.11 128.5±3.53µs ? ?/sec 1.00 115.5±1.02µs ? ?/sec
busy_systems/02x_entities_03_systems 1.16 50.4±2.56µs ? ?/sec 1.00 43.5±3.00µs ? ?/sec
busy_systems/02x_entities_06_systems 1.00 87.1±1.27µs ? ?/sec 1.05 91.5±7.15µs ? ?/sec
busy_systems/02x_entities_09_systems 1.04 139.9±6.37µs ? ?/sec 1.00 134.0±1.06µs ? ?/sec
busy_systems/02x_entities_12_systems 1.05 179.2±3.47µs ? ?/sec 1.00 170.1±3.17µs ? ?/sec
busy_systems/02x_entities_15_systems 1.01 219.6±3.75µs ? ?/sec 1.00 218.1±2.55µs ? ?/sec
busy_systems/03x_entities_03_systems 1.10 70.6±2.33µs ? ?/sec 1.00 64.3±0.69µs ? ?/sec
busy_systems/03x_entities_06_systems 1.02 130.2±3.11µs ? ?/sec 1.00 128.0±1.34µs ? ?/sec
busy_systems/03x_entities_09_systems 1.00 195.0±10.11µs ? ?/sec 1.00 194.8±1.41µs ? ?/sec
busy_systems/03x_entities_12_systems 1.01 261.7±4.05µs ? ?/sec 1.00 259.8±4.11µs ? ?/sec
busy_systems/03x_entities_15_systems 1.00 318.0±3.04µs ? ?/sec 1.06 338.3±20.25µs ? ?/sec
busy_systems/04x_entities_03_systems 1.00 82.9±0.63µs ? ?/sec 1.02 84.3±0.63µs ? ?/sec
busy_systems/04x_entities_06_systems 1.01 181.7±3.65µs ? ?/sec 1.00 179.8±1.76µs ? ?/sec
busy_systems/04x_entities_09_systems 1.04 265.0±4.68µs ? ?/sec 1.00 255.3±1.98µs ? ?/sec
busy_systems/04x_entities_12_systems 1.00 335.9±3.00µs ? ?/sec 1.05 352.6±15.84µs ? ?/sec
busy_systems/04x_entities_15_systems 1.00 418.6±10.26µs ? ?/sec 1.08 450.2±39.58µs ? ?/sec
busy_systems/05x_entities_03_systems 1.07 114.3±0.95µs ? ?/sec 1.00 106.9±1.52µs ? ?/sec
busy_systems/05x_entities_06_systems 1.08 229.8±2.90µs ? ?/sec 1.00 212.3±4.18µs ? ?/sec
busy_systems/05x_entities_09_systems 1.03 329.3±1.99µs ? ?/sec 1.00 319.2±2.43µs ? ?/sec
busy_systems/05x_entities_12_systems 1.06 454.7±6.77µs ? ?/sec 1.00 430.1±3.58µs ? ?/sec
busy_systems/05x_entities_15_systems 1.03 554.6±6.15µs ? ?/sec 1.00 538.4±23.87µs ? ?/sec
contrived/01x_entities_03_systems 1.00 14.0±0.15µs ? ?/sec 1.08 15.1±0.21µs ? ?/sec
contrived/01x_entities_06_systems 1.04 28.5±0.37µs ? ?/sec 1.00 27.4±0.44µs ? ?/sec
contrived/01x_entities_09_systems 1.00 41.5±4.38µs ? ?/sec 1.02 42.2±2.24µs ? ?/sec
contrived/01x_entities_12_systems 1.06 55.9±1.49µs ? ?/sec 1.00 52.6±1.36µs ? ?/sec
contrived/01x_entities_15_systems 1.02 68.0±2.00µs ? ?/sec 1.00 66.5±0.78µs ? ?/sec
contrived/02x_entities_03_systems 1.03 25.2±0.38µs ? ?/sec 1.00 24.6±0.52µs ? ?/sec
contrived/02x_entities_06_systems 1.00 46.3±0.49µs ? ?/sec 1.04 48.1±4.13µs ? ?/sec
contrived/02x_entities_09_systems 1.02 70.4±0.99µs ? ?/sec 1.00 68.8±1.04µs ? ?/sec
contrived/02x_entities_12_systems 1.06 96.8±1.49µs ? ?/sec 1.00 91.5±0.93µs ? ?/sec
contrived/02x_entities_15_systems 1.02 116.2±0.95µs ? ?/sec 1.00 114.2±1.42µs ? ?/sec
contrived/03x_entities_03_systems 1.00 33.2±0.38µs ? ?/sec 1.01 33.6±0.45µs ? ?/sec
contrived/03x_entities_06_systems 1.00 62.4±0.73µs ? ?/sec 1.01 63.3±1.05µs ? ?/sec
contrived/03x_entities_09_systems 1.02 96.4±0.85µs ? ?/sec 1.00 94.8±3.02µs ? ?/sec
contrived/03x_entities_12_systems 1.01 126.3±4.67µs ? ?/sec 1.00 125.6±2.27µs ? ?/sec
contrived/03x_entities_15_systems 1.03 160.2±9.37µs ? ?/sec 1.00 156.0±1.53µs ? ?/sec
contrived/04x_entities_03_systems 1.02 41.4±3.39µs ? ?/sec 1.00 40.5±0.52µs ? ?/sec
contrived/04x_entities_06_systems 1.00 78.9±1.61µs ? ?/sec 1.02 80.3±1.06µs ? ?/sec
contrived/04x_entities_09_systems 1.02 121.8±3.97µs ? ?/sec 1.00 119.2±1.46µs ? ?/sec
contrived/04x_entities_12_systems 1.00 157.8±1.48µs ? ?/sec 1.01 160.1±1.72µs ? ?/sec
contrived/04x_entities_15_systems 1.00 197.9±1.47µs ? ?/sec 1.08 214.2±34.61µs ? ?/sec
contrived/05x_entities_03_systems 1.00 49.1±0.33µs ? ?/sec 1.01 49.7±0.75µs ? ?/sec
contrived/05x_entities_06_systems 1.00 95.0±0.93µs ? ?/sec 1.00 94.6±0.94µs ? ?/sec
contrived/05x_entities_09_systems 1.01 143.2±1.68µs ? ?/sec 1.00 142.2±2.00µs ? ?/sec
contrived/05x_entities_12_systems 1.00 191.8±2.03µs ? ?/sec 1.01 192.7±7.88µs ? ?/sec
contrived/05x_entities_15_systems 1.02 239.7±3.71µs ? ?/sec 1.00 235.8±4.11µs ? ?/sec
empty_systems/000_systems 1.01 47.8±0.67ns ? ?/sec 1.00 47.5±2.02ns ? ?/sec
empty_systems/001_systems 1.00 1743.2±126.14ns ? ?/sec 1.01 1761.1±70.10ns ? ?/sec
empty_systems/002_systems 1.01 2.2±0.04µs ? ?/sec 1.00 2.2±0.02µs ? ?/sec
empty_systems/003_systems 1.02 2.7±0.09µs ? ?/sec 1.00 2.7±0.16µs ? ?/sec
empty_systems/004_systems 1.00 3.1±0.11µs ? ?/sec 1.00 3.1±0.24µs ? ?/sec
empty_systems/005_systems 1.00 3.5±0.05µs ? ?/sec 1.11 3.9±0.70µs ? ?/sec
empty_systems/010_systems 1.00 5.5±0.12µs ? ?/sec 1.03 5.7±0.17µs ? ?/sec
empty_systems/015_systems 1.00 7.9±0.19µs ? ?/sec 1.06 8.4±0.16µs ? ?/sec
empty_systems/020_systems 1.00 10.4±1.25µs ? ?/sec 1.02 10.6±0.18µs ? ?/sec
empty_systems/025_systems 1.00 12.4±0.39µs ? ?/sec 1.14 14.1±1.07µs ? ?/sec
empty_systems/030_systems 1.00 15.1±0.39µs ? ?/sec 1.05 15.8±0.62µs ? ?/sec
empty_systems/035_systems 1.00 16.9±0.47µs ? ?/sec 1.07 18.0±0.37µs ? ?/sec
empty_systems/040_systems 1.00 19.3±0.41µs ? ?/sec 1.05 20.3±0.39µs ? ?/sec
empty_systems/045_systems 1.00 22.4±1.67µs ? ?/sec 1.02 22.9±0.51µs ? ?/sec
empty_systems/050_systems 1.00 24.4±1.67µs ? ?/sec 1.01 24.7±0.40µs ? ?/sec
empty_systems/055_systems 1.05 28.6±5.27µs ? ?/sec 1.00 27.2±0.70µs ? ?/sec
empty_systems/060_systems 1.02 29.9±1.64µs ? ?/sec 1.00 29.3±0.66µs ? ?/sec
empty_systems/065_systems 1.02 32.7±3.15µs ? ?/sec 1.00 32.1±0.98µs ? ?/sec
empty_systems/070_systems 1.00 33.0±1.42µs ? ?/sec 1.03 34.1±1.44µs ? ?/sec
empty_systems/075_systems 1.00 34.8±0.89µs ? ?/sec 1.04 36.2±0.70µs ? ?/sec
empty_systems/080_systems 1.00 37.0±1.82µs ? ?/sec 1.05 38.7±1.37µs ? ?/sec
empty_systems/085_systems 1.00 38.7±0.76µs ? ?/sec 1.05 40.8±0.83µs ? ?/sec
empty_systems/090_systems 1.00 41.5±1.09µs ? ?/sec 1.04 43.2±0.82µs ? ?/sec
empty_systems/095_systems 1.00 43.6±1.10µs ? ?/sec 1.04 45.2±0.99µs ? ?/sec
empty_systems/100_systems 1.00 46.7±2.27µs ? ?/sec 1.03 48.1±1.25µs ? ?/sec
```
</details>
## Migration Guide
### App `runner` and SubApp `extract` functions are now required to be Send
This was changed to enable pipelined rendering. If this breaks your use case please report it as these new bounds might be able to be relaxed.
## ToDo
* [x] redo benchmarking
* [x] reinvestigate the perf of the try_tick -> run change for task pool scope
# Objective
- Safety comments for the `CommandQueue` type are quite sparse and very imprecise. Sometimes, they are right for the wrong reasons or use circular reasoning.
## Solution
- Document previously-implicit safety invariants.
- Rewrite safety comments to actually reflect the specific invariants of each operation.
- Use `OwningPtr` instead of raw pointers, to encode an invariant in the type system instead of via comments.
- Use typed pointer methods when possible to increase reliability.
---
## Changelog
+ Added the function `OwningPtr::read_unaligned`.
# Objective
Repeated calls to `init_non_send_resource` currently overwrite the old value because the wrong storage is being checked.
## Solution
Use the correct storage. Add some tests.
## Notes
Without the fix, the new test fails with
```
thread 'world::tests::init_non_send_resource_does_not_overwrite' panicked at 'assertion failed: `(left == right)`
left: `1`,
right: `0`', crates/bevy_ecs/src/world/mod.rs:2267:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
test world::tests::init_non_send_resource_does_not_overwrite ... FAILED
```
This was introduced by #7174 and it seems like a fairly straightforward oopsie.
# Objective
I was reading through the bevy_ecs code, trying to understand how everything works.
I was getting a bit confused when reading the doc comment for the `new_archetype` function; it looks like it doesn't create a new archetype but instead updates some internal state in the SystemParam to facility QueryIteration.
(I still couldn't find where a new archetype was actually created)
## Solution
- Adding a doc comment with a more correct explanation.
If it's deemed correct, I can also update the doc-comment for the other `new_archetype` calls
# Objective
Speed up the render phase of rendering. An extension of #6885.
`SystemState::get` increments the `World`'s change tick atomically every time it's called. This is notably more expensive than a unsynchronized increment, even without contention. It also updates the archetypes, even when there has been nothing to update when it's called repeatedly.
## Solution
Piggyback off of #6885. Split `SystemState::validate_world_and_update_archetypes` into `SystemState::validate_world` and `SystemState::update_archetypes`, and make the later `pub`. Then create safe variants of `SystemState::get_unchecked_manual` that still validate the `World` but do not update archetypes and do not increment the change tick using `World::read_change_tick` and `World::change_tick`. Update `RenderCommandState` to call `SystemState::update_archetypes` in `Draw::prepare` and `SystemState::get_manual` in `Draw::draw`.
## Performance
There's a slight perf benefit (~2%) for `main_opaque_pass_3d` on `many_foxes` (340.39 us -> 333.32 us)
![image](https://user-images.githubusercontent.com/3137680/210643746-25320b98-3e2b-4a95-8084-892c23bb8b4e.png)
## Alternatives
We can change `SystemState::get` to not increment the `World`'s change tick. Though this would still put updating the archetypes and an atomic read on the hot-path.
---
## Changelog
Added: `SystemState::get_manual`
Added: `SystemState::get_manual_mut`
Added: `SystemState::update_archetypes`
# Objective
- Fixes#3158
## Solution
- clear columns
My implementation of `clear_resources` do not remove the components itself but it clears the columns that keeps the resource data. I'm not sure if the issue meant to clear all resources, even the components and component ids (which I'm not sure if it's possible)
Co-authored-by: 2ne1ugly <47616772+2ne1ugly@users.noreply.github.com>
# Objective
The trait `ReadOnlySystemParam` is not implemented for `Option<NonSend<>>`, even though it should be.
Follow-up to #7243. This fixes another mistake made in #6919.
## Solution
Add the missing impl.
# Objective
The trait `ReadOnlySystemParam` is implemented for `NonSendMut`, when it should not be. This mistake was made in #6919.
## Solution
Remove the incorrect impl.
# Objective
Complete the first part of the migration detailed in bevyengine/rfcs#45.
## Solution
Add all the new stuff.
### TODO
- [x] Impl tuple methods.
- [x] Impl chaining.
- [x] Port ambiguity detection.
- [x] Write docs.
- [x] ~~Write more tests.~~(will do later)
- [ ] Write changelog and examples here?
- [x] ~~Replace `petgraph`.~~ (will do later)
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: Michael Hsu <mike.hsu@gmail.com>
Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
# Objective
- We rely on the construction of `EntityRef` to be valid elsewhere in unsafe code. This construction is not checked (for performance reasons), and thus this private method must be unsafe.
- Fixes#7218.
## Solution
- Make the method unsafe.
- Add safety docs.
- Improve safety docs slightly for the sibling `EntityMut::new`.
- Add debug asserts to start to verify these assumptions in debug mode.
## Context for reviewers
I attempted to verify the `EntityLocation` more thoroughly, but this turned out to be more work than expected. I've spun that off into #7221 as a result.
# Objective
The usages of the unsafe function `byte_add` are not properly documented.
Follow-up to #7151.
## Solution
Add safety comments to each call-site.
# Objective
- The function `BlobVec::replace_unchecked` has informal use of safety comments.
- This function does strange things with `OwningPtr` in order to get around the borrow checker.
## Solution
- Put safety comments in front of each unsafe operation. Describe the specific invariants of each operation and how they apply here.
- Added a guard type `OnDrop`, which is used to simplify ownership transfer in case of a panic.
---
## Changelog
+ Added the guard type `bevy_utils::OnDrop`.
+ Added conversions from `Ptr`, `PtrMut`, and `OwningPtr` to `NonNull<u8>`.
# Objective
Fix#5248.
## Solution
Support `In<T>` parameters and allow returning arbitrary types in exclusive systems.
---
## Changelog
- Exclusive systems may now be used with system piping.
## Migration Guide
Exclusive systems (systems that access `&mut World`) now support system piping, so the `ExclusiveSystemParamFunction` trait now has generics for the `In`put and `Out`put types.
```rust
// Before
fn my_generic_system<T, Param>(system_function: T)
where T: ExclusiveSystemParamFunction<Param>
{ ... }
// After
fn my_generic_system<T, In, Out, Param>(system_function: T)
where T: ExclusiveSystemParamFunction<In, Out, Param>
{ ... }
```
# Objective
There are some utility functions for actually working with `Storages` inside `entity_ref.rs` that are used both for `EntityRef/EntityMut` and `World`, with a `// TODO: move to Storages`.
This PR moves them to private methods on `World`, because that's the safest API boundary. On `Storages` you would need to ensure that you pass `Components` from the same world.
## Solution
- move get_component[_with_type], get_ticks[_with_type], get_component_and_ticks[_with_type] to `World` (still pub(crate))
- replace `pub use entity_ref::*;` with `pub use entity_ref::{EntityRef, EntityMut}` and qualified `entity_ref::get_mut[_by_id]` in `world.rs`
- add safety comments to a bunch of methods
# Objective
* `World::init_resource` and `World::get_resource_or_insert_with` are implemented naively, and as such they perform duplicate `TypeId -> ComponentId` lookups.
* `World::get_resource_or_insert_with` contains an additional duplicate `ComponentId -> ResourceData` lookup.
* This function also contains an unnecessary panic branch, which we rely on the optimizer to be able to remove.
## Solution
Implement the functions using engine-internal code, instead of combining high-level functions. This allows computed variables to persist across different branches, instead of being recomputed.
# Objective
Following #6681, both `TableRow` and `TableId` are now part of `EntityLocation`. However, the safety invariant on `EntityLocation` requires that all of the constituent fields are `repr(transprent)` or `repr(C)` and the bit pattern of all 1s must be valid. This is not true for `TableRow` and `TableId` currently.
## Solution
Mark `TableRow` and `TableId` to satisfy the safety requirement. Add safety comments on `ArchetypeId`, `ArchetypeRow`, `TableId` and `TableRow`.
# Objective
Improve safety testing when using `bevy_ptr` types. This is a follow-up to #7113.
## Solution
Add a debug-only assertion that pointers are aligned when casting to a concrete type. This should very quickly catch any unsoundness from unaligned pointers, even without miri. However, this can have a large negative perf impact on debug builds.
---
## Changelog
Added: `Ptr::deref` will now panic in debug builds if the pointer is not aligned.
Added: `PtrMut::deref_mut` will now panic in debug builds if the pointer is not aligned.
Added: `OwningPtr::read` will now panic in debug builds if the pointer is not aligned.
Added: `OwningPtr::drop_as` will now panic in debug builds if the pointer is not aligned.
# Objective
`MutUntyped` is a struct that stores a `PtrMut` alongside change tick metadata. Working with this type is cumbersome, and has few benefits over storing the pointer and change ticks separately.
Related: #6430 (title is out of date)
## Solution
Add a convenience method for transforming an untyped change detection pointer into its typed counterpart.
---
## Changelog
- Added the method `MutUntyped::with_type`.
# Objective
- Fixes#7066
## Solution
- Split the ChangeDetection trait into ChangeDetection and ChangeDetectionMut
- Added Ref as equivalent to &T with change detection
---
## Changelog
- Support for Ref which allow inspecting change detection flags in an immutable way
## Migration Guide
- While bevy prelude includes both ChangeDetection and ChangeDetectionMut any code explicitly referencing ChangeDetection might need to be updated to ChangeDetectionMut or both. Specifically any reading logic requires ChangeDetection while writes requires ChangeDetectionMut.
use bevy_ecs::change_detection::DetectChanges -> use bevy_ecs::change_detection::{DetectChanges, DetectChangesMut}
- Previously Res had methods to access change detection `is_changed` and `is_added` those methods have been moved to the `DetectChanges` trait. If you are including bevy prelude you will have access to these types otherwise you will need to `use bevy_ecs::change_detection::DetectChanges` to continue using them.
`Query`'s fields being `pub(crate)` means that the struct can be constructed via safe code from anywhere in `bevy_ecs` . This is Not Good since it is intended that all construction of this type goes through `Query::new` which is an `unsafe fn` letting various `Query` methods rely on those invariants holding even though they can be trivially bypassed.
This has no user facing impact
# Objective
- Fix#7103.
- The issue is caused because I forgot to add a where clause to a generated struct in #7056.
## Solution
- Add the where clause.
`Query` relies on the `World` it stores being the same as the world used for creating the `QueryState` it stores. If they are not the same then everything is very unsound. This was not actually being checked anywhere, `Query::new` did not have a safety invariant or even an assertion that the `WorldId`'s are the same.
This shouldn't have any user facing impact unless we have really messed up in bevy and have unsoundness elsewhere (in which case we would now get a panic instead of being unsound).
# Objective
- In some cases, you need a `Mut<T>` pointer, but you only have a mutable reference to one. There is no easy way of converting `&'a mut Mut<'_, T>` -> `Mut<'a, T>` outside of the engine.
### Example (Before)
```rust
fn do_with_mut<T>(val: Mut<T>) { ... }
for x: Mut<T> in &mut query {
// The function expects a `Mut<T>`, so `x` gets moved here.
do_with_mut(x);
// Error: use of moved value.
do_a_thing(&x);
}
```
## Solution
- Add the function `reborrow`, which performs the mapping. This is analogous to `PtrMut::reborrow`.
### Example (After)
```rust
fn do_with_mut<T>(val: Mut<T>) { ... }
for x: Mut<T> in &mut query {
// We reborrow `x`, so the original does not get moved.
do_with_mut(x.reborrow());
// Works fine.
do_a_thing(&x);
}
```
---
## Changelog
- Added the method `reborrow` to `Mut`, `ResMut`, `NonSendMut`, and `MutUntyped`.
# Objective
The type `Local<T>` unnecessarily has the bound `T: Sync` when the local is used in an exclusive system.
## Solution
Lift the bound.
---
## Changelog
Removed the bound `T: Sync` from `Local<T>` when used as an `ExclusiveSystemParam`.
# Objective
Fixes#3310. Fixes#6282. Fixes#6278. Fixes#3666.
## Solution
Split out `!Send` resources into `NonSendResources`. Add a `origin_thread_id` to all `!Send` Resources, check it on dropping `NonSendResourceData`, if there's a mismatch, panic. Moved all of the checks that `MainThreadValidator` would do into `NonSendResources` instead.
All `!Send` resources now individually track which thread they were inserted from. This is validated against for every access, mutation, and drop that could be done against the value.
A regression test using an altered version of the example from #3310 has been added.
This is a stopgap solution for the current status quo. A full solution may involve fully removing `!Send` resources/components from `World`, which will likely require a much more thorough design on how to handle the existing in-engine and ecosystem use cases.
This PR also introduces another breaking change:
```rust
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct Resource(u32);
fn main() {
let mut world = World::new();
world.insert_resource(Resource(1));
world.insert_non_send_resource(Resource(2));
let res = world.get_resource_mut::<Resource>().unwrap();
assert_eq!(res.0, 2);
}
```
This code will run correctly on 0.9.1 but not with this PR, since NonSend resources and normal resources have become actual distinct concepts storage wise.
## Changelog
Changed: Fix soundness bug with `World: Send`. Dropping a `World` that contains a `!Send` resource on the wrong thread will now panic.
## Migration Guide
Normal resources and `NonSend` resources no longer share the same backing storage. If `R: Resource`, then `NonSend<R>` and `Res<R>` will return different instances from each other. If you are using both `Res<T>` and `NonSend<T>` (or their mutable variants), to fetch the same resources, it's strongly advised to use `Res<T>`.
# Objective
- This pulls out some of the changes to Plugin setup and sub apps from #6503 to make that PR easier to review.
- Separate the extract stage from running the sub app's schedule to allow for them to be run on separate threads in the future
- Fixes#6990
## Solution
- add a run method to `SubApp` that runs the schedule
- change the name of `sub_app_runner` to extract to make it clear that this function is only for extracting data between the main app and the sub app
- remove the extract stage from the sub app schedule so it can be run separately. This is done by adding a `setup` method to the `Plugin` trait that runs after all plugin build methods run. This is required to allow the extract stage to be removed from the schedule after all the plugins have added their systems to the stage. We will also need the setup method for pipelined rendering to setup the render thread. See e3267965e1/crates/bevy_render/src/pipelined_rendering.rs (L57-L98)
## Changelog
- Separate SubApp Extract stage from running the sub app schedule.
## Migration Guide
### SubApp `runner` has conceptually been changed to an `extract` function.
The `runner` no longer is in charge of running the sub app schedule. It's only concern is now moving data between the main world and the sub app. The `sub_app.app.schedule` is now run for you after the provided function is called.
```rust
// before
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
render_app.app.schedule.run();
});
}
// after
fn main() {
let sub_app = App::empty();
sub_app.add_stage(MyStage, SystemStage::parallel());
App::new().add_sub_app(MySubApp, sub_app, move |main_world, sub_app| {
extract(app_world, render_app);
// schedule is automatically called for you after extract is run
});
}
```
Spiritual successor to #5205.
Actual successor to #6865.
# Objective
Currently, system params are defined using three traits: `SystemParam`, `ReadOnlySystemParam`, `SystemParamState`. The behavior for each param is specified by the `SystemParamState` trait, while `SystemParam` simply defers to the state.
Splitting the traits in this way makes it easier to implement within macros, but it increases the cognitive load. Worst of all, this approach requires each `MySystemParam` to have a public `MySystemParamState` type associated with it.
## Solution
* Merge the trait `SystemParamState` into `SystemParam`.
* Remove all trivial `SystemParam` state types.
* `OptionNonSendMutState<T>`: you will not be missed.
---
- [x] Fix/resolve the remaining test failure.
## Changelog
* Removed the trait `SystemParamState`, merging its functionality into `SystemParam`.
## Migration Guide
**Note**: this should replace the migration guide for #6865.
This is relative to Bevy 0.9, not main.
The traits `SystemParamState` and `SystemParamFetch` have been removed, and their functionality has been transferred to `SystemParam`.
```rust
// Before (0.9)
impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
}
unsafe impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
unsafe impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(&mut self, ...) -> Self::Item;
}
unsafe impl ReadOnlySystemParamFetch for MyParamState { }
// After (0.10)
unsafe impl SystemParam for MyParam<'_, '_> {
type State = MyParamState;
type Item<'w, 's> = MyParam<'w, 's>;
fn init_state(world: &mut World, system_meta: &mut SystemMeta) -> Self::State { ... }
fn get_param<'w, 's>(state: &mut Self::State, ...) -> Self::Item<'w, 's>;
}
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> { }
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl ReadOnlySystemParam for MyParam<'_, '_> {}
```
# Objective
- The doctest for `Mut::map_unchanged` uses a fake function `set_if_not_equal` to demonstrate usage.
- Now that #6853 has been merged, we can use `Mut::set_if_neq` directly instead of mocking it.
# Objective
`SystemParam` `Local`s documentation currently leaves out information that should be documented.
- What happens when multiple `SystemParam`s within the same system have the same `Local` type.
- What lifetime parameter is expected by `Local`.
## Solution
- Added sentences to documentation to communicate this information.
- Renamed `Local` lifetimes in code to `'s` where they previously were not. Users can get complicated incorrect suggested fixes if they pass the wrong lifetime. Some instance of the code had `'w` indicating the expected lifetime might not have been known to those that wrote the code either.
Co-authored-by: iiYese <83026177+iiYese@users.noreply.github.com>
# Objective
- Fix#4200
Currently, `#[derive(SystemParam)]` publicly exposes each field type, which makes it impossible to encapsulate private fields.
## Solution
Previously, the fields were leaked because they were used as an input generic type to the macro-generated `SystemParam::State` struct. That type has been changed to store its state in a field with a specific type, instead of a generic type.
---
## Changelog
- Fixed a bug that caused `#[derive(SystemParam)]` to leak the types of private fields.
# Objective
`Query::get` and other random access methods require looking up `EntityLocation` for every provided entity, then always looking up the `Archetype` to get the table ID and table row. This requires 4 total random fetches from memory: the `Entities` lookup, the `Archetype` lookup, the table row lookup, and the final fetch from table/sparse sets. If `EntityLocation` contains the table ID and table row, only the `Entities` lookup and the final storage fetch are required.
## Solution
Add `TableId` and table row to `EntityLocation`. Ensure it's updated whenever entities are moved around. To ensure `EntityMeta` does not grow bigger, both `TableId` and `ArchetypeId` have been shrunk to u32, and the archetype index and table row are stored as u32s instead of as usizes. This should shrink `EntityMeta` by 4 bytes, from 24 to 20 bytes, as there is no padding anymore due to the change in alignment.
This idea was partially concocted by @BoxyUwU.
## Performance
This should restore the `Query::get` "gains" lost to #6625 that were introduced in #4800 without being unsound, and also incorporates some of the memory usage reductions seen in #3678.
This also removes the same lookups during add/remove/spawn commands, so there may be a bit of a speedup in commands and `Entity{Ref,Mut}`.
---
## Changelog
Added: `EntityLocation::table_id`
Added: `EntityLocation::table_row`.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup>- 1 archetypes.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup> - 1 tables.
## Migration Guide
A `World` can only hold a maximum of 2<sup>32</sup> - 1 archetypes and tables now. If your use case requires more than this, please file an issue explaining your use case.
# Objective
Bevy uses custom `Ptr` types so the rust borrow checker can help ensure lifetimes are correct, even when types aren't known. However, these types don't benefit from the automatic lifetime coercion regular rust references enjoy
## Solution
Add a couple methods to Ptr, PtrMut, and MutUntyped to allow for easy usage of these types in more complex scenarios.
## Changelog
- Added `as_mut` and `as_ref` methods to `MutUntyped`.
- Added `shrink` and `as_ref` methods to `PtrMut`.
## Migration Guide
- `MutUntyped::into_inner` now marks things as changed.
# Objective
Resolve#6156.
The most common type of command is one that runs for a single entity. Built-in commands like this can be ergonomically added to the command queue using the `EntityCommands` struct. However, adding custom entity commands to the queue is quite cumbersome. You must first spawn an entity, store its ID in a local, then construct a command using that ID and add it to the queue. This prevents method chaining, which is the main benefit of using `EntityCommands`.
### Example (before)
```rust
struct MyCustomCommand(Entity);
impl Command for MyCustomCommand { ... }
let id = commands.spawn((...)).id();
commmands.add(MyCustomCommand(id));
```
## Solution
Add the `EntityCommand` trait, which allows directly adding per-entity commands to the `EntityCommands` struct.
### Example (after)
```rust
struct MyCustomCommand;
impl EntityCommand for MyCustomCommand { ... }
commands.spawn((...)).add(MyCustomCommand);
```
---
## Changelog
- Added the trait `EntityCommand`. This is a counterpart of `Command` for types that execute code for a single entity.
## Future Work
If we feel its necessary, we can simplify built-in commands (such as `Despawn`) to use this trait.
# Objective
Any closure with the signature `FnOnce(&mut World)` implicitly implements the trait `Command` due to a blanket implementation. However, this implementation unnecessarily has the `Sync` bound, which limits the types that can be used.
## Solution
Remove the bound.
---
## Changelog
- `Command` closures no longer need to implement the marker trait `std::marker::Sync`.
# Objective
- Be able to name the type that `ManualEventReader::iter/iter_with_id` returns and `EventReader::iter/iter_with_id` by proxy.
Currently for the purpose of https://github.com/bevyengine/bevy/pull/5719
## Solution
- Create a custom `Iterator` type.
# Objective
* Currently, the `SystemParam` derive does not support types with const generic parameters.
* If you try to use const generics, the error message is cryptic and unhelpful.
* Continuation of the work started in #6867 and #6957.
## Solution
Allow const generic parameters to be used with `#[derive(SystemParam)]`.
# Objective
Fixes#4729.
Continuation of #4854.
## Solution
Add documentation to `ParamSet` and its methods. Includes examples suggested by community members in the original PR.
Co-authored-by: Nanox19435 <50684926+Nanox19435@users.noreply.github.com>
Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
# Objective
* The `SystemParam` derive internally uses tuples, which means it is constrained by the 16-field limit on `all_tuples`.
* The error message if you exceed this limit is abysmal.
* Supercedes #5965 -- this does the same thing, but is simpler.
## Solution
If any tuples have more than 16 fields, they are folded into tuples of tuples until they are under the 16-field limit.
# Objective
Currently, only named structs can be used with the `SystemParam` derive macro.
## Solution
Remove the restriction. Tuple structs and unit structs are now supported.
---
## Changelog
+ Added support for tuple structs and unit structs to the `SystemParam` derive macro.
# Objective
There is currently no way to iterate over key/value pairs inside an `EntityMap`, which makes the usage of this struct very awkward. I couldn't think of a good reason why the `iter()` function should not be exposed, considering the interface already exposes `keys()` and `values()`, so I made this PR.
## Solution
Implement `iter()` for `EntityMap` in terms of its inner map type.
# Objective
[Rust 1.66](https://blog.rust-lang.org/inside-rust/2022/12/12/1.66.0-prerelease.html) is coming in a few days, and bevy doesn't build with it.
Fix that.
## Solution
Replace output from a trybuild test, and fix a few new instances of `needless_borrow` and `unnecessary_cast` that are now caught.
## Note
Due to the trybuild test, this can't be merged until 1.66 is released.
# Objective
A separate `tracing` span for running a system's commands is created, even if the system doesn't have commands. This is adding extra measuring overhead (see #4892) where it's not needed.
## Solution
Move the span into `ParallelCommandState` and `CommandQueue`'s `SystemParamState::apply`. To get the right metadata for the span, a additional `&SystemMeta` parameter was added to `SystemParamState::apply`.
---
## Changelog
Added: `SystemMeta::name`
Changed: Systems without `Commands` and `ParallelCommands` will no longer show a "system_commands" span when profiling.
Changed: `SystemParamState::apply` now takes a `&SystemMeta` parameter in addition to the provided `&mut World`.
# Objective
Change detection can be spuriously triggered by setting a field to the same value as before. As a result, a common pattern is to write:
```rust
if *foo != value {
*foo = value;
}
```
This is confusing to read, and heavy on boilerplate.
Adopted from #5373, but untangled and rebased to current `bevy/main`.
## Solution
1. Add a method to the `DetectChanges` trait that implements this boilerplate when the appropriate trait bounds are met.
2. Document this minor footgun, and point users to it.
## Changelog
* added the `set_if_neq` method to avoid triggering change detection when the new and previous values are equal. This will work on both components and resources.
## Migration Guide
If you are manually checking if a component or resource's value is equal to its new value before setting it to avoid triggering change detection, migrate to the clearer and more convenient `set_if_neq` method.
## Context
Related to #2363 as it avoids triggering change detection, but not a complete solution (as it still requires triggering it when real changes are made).
Co-authored-by: Zoey <Dessix@Dessix.net>
# Objective
Speed up bundle insertion and spawning from a bundle.
## Solution
Use the same technique used in #6800 to remove the branch on storage type when writing components from a `Bundle` into storage.
- Add a `StorageType` argument to the closure on `Bundle::get_components`.
- Pass `C::Storage::STORAGE_TYPE` into that argument.
- Match on that argument instead of reading from a `Vec<StorageType>` in `BundleInfo`.
- Marked all implementations of `Bundle::get_components` as inline to encourage dead code elimination.
The `Vec<StorageType>` in `BundleInfo` was also removed as it's no longer needed. If users were reliant on this, they can either use the compile time constants or fetch the information from `Components`. Should save a rather negligible amount of memory.
## Performance
Microbenchmarks show a slight improvement to inserting components into existing entities, as well as spawning from a bundle. Ranging about 8-16% faster depending on the benchmark.
```
group main soft-constant-write-components
----- ---- ------------------------------
add_remove/sparse_set 1.08 1019.0±80.10µs ? ?/sec 1.00 944.6±66.86µs ? ?/sec
add_remove/table 1.07 1343.3±20.37µs ? ?/sec 1.00 1257.3±18.13µs ? ?/sec
add_remove_big/sparse_set 1.08 1132.4±263.10µs ? ?/sec 1.00 1050.8±240.74µs ? ?/sec
add_remove_big/table 1.02 2.6±0.05ms ? ?/sec 1.00 2.5±0.08ms ? ?/sec
get_or_spawn/batched 1.15 401.4±17.76µs ? ?/sec 1.00 349.3±11.26µs ? ?/sec
get_or_spawn/individual 1.13 732.1±43.35µs ? ?/sec 1.00 645.6±41.44µs ? ?/sec
insert_commands/insert 1.12 623.9±37.48µs ? ?/sec 1.00 557.4±34.99µs ? ?/sec
insert_commands/insert_batch 1.16 401.4±17.00µs ? ?/sec 1.00 347.4±12.87µs ? ?/sec
insert_simple/base 1.08 416.9±5.60µs ? ?/sec 1.00 385.2±4.14µs ? ?/sec
insert_simple/unbatched 1.06 934.5±44.58µs ? ?/sec 1.00 881.3±47.86µs ? ?/sec
spawn_commands/2000_entities 1.09 190.7±11.41µs ? ?/sec 1.00 174.7±9.15µs ? ?/sec
spawn_commands/4000_entities 1.10 386.5±25.33µs ? ?/sec 1.00 352.3±18.81µs ? ?/sec
spawn_commands/6000_entities 1.10 586.2±34.42µs ? ?/sec 1.00 535.3±27.25µs ? ?/sec
spawn_commands/8000_entities 1.08 778.5±45.15µs ? ?/sec 1.00 718.0±33.66µs ? ?/sec
spawn_world/10000_entities 1.04 1026.4±195.46µs ? ?/sec 1.00 985.8±253.37µs ? ?/sec
spawn_world/1000_entities 1.06 103.8±20.23µs ? ?/sec 1.00 97.6±18.22µs ? ?/sec
spawn_world/100_entities 1.15 11.4±4.25µs ? ?/sec 1.00 9.9±1.87µs ? ?/sec
spawn_world/10_entities 1.05 1030.8±229.78ns ? ?/sec 1.00 986.2±231.12ns ? ?/sec
spawn_world/1_entities 1.01 105.1±23.33ns ? ?/sec 1.00 104.6±31.84ns ? ?/sec
```
---
## Changelog
Changed: `Bundle::get_components` now takes a `FnMut(StorageType, OwningPtr)`. The provided storage type must be correct for the component being fetched.
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/6417
## Solution
- clear_trackers was not being called on the render world. This causes the removed components vecs to continuously grow. This PR adds clear trackers to the end of RenderStage::Cleanup
## Migration Guide
The call to `clear_trackers` in `App` has been moved from the schedule to App::update for the main world and calls to `clear_trackers` have been added for sub_apps in the same function. This was due to needing stronger guarantees. If clear_trackers isn't called on a world it can lead to memory leaks in `RemovedComponents`.
# Objective
* Implementing a custom `SystemParam` by hand requires implementing three traits -- four if it is read-only.
* The trait `SystemParamFetch<'w, 's>` is a workaround from before we had generic associated types, and is no longer necessary.
## Solution
* Combine the trait `SystemParamFetch` with `SystemParamState`.
* I decided to remove the `Fetch` name and keep the `State` name, since the former was consistently conflated with the latter.
* Replace the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`, which simplifies trait bounds in generic code.
---
## Changelog
- Removed the trait `SystemParamFetch`, moving its functionality to `SystemParamState`.
- Replaced the trait `ReadOnlySystemParamFetch` with `ReadOnlySystemParam`.
## Migration Guide
The trait `SystemParamFetch` has been removed, and its functionality has been transferred to `SystemParamState`.
```rust
// Before
impl SystemParamState for MyParamState {
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
}
impl<'w, 's> SystemParamFetch<'w, 's> for MyParamState {
type Item = MyParam<'w, 's>;
fn get_param(...) -> Self::Item;
}
// After
impl SystemParamState for MyParamState {
type Item<'w, 's> = MyParam<'w, 's>; // Generic associated types!
fn init(world: &mut World, system_meta: &mut SystemMeta) -> Self { ... }
fn get_param<'w, 's>(...) -> Self::Item<'w, 's>;
}
```
The trait `ReadOnlySystemParamFetch` has been replaced with `ReadOnlySystemParam`.
```rust
// Before
unsafe impl ReadOnlySystemParamFetch for MyParamState {}
// After
unsafe impl<'w, 's> ReadOnlySystemParam for MyParam<'w, 's> {}
```
# Objective
It's not clear to users how to handle `!Sync` types as components and resources in the absence of engine level support for them.
## Solution
Added a section to `Component`'s and `Resource`'s type level docs on available options for making a type `Sync` when it holds `!Sync` fields, linking `bevy_utils::synccell::SyncCell` and the currently unstable `std::sync::Exclusive`.
Also added a compile_fail doctest that illustrates how to apply `SyncCell`. These will break when/if #6572 gets merged, at which point these docs should be updated.
# Objective
Fixes#6224, add ``dbg``, ``info``, ``warn`` and ``error`` system piping adapter variants to expand #5776, which call the corresponding re-exported [bevy_log macros](https://docs.rs/bevy/latest/bevy/log/macro.info.html) when the result is an error.
## Solution
* Added ``dbg``, ``info``, ``warn`` and ``error`` system piping adapter variants to ``system_piping.rs``.
* Modified and added tests for these under examples in ``system_piping.rs``.
# Objective
#6547 accidentally broke change detection for SparseSet components by using `Ticks::from_tick_cells` with the wrong argument order.
## Solution
Use the right argument order. Add a regression test.
having `doc(hidden)` on the read only version of a generated mutable world query leads to docs on the readonly item having a dead link. It also makes it annoying to have nice docs for libraries attempting to expose derived `WorldQuery` structs as re-exporting the read only item does not cause it to appear in docs even though it would be intended for users to know about the read only world query and use it.
# Objective
Prevent future unsoundness that was seen in #6623.
## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.
---
## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
# Objective
`EntityRef::get` and friends all type erase calls to fetch the target components by using passing in the `TypeId` instead of using generics. This is forcing a lookup to `Components` to fetch the storage type. This adds an extra memory lookup and forces a runtime branch instead of allowing the compiler to optimize out the unused branch.
## Solution
Leverage `Component::Storage::STORAGE_TYPE` as a constant instead of fetching the metadata from `Components`.
## Performance
This has a near 2x speedup for all calls to `World::get`. Microbenchmark results from my local machine. `Query::get_component`, which uses `EntityRef::get` internally also show a slight speed up. This has closed the gap between `World::get` and `Query::get` for the same use case.
```
group entity-ref-generics main
----- ------------------- ----
query_get_component/50000_entities_sparse 1.00 890.6±40.42µs ? ?/sec 1.10 980.6±28.22µs ? ?/sec
query_get_component/50000_entities_table 1.00 968.5±73.73µs ? ?/sec 1.08 1048.8±31.76µs ? ?/sec
query_get_component_simple/system 1.00 703.2±4.37µs ? ?/sec 1.00 702.1±6.13µs ? ?/sec
query_get_component_simple/unchecked 1.02 855.8±8.98µs ? ?/sec 1.00 843.1±8.19µs ? ?/sec
world_get/50000_entities_sparse 1.00 202.3±3.15µs ? ?/sec 1.85 374.0±20.96µs ? ?/sec
world_get/50000_entities_table 1.00 193.0±1.78µs ? ?/sec 2.02 389.2±26.55µs ? ?/sec
world_query_get/50000_entities_sparse 1.01 162.4±2.23µs ? ?/sec 1.00 161.3±0.95µs ? ?/sec
world_query_get/50000_entities_table 1.00 199.9±0.63µs ? ?/sec 1.00 200.2±0.74µs ? ?/sec
```
This should also, by proxy, speed up the `ReflectComponent` APIs as most of those use `World::get` variants internally.
# Objective
The methods `World::change_tick` and `World::read_change_tick` lack documentation and have confusingly similar behavior.
## Solution
Add documentation and clarify the distinction between the two functions.
The PR fixes the interface of `EventReader::clear`. Currently, the method consumes the reader, which makes it unusable.
## Changelog
- `EventReader::clear` now takes a mutable reference instead of consuming the event reader.
## Migration Guide
`EventReader::clear` now takes a mutable reference instead of consuming the event reader. This means that `clear` now needs explicit mutable access to the reader variable, which previously could have been omitted in some cases:
```rust
// Old (0.9)
fn clear_events(reader: EventReader<SomeEvent>) {
reader.clear();
}
// New (0.10)
fn clear_events(mut reader: EventReader<SomeEvent>) {
reader.clear();
}
```
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#6812.
## Solution
- Replaced `World::read_change_ticks` with `World::change_ticks` within `bevy_ecs` crate in places where `World` references were mutable.
---
# Objective
Partially addresses #5504. Allow users to get an `Iterator<Item = EntityRef<'a>>` over all entities in the `World`.
## Solution
Change `World::iter_entities` to return an iterator of `EntityRef` instead of `Entity`.
Not sure how to tackle making an `Iterator<Item = EntityMut<'_>>` without being horribly unsound. Might need to wait for `LendingIterator` to stabilize so we can ensure only one of them is valid at a given time.
---
## Changelog
Changed: `World::iter_entities` now returns an iterator of `EntityRef` instead of `Entity`.
# Objective
Currently, the `SystemParam` derive forces you to declare the lifetime parameters `<'w, 's>`, even if you don't use them.
If you don't follow this structure, the error message is quite nasty.
### Example (before):
```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, 's, E: Event> {
events: ResMut<'w, Events<E>>,
// The derive forces us to declare the `'s` lifetime even though we don't use it,
// so we have to add this `PhantomData` to please rustc.
#[system_param(ignore)]
_marker: PhantomData<&'s ()>,
}
```
## Solution
* Allow the user to omit either lifetime.
* Emit a descriptive error if any lifetimes used are invalid.
### Example (after):
```rust
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
events: ResMut<'w, Events<E>>,
}
```
---
## Changelog
* The `SystemParam` derive is now more flexible, allowing you to omit unused lifetime parameters.
# Objective
The soundness of the ECS `World` partially relies on the correctness of the state of `Entities` stored within it. We're currently allowing users to (unsafely) mutate it, as well as readily construct it without using a `World`. While this is not strictly unsound so long as users (including `bevy_render`) safely use the APIs, it's a fairly easy path to unsoundness without much of a guard rail.
Addresses #3362 for `bevy_ecs::entity`. Incorporates the changes from #3985.
## Solution
Remove `Entities`'s `Default` implementation and force access to the type to only be through a properly constructed `World`.
Additional cleanup for other parts of `bevy_ecs::entity`:
- `Entity::index` and `Entity::generation` are no longer `pub(crate)`, opting to force the rest of bevy_ecs to use the public interface to access these values.
- `EntityMeta` is no longer `pub` and also not `pub(crate)` to attempt to cut down on updating `generation` without going through an `Entities` API. It's currently inaccessible except via the `pub(crate)` Vec on `Entities`, there was no way for an outside user to use it.
- Added `Entities::set`, an unsafe `pub(crate)` API for setting the location of an Entity (parallel to `Entities::get`) that replaces the internal case where we need to set the location of an entity when it's been spawned, moved, or despawned.
- `Entities::alloc_at_without_replacement` is only used in `World::get_or_spawn` within the first party crates, and I cannot find a public use of this API in any ecosystem crate that I've checked (via GitHub search).
- Attempted to document the few remaining undocumented public APIs in the module.
---
## Changelog
Removed: `Entities`'s `Default` implementation.
Removed: `EntityMeta`
Removed: `Entities::alloc_at_without_replacement` and `AllocAtWithoutReplacement`.
Co-authored-by: james7132 <contact@jamessliu.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Document `bevy_ecs::archetype` and and declutter the public documentation for the module by making types non-`pub`.
Addresses #3362 for `bevy_ecs::archetype`.
## Solution
- Add module level documentation.
- Add type and API level documentation for all public facing types.
- Make `ArchetypeId`, `ArchetypeGeneration`, and `ArchetypeComponentId` truly opaque IDs that are not publicly constructable.
- Make `AddBundle` non-pub, make `Edges::get_add_bundle` return a `Option<ArchetypeId>` and fork the existing function into `Edges::get_add_bundle_internal`.
- Remove `pub(crate)` on fields that have a corresponding pub accessor function.
- Removed the `Archetypes: Default` impl, opting for a `pub(crate) fn new` alternative instead.
---
## Changelog
Added: `ArchetypeGeneration` now implements `Ord` and `PartialOrd`.
Removed: `Archetypes`'s `Default` implementation.
Removed: `Archetype::new` and `Archetype::is_empty`.
Removed: `ArchetypeId::new` and `ArchetypeId::value`.
Removed: `ArchetypeGeneration::value`
Removed: `ArchetypeIdentity`.
Removed: `ArchetypeComponentId::new` and `ArchetypeComponentId::value`.
Removed: `AddBundle`. `Edges::get_add_bundle` now returns `Option<ArchetypeId>`
# Objective
- The documentation describing different ways to spawn an Entity is missing reference to "method" for "Spawn an entity with components".
## Solution
- Update the documentation to add the reference to `World::spawn`.
# Objective
One of the use-cases for the function `Entity::from_raw` is creating placeholder entity ids, which are meant to be overwritten later. If we use a constant for this instead of `from_raw`, it is more ergonomic and self-documenting.
## Solution
Add a constant that returns an entity ID with an index of `u32::MAX` and a generation of zero. Users are instructed to overwrite this value before using it.
# Objective
- Reverts #5730.
- Fixes#6173, fixes#6596.
## Solution
Remove the warning entirely.
## Changelog
You will no longer be spammed about
> Missed 31 `bevy_input:🐭:MouseMotion` events. Consider
reading from the `EventReader` more often (generally the best
solution) or calling Events::update() less frequently
(normally this is called once per frame). This problem is most
likely due to run criteria/fixed timesteps or consuming events
conditionally. See the Events documentation for
more information.
when you miss events. These warnings were often (but not always) a false positive. You can still check this manually by using `ManualEventReader::missed_events`
# Objective
Consider the test
```rust
let cell = world.cell();
let _value_a = cell.resource_mut::<A>();
let _value_b = cell.resource_mut::<A>();
```
Currently, this will roughly execute
```rust
// first call
let value = unsafe {
self.world
.get_non_send_unchecked_mut_with_id(component_id)?
};
return Some(WorldBorrowMut::new(value, archetype_component_id, self.access)))
// second call
let value = unsafe {
self.world
.get_non_send_unchecked_mut_with_id(component_id)?
};
return Some(WorldBorrowMut::new(value, archetype_component_id, self.access)))
```
where `WorldBorrowMut::new` will panic if the resource is already borrowed.
This means, that `_value_a` will be created, the access checked (OK), then `value_b` will be created, and the access checked (`panic`).
For a moment, both `_value_a` and `_value_b` existed as `&mut T` to the same location, which is insta-UB as far as I understand it.
## Solution
Flip the order so that `WorldBorrowMut::new` first checks the access, _then_ fetches creates the value. To do that, we pass a `impl FnOnce() -> Mut<T>` instead of the `Mut<T>` directly:
```rust
let get_value = || unsafe {
self.world
.get_non_send_unchecked_mut_with_id(component_id)?
};
return Some(WorldBorrowMut::new(get_value, archetype_component_id, self.access)))
```
Without this fix, piped systems containing exclusive systems fail to run, giving a runtime panic.
With this PR, running piped systems that contain exclusive systems now works.
## Explanation of the bug
This is because, unless overridden, the default implementation of `run` from the `System` trait simply calls `run_unsafe`. That is not valid for exclusive systems. They must always be called via `run`, as `run_unsafe` takes `&World` instead of `&mut World`.
Trivial reproduction example:
```rust
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_system(exclusive.pipe(another))
.run();
}
fn exclusive(_world: &mut World) {}
fn another() {}
```
If you run this, you will get a panic 'Cannot run exclusive systems with a shared World reference' and the backtrace shows how bevy (correctly) tries to call the `run` method (because the system is exclusive), but it is the implementation from the `System` trait (because `PipeSystem` does not have its own), which calls `run_unsafe` (incorrect):
- 3: <bevy_ecs::system::system_piping::PipeSystem<SystemA,SystemB> as bevy_ecs::system::system::System>::run_unsafe
- 4: bevy_ecs::system::system::System::run
# Objective
Fixes#4884. `ComponentTicks` stores both added and changed ticks contiguously in the same 8 bytes. This is convenient when passing around both together, but causes half the bytes fetched from memory for the purposes of change detection to effectively go unused. This is inefficient when most queries (no filter, mutating *something*) only write out to the changed ticks.
## Solution
Split the storage for change detection ticks into two separate `Vec`s inside `Column`. Fetch only what is needed during iteration.
This also potentially also removes one blocker from autovectorization of dense queries.
EDIT: This is confirmed to enable autovectorization of dense queries in `for_each` and `par_for_each` where possible. Unfortunately `iter` has other blockers that prevent it.
### TODO
- [x] Microbenchmark
- [x] Check if this allows query iteration to autovectorize simple loops.
- [x] Clean up all of the spurious tuples now littered throughout the API
### Open Questions
- ~~Is `Mut::is_added` absolutely necessary? Can we not just use `Added` or `ChangeTrackers`?~~ It's optimized out if unused.
- ~~Does the fetch of the added ticks get optimized out if not used?~~ Yes it is.
---
## Changelog
Added: `Tick`, a wrapper around a single change detection tick.
Added: `Column::get_added_ticks`
Added: `Column::get_column_ticks`
Added: `SparseSet::get_added_ticks`
Added: `SparseSet::get_column_ticks`
Changed: `Column` now stores added and changed ticks separately internally.
Changed: Most APIs returning `&UnsafeCell<ComponentTicks>` now returns `TickCells` instead, which contains two separate `&UnsafeCell<Tick>` for either component ticks.
Changed: `Query::for_each(_mut)`, `Query::par_for_each(_mut)` will now leverage autovectorization to speed up query iteration where possible.
## Migration Guide
TODO
# Objective
Fix#5149
## Solution
Instead of returning the **total count** of elements in the `QueryIter` in
`size_hint`, we return the **count of remaining elements**. This
Fixes#5149 even when #5148 gets merged.
- https://github.com/bevyengine/bevy/issues/5149
- https://github.com/bevyengine/bevy/pull/5148
---
## Changelog
- Fix partially consumed `QueryIter` and `QueryCombinationIter` having invalid `size_hint`
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
BlobVec currently relies on a scratch piece of memory allocated at initialization to make a temporary copy of a component when using `swap_remove_and_{forget/drop}`. This is potentially suboptimal as it writes to a, well-known, but random part of memory instead of using the stack.
## Solution
As the `FIXME` in the file states, replace `swap_scratch` with a call to `swap_nonoverlapping::<u8>`. The swapped last entry is returned as a `OwnedPtr`.
In theory, this should be faster as the temporary swap is allocated on the stack, `swap_nonoverlapping` allows for easier vectorization for bigger types, and the same memory is used between the swap and the returned `OwnedPtr`.
# Objective
* Enable `Res` and `Query` parameter mutual exclusion
* Required for https://github.com/bevyengine/bevy/pull/5080
The `FilteredAccessSet::get_conflicts` methods didn't work properly with
`Res` and `ResMut` parameters. Because those added their access by using
the `combined_access_mut` method and directly modifying the global
access state of the FilteredAccessSet. This caused an inconsistency,
because get_conflicts assumes that ALL added access have a corresponding
`FilteredAccess` added to the `filtered_accesses` field.
In practice, that means that SystemParam that adds their access through
the `Access` returned by `combined_access_mut` and the ones that add
their access using the `add` method lived in two different universes. As
a result, they could never be mutually exclusive.
## Solution
This commit fixes it by removing the `combined_access_mut` method. This
ensures that the `combined_access` field of FilteredAccessSet is always
updated consistently with the addition of a filter. When checking for
filtered access, it is now possible to account for `Res` and `ResMut`
invalid access. This is currently not needed, but might be in the
future.
We add the `add_unfiltered_{read,write}` methods to replace previous
usages of `combined_access_mut`.
We also add improved Debug implementations on FixedBitSet so that their
meaning is much clearer in debug output.
---
## Changelog
* Fix `Res` and `Query` parameter never being mutually exclusive.
## Migration Guide
Note: this mostly changes ECS internals, but since the API is public, it is technically breaking:
* Removed `FilteredAccessSet::combined_access_mut`
* Replace _immutable_ usage of those by `combined_access`
* For _mutable_ usages, use the new `add_unfiltered_{read,write}` methods instead of `combined_access_mut` followed by `add_{read,write}`
# Objective
Make core types in ECS smaller. The column sparse set in Tables is never updated after creation.
## Solution
Create `ImmutableSparseSet` which removes the capacity fields in the backing vec's and the APIs for inserting or removing elements. Drops the size of the sparse set by 3 usizes (24 bytes on 64-bit systems)
## Followup
~~After #4809, Archetype's component SparseSet should be replaced with it.~~ This has been done.
---
## Changelog
Removed: `Table::component_capacity`
## Migration Guide
`Table::component_capacity()` has been removed as Tables do not support adding/removing columns after construction.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Archetype is a deceptively large type in memory. It stores metadata about which components are in which storage in multiple locations, which is only used when creating new Archetypes while moving entities.
## Solution
Remove the redundant `Box<[ComponentId]>`s and iterate over the sparse set of component metadata instead. Reduces Archetype's size by 4 usizes (32 bytes on 64-bit systems), as well as the additional allocations for holding these slices.
It'd seem like there's a downside that the origin archetype has it's component metadata iterated over twice when creating a new archetype, but this change also removes the extra `Vec<ArchetypeComponentId>` allocations when creating a new archetype which may amortize out to a net gain here. This change likely negatively impacts creating new archetypes with a large number of components, but that's a cost mitigated by the fact that these archetypal relationships are cached in Edges and is incurred only once for each edge created.
## Additional Context
There are several other in-flight PRs that shrink Archetype:
- #4800 merges the entities and rows Vecs together (shaves off 24 bytes per archetype)
- #4809 removes unique_components and moves it to it's own dedicated storage (shaves off 72 bytes per archetype)
---
## Changelog
Changed: `Archetype::table_components` and `Archetype::sparse_set_components` return iterators instead of slices. `Archetype::new` requires iterators instead of parallel slices/vecs.
## Migration Guide
Do I still need to do this? I really hope people were not relying on the public facing APIs changed here.
# Objective
In bevy 0.8 you could list all resources using `world.archetypes().resource().components()`. As far as I can tell the resource archetype has been replaced with the `Resources` storage, and it would be nice if it could be used to iterate over all resource component IDs as well.
## Solution
- add `fn Resources::iter(&self) -> impl Iterator<Item = (ComponentId, &ResourceData)>`
# Objective
Fixes#6615.
`BlobVec` does not respect alignment for zero-sized types, which results in UB whenever a ZST with alignment other than 1 is used in the world.
## Solution
Add the fn `bevy_ptr::dangling_with_align`.
---
## Changelog
+ Added the function `dangling_with_align` to `bevy_ptr`, which creates a well-aligned dangling pointer to a type whose alignment is not known at compile time.
# Objective
Fix#6548. Most of these methods were already made `const` in #5688. `Entity::to_bits` is the only one that remained.
## Solution
Make it const.
# Objective
Copy `send_event` and friends from `World` to `WorldCell`.
Clean up `bevy_winit` using `WorldCell::send_event`.
## Changelog
Added `send_event`, `send_event_default`, and `send_event_batch` to `WorldCell`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
* Move the despawn debug log from `World::despawn` to `EntityMut::despawn`.
* Move the despawn non-existent warning log from `Commands::despawn` to `World::despawn`.
This should make logging consistent regardless of which of the three `despawn` methods is used.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
When an error causes `debug_checked_unreachable` to be called, the panic message unhelpfully points to the function definition instead of the place that caused the error.
## Solution
Add the `#[track_caller]` attribute in debug mode.
`EntityMut::remove_children` does not call `self.update_location()` which is unsound.
Verified by adding the following assertion, which fails when running the tests.
```rust
let before = self.location();
self.update_location();
assert_eq!(before, self.location());
```
I also removed incorrect messages like "parent entity is not modified" and the unhelpful "Inserting a bundle in the children entities may change the parent entity's location if they were of the same archetype" which might lead people to think that's the *only* thing that can change the entity's location.
# Changelog
Added `EntityMut::world_scope`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
Alternative to #6424Fixes#6226
Fixes spawning empty bundles
## Solution
Add `BundleComponentStatus` trait and implement it for `AddBundle` and a new `SpawnBundleStatus` type (which always returns an Added status). `write_components` is now generic on `BundleComponentStatus` instead of taking `AddBundle` directly. This means BundleSpawner can now avoid needing AddBundle from the Empty archetype, which means BundleSpawner no longer needs a reference to the original archetype.
In theory this cuts down on the work done in `write_components` when spawning, but I'm seeing no change in the spawn benchmarks.
# Objective
Replace `WorldQueryGats` trait with actual gats
## Solution
Replace `WorldQueryGats` trait with actual gats
---
## Changelog
- Replaced `WorldQueryGats` trait with actual gats
## Migration Guide
- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
# Objective
Right now, the `TaskPool` implementation allows panics to permanently kill worker threads upon panicking. This is currently non-recoverable without using a `std::panic::catch_unwind` in every scheduled task. This is poor ergonomics and even poorer developer experience. This is exacerbated by #2250 as these threads are global and cannot be replaced after initialization.
Removes the need for temporary fixes like #4998. Fixes#4996. Fixes#6081. Fixes#5285. Fixes#5054. Supersedes #2307.
## Solution
The current solution is to wrap `Executor::run` in `TaskPool` with a `catch_unwind`, and discarding the potential panic. This was taken straight from [smol](404c7bcc0a/src/spawn.rs (L44))'s current implementation. ~~However, this is not entirely ideal as:~~
- ~~the signaled to the awaiting task. We would need to change `Task<T>` to use `async_task::FallibleTask` internally, and even then it doesn't signal *why* it panicked, just that it did.~~ (See below).
- ~~no error is logged of any kind~~ (See below)
- ~~it's unclear if it drops other tasks in the executor~~ (it does not)
- ~~This allows the ECS parallel executor to keep chugging even though a system's task has been dropped. This inevitably leads to deadlock in the executor.~~ Assuming we don't catch the unwind in ParallelExecutor, this will naturally kill the main thread.
### Alternatives
A final solution likely will incorporate elements of any or all of the following.
#### ~~Log and Ignore~~
~~Log the panic, drop the task, keep chugging. This only addresses the discoverability of the panic. The process will continue to run, probably deadlocking the executor. tokio's detatched tasks operate in this fashion.~~
Panics already do this by default, even when caught by `catch_unwind`.
#### ~~`catch_unwind` in `ParallelExecutor`~~
~~Add another layer catching system-level panics into the `ParallelExecutor`. How the executor continues when a core dependency of many systems fails to run is up for debate.~~
`async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread.
#### ~~Emulate/Copy `tokio::JoinHandle` with `Task<T>`~~
~~`tokio::JoinHandle<T>` bubbles up the panic from the underlying task when awaited. This can be transitively applied across other APIs that also use `Task<T>` like `Query::par_for_each` and `TaskPool::scope`, bubbling up the panic until it's either caught or it reaches the main thread.~~
`async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread.
#### Abort on Panic
The nuclear option. Log the error, abort the entire process on any thread in the task pool panicking. Definitely avoids any additional infrastructure for passing the panic around, and might actually lead to more efficient code as any unwinding is optimized out. However gives the developer zero options for dealing with the issue, a seemingly poor choice for debuggability, and prevents graceful shutdown of the process. Potentially an option for handling very low-level task management (a la #4740). Roughly takes the shape of:
```rust
struct AbortOnPanic;
impl Drop for AbortOnPanic {
fn drop(&mut self) {
abort!();
}
}
let guard = AbortOnPanic;
// Run task
std::mem::forget(AbortOnPanic);
```
---
## Changelog
Changed: `bevy_tasks::TaskPool`'s threads will no longer terminate permanently when a task scheduled onto them panics.
Changed: `bevy_tasks::Task` and`bevy_tasks::Scope` will propagate panics in the spawned tasks/scopes to the parent thread.
This reverts commit 53d387f340.
# Objective
Reverts #6448. This didn't have the intended effect: we're now getting bevy::prelude shown in the docs again.
Co-authored-by: Alejandro Pascual <alejandro.pascual.pozo@gmail.com>
# Objective
- Right now re-exports are completely hidden in prelude docs.
- Fixes#6433
## Solution
- We could show the re-exports without inlining their documentation.
# Objective
Fixes#6059, changing all incorrect occurrences of ``id`` in the ``entity`` module to ``index``:
* struct level documentation,
* ``id`` struct field,
* ``id`` method and its documentation.
## Solution
Renaming and verifying using CI.
Co-authored-by: Edvin Kjell <43633999+Edwox@users.noreply.github.com>
For `derive(WorldQuery)`, there are three structs generated, `Item`, `Fetch` and `State`.
These inherit the visibility of the derived structure, thus `#![warn(missing_docs)]` would
warn about missing documentation for these structures.
- [ ] I'd like some advice on what to write here, as I personally don't really understand `Fetch` nor `State`.
# Objective
* Add benchmarks for `Query::get_many`.
* Speed up `Query::get_many`.
## Solution
Previously, `get_many` and `get_many_mut` used the method `array::map`, which tends to optimize very poorly. This PR replaces uses of that method with loops.
## Benchmarks
| Benchmark name | Execution time | Change from this PR |
|--------------------------------------|----------------|---------------------|
| query_get_many_2/50000_calls_table | 1.3732 ms | -24.967% |
| query_get_many_2/50000_calls_sparse | 1.3826 ms | -24.572% |
| query_get_many_5/50000_calls_table | 2.6833 ms | -30.681% |
| query_get_many_5/50000_calls_sparse | 2.9936 ms | -30.672% |
| query_get_many_10/50000_calls_table | 5.7771 ms | -36.950% |
| query_get_many_10/50000_calls_sparse | 7.4345 ms | -36.987% |
# Objective
Add documentation `#[world_query(ignore)]`. Fixes#6283.
---
I've only described it's behavior so far (which appears to be the same as with `system_param`). Is there another use-case for this besides with `PhantomData`? I could only find a single usage of this construct on GitHub, which is [here](ffcb816927/bevy/examples/ecs/custom_query_param.rs (L102)).
I was also wondering if it would make sense to add a usage example to the `custom_query_example`? 🤔 That's why it's currently still in there.
Co-authored-by: Lucas Jenß <243719+x3ro@users.noreply.github.com>
# Objective
Bevy still has many instances of using single-tuples `(T,)` to create a bundle. Due to #2975, this is no longer necessary.
## Solution
Search for regex `\(.+\s*,\)`. This should have found every instance.
# Objective
Fix the soundness issue outlined in #5866. In short the problem is that `query.to_readonly().get_component_mut::<T>()` can provide unsound mutable access to the component. This PR is an alternative to just removing the offending api. Given that `to_readonly` is a useful tool, I think this approach is a preferable short term solution. Long term I think theres a better solution out there, but we can find that on its own time.
## Solution
Add what amounts to a "dirty flag" that marks Queries that have been converted to their read-only variant via `to_readonly` as dirty. When this flag is set to true, `get_component_mut` will fail with an error, preventing the unsound access.
# Objective
Currently for entities we serialize only `id`. But this is not very expected behavior. For example, in networking, when the server sends its state, it contains entities and components. On the client, I create new objects and map them (using `EntityMap`) to those received from the server (to know which one matches which). And if `generation` field is missing, this mapping can be broken. Example:
1. Server sends an entity `Entity{ id: 2, generation: 1}` with components.
2. Client puts the received entity in a map and create a new entity that maps to this received entity. The new entity have different `id` and `generation`. Let's call it `Entity{ id: 12, generation: 4}`.
3. Client sends a command for `Entity{ id: 12, generation: 4}`. To do so, it maps local entity to the one from server. But `generation` field is 0 because it was omitted for serialization on the server. So it maps to `Entity{ id: 2, generation: 0}`.
4. Server receives `Entity{ id: 2, generation: 0}` which is invalid.
In my game I worked around it by [writing custom serialization](https://github.com/dollisgame/dollis/blob/master/src/core/network/entity_serde.rs) and using `serde(with = "...")`. But it feels like a bad default to me.
Using `Entity` over a custom `NetworkId` also have the following advantages:
1. Re-use `MapEntities` trait to map `Entity`s in replicated components.
2. Instead of server `Entity <-> NetworkId ` and `Entity <-> NetworkId`, we map entities only on client.
3. No need to handling uniqueness. It's a rare case, but makes things simpler. For example, I don't need to query for a resource to create an unique ID.
Closes#6143.
## Solution
Use default serde impls. If anyone want to avoid wasting memory on `generation`, they can create a new type that holds `u32`. This is what Bevy do for [DynamicEntity](https://docs.rs/bevy/latest/bevy/scene/struct.DynamicEntity.html) to serialize scenes. And I don't see any use case to serialize an entity id expect this one.
---
## Changelog
### Changed
- Entity now serializes / deserializes `generation` field.
## Migration Guide
- Entity now fully serialized. If you want to serialze only `id`, as it was before, you can create a new type that wraps `u32`.
# Objective
- fix new clippy lints before they get stable and break CI
## Solution
- run `clippy --fix` to auto-fix machine-applicable lints
- silence `clippy::should_implement_trait` for `fn HandleId::default<T: Asset>`
## Changes
- always prefer `format!("{inline}")` over `format!("{}", not_inline)`
- prefer `Box::default` (or `Box::<T>::default` if necessary) over `Box::new(T::default())`
# Objective
Clean up code surrounding fetch by pulling out the common parts into the iteration code.
## Solution
Merge `Fetch::table_fetch` and `Fetch::archetype_fetch` into a single API: `Fetch::fetch(&mut self, entity: &Entity, table_row: &usize)`. This provides everything any fetch requires to internally decide which storage to read from and get the underlying data. All of these functions are marked as `#[inline(always)]` and the arguments are passed as references to attempt to optimize out the argument that isn't being used.
External to `Fetch`, Query iteration has been changed to keep track of the table row and entity outside of fetch, which moves a lot of the expensive bookkeeping `Fetch` structs had previously done internally into the outer loop.
~~TODO: Benchmark, docs~~ Done.
---
## Changelog
Changed: `Fetch::table_fetch` and `Fetch::archetype_fetch` have been merged into a single `Fetch::fetch` function.
## Migration Guide
TODO
Co-authored-by: Brian Merchant <bhmerchang@gmail.com>
Co-authored-by: Saverio Miroddi <saverio.pub2@gmail.com>
# Objective
- Proactive changing of code to comply with warnings generated by beta of rustlang version of cargo clippy.
## Solution
- Code changed as recommended by `rustup update`, `rustup default beta`, `cargo run -p ci -- clippy`.
- Tested using `beta` and `stable`. No clippy warnings in either after changes made.
---
## Changelog
- Warnings fixed were: `clippy::explicit-auto-deref` (present in 11 files), `clippy::needless-borrow` (present in 2 files), and `clippy::only-used-in-recursion` (only 1 file).
# Objective
- Do not implement `Copy` or `Clone` for `Fetch` types as this is kind of sus soundness wise (it feels like cloning an `IterMut` in safe code to me). Cloning a fetch seems important to think about soundness wise when doing it so I prefer this over adding a `Clone` bound to the assoc type definition (i.e. `type Fetch: Clone`) even though that would also solve the other listed things here.
- Remove a bunch of `QueryFetch<'w, Q>: Clone` bounds from our API as now all fetches can be "cloned" for use in `iter_combinations`. This should also help avoid the type inference regression ptrification introduced where `for<'a> QueryFetch<'a, Q>: Trait` bounds misbehave since we no longer need any of those kind of higher ranked bounds (although in practice we had none anyway).
- Stop being able to "forget" to implement clone for fetches, we've had a lot of issues where either `derive(Clone)` was used instead of a manual impl (so we ended up with too tight bounds on the impl) or flat out forgot to implement Clone at all. With this change all fetches are able to be cloned for `iter_combinations` so this will no longer be possible to mess up.
On an unrelated note, while making this PR I realised we probably want safety invariants on `archetype/table_fetch` that nothing aliases the table_row/archetype_index according to the access we set.
---
## Changelog
`Clone` and `Copy` were removed from all `Fetch` types.
## Migration Guide
- Call `WorldQuery::clone_fetch` instead of `fetch.clone()`. Make sure to add safety comments :)
# Objective
I was trying to implement a collision system for my game, and believed that the iter_combinations method might be what I need. But I couldn't find a simple explanation of what a combination was in Bevy and thought it could use some more explanation.
## Solution
I added some description to the documentation that can hopefully further elaborate on what a combination is.
I also changed up the docs for the method because a combination is a different thing than a permutation but the Bevy docs seemed to use them interchangeably.
# Objective
- `QueryCombinationIter` can have sizes greater than `usize::MAX`.
- Fixes#5846
## Solution
- Only the implementation of `ExactSizeIterator` has been removed. Instead of using `query_combination.len()`, you can use `query_combination.size_hint().0` to get the same value as before.
---
## Migration Guide
- Switch to using other methods of getting the length.
# Objective
Improve ergonomics by passing on the `IntoIterator` impl of the underlying type to wrapper types.
## Solution
Implement `IntoIterator` for ECS wrapper types (Mut, Local, Res, etc.).
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
- Improve #3953
## Solution
- The very specific circumstances under which the render world is reset meant that the flush_as_invalid function could be replaced with one that had a noop as its init method.
- This removes a double-writing issue leading to greatly increased performance.
Running the reproduction code in the linked issue, this change nearly doubles the framerate.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5559
Replaces #5628
## Solution
Because the generated method from_components() creates an instance of Self my implementation requires any field type that is marked to be ignored to implement Default.
---
## Changelog
Added the possibility to ignore fields in a bundle with `#[bundle(ignore)]`. Typically used when `PhantomData` needs to be added to a `Bundle`.
# Objective
- Fix disabling features in bevy_ecs (broken by #5630)
- Add tests in CI for bevy_ecs, bevy_reflect and bevy as those crates could be use standalone
Add the following message:
```
Items are returned in the order of the list of entities.
Entities that don't match the query are skipped.
```
Additionally, the docs in `iter.rs` and `state.rs` were updated to match those in `query.rs`.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
At least partially addresses #6282.
Resources are currently stored as a dedicated Resource archetype (ID 1). This allows for easy code reusability, but unnecessarily adds 72 bytes (on 64-bit systems) to the struct that is only used for that one archetype. It also requires several fields to be `pub(crate)` which isn't ideal.
This should also remove one sparse-set lookup from fetching, inserting, and removing resources from a `World`.
## Solution
- Add `Resources` parallel to `Tables` and `SparseSets` and extract the functionality used by `Archetype` in it.
- Remove `unique_components` from `Archetype`
- Remove the `pub(crate)` on `Archetype::components`.
- Remove `ArchetypeId::RESOURCE`
- Remove `Archetypes::resource` and `Archetypes::resource_mut`
---
## Changelog
Added: `Resources` type to store resources.
Added: `Storages::resource`
Removed: `ArchetypeId::RESOURCE`
Removed: `Archetypes::resource` and `Archetypes::resources`
Removed: `Archetype::unique_components` and `Archetypes::unique_components_mut`
## Migration Guide
Resources have been moved to `Resources` under `Storages` in `World`. All code dependent on `Archetype::unique_components(_mut)` should access it via `world.storages().resources()` instead.
All APIs accessing the raw data of individual resources (mutable *and* read-only) have been removed as these APIs allowed for unsound unsafe code. All usages of these APIs should be changed to use `World::{get, insert, remove}_resource`.
# Objective
Speed up queries that are fragmented over many empty archetypes and tables.
## Solution
Add a early-out to check if the table or archetype is empty before iterating over it. This adds an extra branch for every archetype matched, but skips setting the archetype/table to the underlying state and any iteration over it.
This may not be worth it for the default `Query::iter` and maybe even the `Query::for_each` implementations, but this definitely avoids scheduling unnecessary tasks in the `Query::par_for_each` case.
Ideally, `matched_archetypes` should only contain archetypes where there's actually work to do, but this would add a `O(n)` flat cost to every call to `update_archetypes` that scales with the number of matched archetypes.
TODO: Benchmark
# Objective
- Fixes#6206
## Solution
- Create a constructor for creating `ReflectComponent` and `ReflectResource`
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
### Added
- Created constructors for `ReflectComponent` and `ReflectResource`, allowing for advanced scripting use-cases.
# Objective
There is currently no good way of getting the width (# of components) of a table outside of `bevy_ecs`.
# Solution
Added the methods `Table::{component_count, component_capacity}`
For consistency and clarity, renamed `Table::{len, capacity}` to `entity_count` and `entity_capacity`.
## Changelog
- Added the methods `Table::component_count` and `Table::component_capacity`
- Renamed `Table::len` and `Table::capacity` to `entity_count` and `entity_capacity`
## Migration Guide
Any use of `Table::len` should now be `Table::entity_count`. Any use of `Table::capacity` should now be `Table::entity_capacity`.
# Objective
- Add a way to iterate over all entities from &World
## Solution
- Added a function `iter_entities` on World which returns an iterator of `Entity` derived from the entities in the `World`'s `archetypes`
---
## Changelog
- Added a function `iter_entities` on World, allowing iterating over all entities in contexts where you only have read-only access to the World.
# Objective
> System chaining is a confusing name: it implies the ability to construct non-linear graphs, and suggests a sense of system ordering that is only incidentally true. Instead, it actually works by passing data from one system to the next, much like the pipe operator.
> In the accepted [stageless RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/45-stageless.md), this concept is renamed to piping, and "system chaining" is used to construct groups of systems with ordering dependencies between them.
Fixes#6225.
## Changelog
System chaining has been renamed to system piping to improve clarity (and free up the name for new ordering APIs).
## Migration Guide
The `.chain(handler_system)` method on systems is now `.pipe(handler_system)`.
The `IntoChainSystem` trait is now `IntoPipeSystem`, and the `ChainSystem` struct is now `PipeSystem`.
# Objective
- Adding Debug implementations for App, Stage, Schedule, Query, QueryState.
- Fixes#1130.
## Solution
- Implemented std::fmt::Debug for a number of structures.
---
## Changelog
Also added Debug implementations for ParallelSystemExecutor, SingleThreadedExecutor, various RunCriteria structures, SystemContainer, and SystemDescriptor.
Opinions are sure to differ as to what information to provide in a Debug implementation. Best guess was taken for this initial version for these structures.
Co-authored-by: targrub <62773321+targrub@users.noreply.github.com>
# Objective
When designing an API, you may wish to provide access only to a specific field of a component or resource. The current options for doing this in safe code are
* `*Mut::into_inner`, which flags a change no matter what.
* `*Mut::bypass_change_detection`, which misses all changes.
## Solution
Add the method `map_unchanged`.
### Example
```rust
// When run, zeroes the translation of every entity.
fn reset_all(mut transforms: Query<&mut Transform>) {
for transform in &mut transforms {
// We pinky promise not to modify `t` within the closure.
let translation = transform.map_unchanged(|t| &mut t.translation);
// Only reset the translation if it isn't already zero.
translation.set_if_not_equal(Vec2::ZERO);
}
}
```
---
## Changelog
+ Added the method `map_unchanged` to types `Mut<T>`, `ResMut<T>`, and `NonSendMut<T>`.
# Background
Incremental implementation of #4299. The code is heavily borrowed from that PR.
# Objective
The execution order ambiguity checker often emits false positives, since bevy is not aware of invariants upheld by the user.
## Solution
Title
---
## Changelog
+ Added methods `SystemDescriptor::ignore_all_ambiguities` and `::ambiguous_with`. These allow you to silence warnings for specific system-order ambiguities.
## Migration Guide
***Note for maintainers**: This should replace the migration guide for #5916*
Ambiguity sets have been replaced with a simpler API.
```rust
// These systems technically conflict, but we don't care which order they run in.
fn jump_on_click(mouse: Res<Input<MouseButton>>, mut transforms: Query<&mut Transform>) { ... }
fn jump_on_spacebar(keys: Res<Input<KeyCode>>, mut transforms: Query<&mut Transform>) { ... }
//
// Before
#[derive(AmbiguitySetLabel)]
struct JumpSystems;
app
.add_system(jump_on_click.in_ambiguity_set(JumpSystems))
.add_system(jump_on_spacebar.in_ambiguity_set(JumpSystems));
//
// After
app
.add_system(jump_on_click.ambiguous_with(jump_on_spacebar))
.add_system(jump_on_spacebar);
```
# Objective
Relaxes the trait bound for `World::resource_scope` to allow non-send resources. Fixes#6037.
## Solution
No big changes in code had to be made. Added a check so that the non-send resources won't be accessed from a different thread.
---
## Changelog
- `World::resource_scope` accepts non-send resources now
- `World::resource_scope` verifies non-send access if the resource is non-send
- Two new tests are added, one for valid use of `World::resource_scope` with a non-send resource, and one for invalid use (calling it from a different thread, resulting in panic)
Co-authored-by: Dawid Piotrowski <41804418+Pietrek14@users.noreply.github.com>
# Objective
As explained by #5960, `Commands::get_or_spawn` may return a dangling `EntityCommands` that references a non-existing entities. As explained in [this comment], it may be undesirable to make the method return an `Option`.
- Addresses #5960
- Alternative to #5961
## Solution
This PR adds a doc comment to the method to inform the user that the returned `EntityCommands` is not guaranteed to be valid. It also adds panic doc comments on appropriate `EntityCommands` methods.
[this comment]: https://github.com/bevyengine/bevy/pull/5961#issuecomment-1259870849
# Objective
- Add ability to create nested spawns. This is needed for stageless. The current executor spawns tasks for each system early and runs the system by communicating through a channel. In stageless we want to spawn the task late, so that archetypes can be updated right before the task is run. The executor is run on a separate task, so this enables the scope to be passed to the spawned executor.
- Fixes#4301
## Solution
- Instantiate a single threaded executor on the scope and use that instead of the LocalExecutor. This allows the scope to be Send, but still able to spawn tasks onto the main thread the scope is run on. This works because while systems can access nonsend data. The systems themselves are Send. Because of this change we lose the ability to spawn nonsend tasks on the scope, but I don't think this is being used anywhere. Users would still be able to use spawn_local on TaskPools.
- Steals the lifetime tricks the `std:🧵:scope` uses to allow nested spawns, but disallow scope to be passed to tasks or threads not associated with the scope.
- Change the storage for the tasks to a `ConcurrentQueue`. This is to allow a &Scope to be passed for spawning instead of a &mut Scope. `ConcurrentQueue` was chosen because it was already in our dependency tree because `async_executor` depends on it.
- removed the optimizations for 0 and 1 spawned tasks. It did improve those cases, but made the cases of more than 1 task slower.
---
## Changelog
Add ability to nest spawns
```rust
fn main() {
let pool = TaskPool::new();
pool.scope(|scope| {
scope.spawn(async move {
// calling scope.spawn from an spawn task was not possible before
scope.spawn(async move {
// do something
});
});
})
}
```
## Migration Guide
If you were using explicit lifetimes and Passing Scope you'll need to specify two lifetimes now.
```rust
fn scoped_function<'scope>(scope: &mut Scope<'scope, ()>) {}
// should become
fn scoped_function<'scope>(scope: &Scope<'_, 'scope, ()>) {}
```
`scope.spawn_local` changed to `scope.spawn_on_scope` this should cover cases where you needed to run tasks on the local thread, but does not cover spawning Nonsend Futures.
## TODO
* [x] think real hard about all the lifetimes
* [x] add doc about what 'env and 'scope mean.
* [x] manually check that the single threaded task pool still works
* [x] Get updated perf numbers
* [x] check and make sure all the transmutes are necessary
* [x] move commented out test into a compile fail test
* [x] look through the tests for scope on std and see if I should add any more tests
Co-authored-by: Michael Hsu <myhsu@benjaminelectric.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Make `Res` cloneable
## Solution
Add an associated fn `clone(self: &Self) -. Self` instead of `Copy + Clone` trait impls to avoid `res.clone()` failing to clone out the underlying `T`
# Objective
The [Stageless RFC](https://github.com/bevyengine/rfcs/pull/45) involves allowing exclusive systems to be referenced and ordered relative to parallel systems. We've agreed that unifying systems under `System` is the right move.
This is an alternative to #4166 (see rationale in the comments I left there). Note that this builds on the learnings established there (and borrows some patterns).
## Solution
This unifies parallel and exclusive systems under the shared `System` trait, removing the old `ExclusiveSystem` trait / impls. This is accomplished by adding a new `ExclusiveFunctionSystem` impl similar to `FunctionSystem`. It is backed by `ExclusiveSystemParam`, which is similar to `SystemParam`. There is a new flattened out SystemContainer api (which cuts out a lot of trait and type complexity).
This means you can remove all cases of `exclusive_system()`:
```rust
// before
commands.add_system(some_system.exclusive_system());
// after
commands.add_system(some_system);
```
I've also implemented `ExclusiveSystemParam` for `&mut QueryState` and `&mut SystemState`, which makes this possible in exclusive systems:
```rust
fn some_exclusive_system(
world: &mut World,
transforms: &mut QueryState<&Transform>,
state: &mut SystemState<(Res<Time>, Query<&Player>)>,
) {
for transform in transforms.iter(world) {
println!("{transform:?}");
}
let (time, players) = state.get(world);
for player in players.iter() {
println!("{player:?}");
}
}
```
Note that "exclusive function systems" assume `&mut World` is present (and the first param). I think this is a fair assumption, given that the presence of `&mut World` is what defines the need for an exclusive system.
I added some targeted SystemParam `static` constraints, which removed the need for this:
``` rust
fn some_exclusive_system(state: &mut SystemState<(Res<'static, Time>, Query<&'static Player>)>) {}
```
## Related
- #2923
- #3001
- #3946
## Changelog
- `ExclusiveSystem` trait (and implementations) has been removed in favor of sharing the `System` trait.
- `ExclusiveFunctionSystem` and `ExclusiveSystemParam` were added, enabling flexible exclusive function systems
- `&mut SystemState` and `&mut QueryState` now implement `ExclusiveSystemParam`
- Exclusive and parallel System configuration is now done via a unified `SystemDescriptor`, `IntoSystemDescriptor`, and `SystemContainer` api.
## Migration Guide
Calling `.exclusive_system()` is no longer required (or supported) for converting exclusive system functions to exclusive systems:
```rust
// Old (0.8)
app.add_system(some_exclusive_system.exclusive_system());
// New (0.9)
app.add_system(some_exclusive_system);
```
Converting "normal" parallel systems to exclusive systems is done by calling the exclusive ordering apis:
```rust
// Old (0.8)
app.add_system(some_system.exclusive_system().at_end());
// New (0.9)
app.add_system(some_system.at_end());
```
Query state in exclusive systems can now be cached via ExclusiveSystemParams, which should be preferred for clarity and performance reasons:
```rust
// Old (0.8)
fn some_system(world: &mut World) {
let mut transforms = world.query::<&Transform>();
for transform in transforms.iter(world) {
}
}
// New (0.9)
fn some_system(world: &mut World, transforms: &mut QueryState<&Transform>) {
for transform in transforms.iter(world) {
}
}
```
# Objective
Now that we can consolidate Bundles and Components under a single insert (thanks to #2975 and #6039), almost 100% of world spawns now look like `world.spawn().insert((Some, Tuple, Here))`. Spawning an entity without any components is an extremely uncommon pattern, so it makes sense to give spawn the "first class" ergonomic api. This consolidated api should be made consistent across all spawn apis (such as World and Commands).
## Solution
All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input:
```rust
// before:
commands
.spawn()
.insert((A, B, C));
world
.spawn()
.insert((A, B, C);
// after
commands.spawn((A, B, C));
world.spawn((A, B, C));
```
All existing instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api. A new `spawn_empty` has been added, replacing the old `spawn` api.
By allowing `world.spawn(some_bundle)` to replace `world.spawn().insert(some_bundle)`, this opened the door to removing the initial entity allocation in the "empty" archetype / table done in `spawn()` (and subsequent move to the actual archetype in `.insert(some_bundle)`).
This improves spawn performance by over 10%:
![image](https://user-images.githubusercontent.com/2694663/191627587-4ab2f949-4ccd-4231-80eb-80dd4d9ad6b9.png)
To take this measurement, I added a new `world_spawn` benchmark.
Unfortunately, optimizing `Commands::spawn` is slightly less trivial, as Commands expose the Entity id of spawned entities prior to actually spawning. Doing the optimization would (naively) require assurances that the `spawn(some_bundle)` command is applied before all other commands involving the entity (which would not necessarily be true, if memory serves). Optimizing `Commands::spawn` this way does feel possible, but it will require careful thought (and maybe some additional checks), which deserves its own PR. For now, it has the same performance characteristics of the current `Commands::spawn_bundle` on main.
**Note that 99% of this PR is simple renames and refactors. The only code that needs careful scrutiny is the new `World::spawn()` impl, which is relatively straightforward, but it has some new unsafe code (which re-uses battle tested BundlerSpawner code path).**
---
## Changelog
- All `spawn` apis (`World::spawn`, `Commands:;spawn`, `ChildBuilder::spawn`, and `WorldChildBuilder::spawn`) now accept a bundle as input
- All instances of `spawn_bundle` have been deprecated in favor of the new `spawn` api
- World and Commands now have `spawn_empty()`, which is equivalent to the old `spawn()` behavior.
## Migration Guide
```rust
// Old (0.8):
commands
.spawn()
.insert_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
commands.spawn_bundle((A, B, C));
// New (0.9)
commands.spawn((A, B, C));
// Old (0.8):
let entity = commands.spawn().id();
// New (0.9)
let entity = commands.spawn_empty().id();
// Old (0.8)
let entity = world.spawn().id();
// New (0.9)
let entity = world.spawn_empty();
```
# Objective
- Add unit tests for ambiguity detection reporting.
- Incremental implementation of #4299.
## Solution
- Refactor ambiguity detection internals to make it testable. As a bonus, this should make it easier to extend in the future.
## Notes
* This code was copy-pasted from #4299 and modified. Credit goes to @alice-i-cecile and @afonsolage, though I'm not sure who wrote what at this point.
## Objective
Fixes https://github.com/bevyengine/bevy/issues/6063
## Solution
- Use `then_some(x)` instead of `then( || x)`.
- Updated error logs from `bevy_ecs_compile_fail_tests`.
## Migration Guide
From Rust 1.63 to 1.64, a new Clippy error was added; now one should use `then_some(x)` instead of `then( || x)`.
# Objective
Take advantage of the "impl Bundle for Component" changes in #2975 / add the follow up changes discussed there.
## Solution
- Change `insert` and `remove` to accept a Bundle instead of a Component (for both Commands and World)
- Deprecate `insert_bundle`, `remove_bundle`, and `remove_bundle_intersection`
- Add `remove_intersection`
---
## Changelog
- Change `insert` and `remove` now accept a Bundle instead of a Component (for both Commands and World)
- `insert_bundle` and `remove_bundle` are deprecated
## Migration Guide
Replace `insert_bundle` with `insert`:
```rust
// Old (0.8)
commands.spawn().insert_bundle(SomeBundle::default());
// New (0.9)
commands.spawn().insert(SomeBundle::default());
```
Replace `remove_bundle` with `remove`:
```rust
// Old (0.8)
commands.entity(some_entity).remove_bundle::<SomeBundle>();
// New (0.9)
commands.entity(some_entity).remove::<SomeBundle>();
```
Replace `remove_bundle_intersection` with `remove_intersection`:
```rust
// Old (0.8)
world.entity_mut(some_entity).remove_bundle_intersection::<SomeBundle>();
// New (0.9)
world.entity_mut(some_entity).remove_intersection::<SomeBundle>();
```
Consider consolidating as many operations as possible to improve ergonomics and cut down on archetype moves:
```rust
// Old (0.8)
commands.spawn()
.insert_bundle(SomeBundle::default())
.insert(SomeComponent);
// New (0.9) - Option 1
commands.spawn().insert((
SomeBundle::default(),
SomeComponent,
))
// New (0.9) - Option 2
commands.spawn_bundle((
SomeBundle::default(),
SomeComponent,
))
```
## Next Steps
Consider changing `spawn` to accept a bundle and deprecate `spawn_bundle`.
# Objective
The doc comments for `Command` methods are a bit inconsistent on the format, they sometimes go out of scope, and most importantly they are wrong, in the sense that they claim to perform the action described by the command, while in reality, they just push a command to perform the action.
- Follow-up of #5938.
- Related to #5913.
## Solution
- Where applicable, only stated that a `Command` is pushed.
- Added a “See also” section for similar methods.
- Added a missing “Panics” section for `Commands::entity`.
- Removed a wrong comment about `Commands::get_or_spawn` returning `None` (It does not return an option).
- Removed polluting descriptions of other items.
- Misc formatting changes.
## Future possibilities
Since the `Command` implementors (`Spawn`, `InsertBundle`, `InitResource`, ...) are public, I thought that it might be appropriate to describe the action of the command there instead of the method, and to add a `method → command struct` link to fill the gap.
If that seems too far-fetched, we may opt to make them private, if possible, or `#[doc(hidden)]`.
@BoxyUwU this is your fault.
Also cart didn't arrive in time to tell us not to do this.
# Objective
- Fix#2974
## Solution
- The first commit just does the actual change
- Follow up commits do steps to prove that this method works to unify as required, but this does not remove `insert_bundle`.
## Changelog
### Changed
Nested bundles now collapse automatically, and every `Component` now implements `Bundle`.
This means that you can combine bundles and components arbitrarily, for example:
```rust
// before:
.insert(A).insert_bundle(MyBBundle{..})
// after:
.insert_bundle((A, MyBBundle {..}))
```
Note that there will be a follow up PR that removes the current `insert` impl and renames `insert_bundle` to `insert`.
### Removed
The `bundle` attribute in `derive(Bundle)`.
## Migration guide
In `derive(Bundle)`, the `bundle` attribute has been removed. Nested bundles are not collapsed automatically. You should remove `#[bundle]` attributes.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes Issue #6005.
## Solution
Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.
## Migration Guide
Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
# Objective
While using the ParallelExecutor, systems do not actually start until `prepare_systems` completes. In stages where there are large numbers of "empty" systems with very little work to do, this delay adds significant overhead, which can add up over many stages.
## Solution
Immediately and synchronously signal the start of systems that can run without dependencies inside `prepare_systems` instead of waiting for the first executor iteration after `prepare_systems` completes. Any system that is dependent on them still cannot run until after `prepare_systems` completes, but there are a large number of unconstrained systems in the base engine where this is a general benefit in almost every case.
## Performance
This change was tested against `many_foxes` in the default configuration. As this change is sensitive to the overhead around scheduling systems, the spans for measuring system timing, system overhead, and system commands were all commented out for these measurements.
The median stage timings between `main` and this PR are as follows:
|stage|main|this PR|
|:--|:--|:--|
|First|75.54 us|61.61 us|
|LoadAssets|51.05 us|42.32 us|
|PreUpdate|54.6 us|55.56 us|
|Update|61.89 us|51.5 us|
|PostUpdate|7.27 ms|6.71 ms|
|AssetEvents|47.82 us|35.95 us|
|Last|39.19 us|37.71 us|
|reserve_and_flush|57.83 us|48.2 us|
|Extract|1.41 ms|1.28 ms|
|Prepare|554.49 us|502.53 us|
|Queue|216.29 us|207.51 us|
|Sort|67.03 us|60.99 us|
|Render|1.73 ms|1.58 ms|
|Cleanup|33.55 us|30.76 us|
|Clear Entities|18.56 us|17.05 us|
|**full frame**|**11.9 ms**|**10.91 ms**|
For the first few stages, the benefit is small but cumulative over each. For PostUpdate in particular, this allows `parent_update` to run while prepare_systems is running, which is required for the animation and transform propagation systems, which dominate the time spent in the stage, but also frontloads the contention as the other "empty" systems are also running while `parent_update` is running. For Render, where there is just a single large exclusive system, the benefit comes from not waiting on a spuriously scheduled task on the task pool to kick off the system: it's immediately scheduled to run.
# Objective
EntityMut::world takes &mut self instead of &self I don't see any reason for this.
EntityRef is overly restrictive with fn world and could return &'w World
---
## Changelog
- EntityRef now implements Copy and Clone
- EntityRef::world is now fn(&self) -> &'w World instead of fn(&mut self) -> &World
- EntityMut::world is now fn(&self) -> &World instead of fn(&mut self) -> &World
# Objective
Currently, `Local` has a `Sync` bound. Theoretically this is unnecessary as a local can only ever be accessed from its own system, ensuring exclusive access on one thread. This PR removes this restriction.
## Solution
- By removing the `Resource` bound from `Local` and adding the new `SyncCell` threading primative, `Local` can have the `Sync` bound removed.
## Changelog
### Added
- Added `SyncCell` to `bevy_utils`
### Changed
- Removed `Resource` bound from `Local`
- `Local` is now wrapped in a `SyncCell`
## Migration Guide
- Any code relying on `Local<T>` having `T: Resource` may have to be changed, but this is unlikely.
Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com>
# Objective
- Make people stop believing that commands are applied immediately (hopefully).
- Close#5913.
- Alternative to #5930.
## Solution
I added the clause “to perform impactful changes to the `World`” to the first line to subliminally help the reader accept the fact that some operations cannot be performed immediately without messing up everything.
Then I explicitely said that applying a command requires exclusive `World` access, and finally I proceeded to show when these commands are automatically applied.
I also added a brief paragraph about how commands can be applied manually, if they want.
---
### Further possibilities
If you agree, we can also change the text of the method documentation (in a separate PR) to stress about enqueueing an action instead of just performing it. For example, in `Commands::spawn`:
> Creates a new `Entity`
would be changed to something like:
> Issues a `Command` to spawn a new `Entity`
This may even have a greater effect, since when typing in an IDE, the docs of the method pop up and the programmer can read them on the fly.
# Objective
I wanted to run the code
```rust
let reflect_resource: ReflectResource = ...;
let value: Mut<dyn Reflect> = reflect_resource.reflect(world);
value.deref();
// ^ ERROR: deref method doesn't exist because `dyn Reflect` doesnt satisfy `: Sized`.
```
## Solution
Relax `Sized` bounds in all the methods and trait implementations for `Mut` and friends.
# Objective
This code is very disjoint, and the `stage.rs` file that it's in is already very long.
All I've done is move the code and clean up the compiler errors that result.
Followup to #5916, split out from #4299.
# Objective
Ambiguity sets are used to ignore system order ambiguities between groups of systems. However, they are not very useful: they are clunky, poorly integrated, and generally hampered by the difficulty using (or discovering) the ambiguity detector.
As a first step to the work in #4299, we're removing them.
## Migration Guide
Ambiguity sets have been removed.
# Objective
- Our existing change detection API is not flexible enough for advanced users: particularly those attempting to do rollback networking.
- This is an important use case, and with adequate warnings we can make mucking about with change ticks scary enough that users generally won't do it.
- Fixes#5633.
- Closes#2363.
## Changelog
- added `ChangeDetection::set_last_changed` to manually mutate the `last_change_ticks` field"
- the `ChangeDetection` trait now requires an `Inner` associated type, which contains the value being wrapped.
- added `ChangeDetection::bypass_change_detection`, which hands out a raw `&mut Inner`
## Migration Guide
Add the `Inner` associated type and new methods to any type that you've implemented `DetectChanges` for.
Make API users aware that the type aliases `QueryItem` and `QueryFetch` can be used instead of the more bloated alternative with `WorldQueryGats`.
Fixes#5842
# Objective
Clean up taffy nodes when the associated UI node gets removed. The current UI code will keep the taffy nodes around forever.
## Solution
Use `RemovedComponents<Node>` to iterate over nodes that are no longer valid UI nodes or that have been despawned, and remove them from taffy and the internal hash map.
## Implementation Notes
Do note that using `despawn()` instead of `despawn_recursive()` on a UI node that has children will result in a [warnings spam](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/flex/mod.rs#L120) since the children will not be part of a proper UI hierarchy anymore.
---
## Changelog
- Fixed memory leak when nodes are removed in bevy_ui
# Objective
- Increase consistency across documentation of `Query` methods.
- Fixes#5506
## Solution
- See #4989. This PR is derived from it. It just includes changes to the `Query` methods' docs.
# Objective
- Update `Query` docs with better terminology
- add some performance remarks (Fixes#4742)
## Solution
- See #4989. This PR is derived from it. It just includes changes to the `Query` struct docs.
# Objective
- Fixes#5850
## Solution
- As described in the issue, added a `get_entity` method on `Commands` that returns an `Option<EntityCommands>`
## Changelog
- Added the new method with a simple doc test
- I have re-used `get_entity` in `entity`, similarly to how `get_single` is used in `single` while additionally preserving the error message
- Add `#[inline]` to both functions
Entities that have commands queued to despawn system will still return commands when `get_entity` is called but that is representative of the fact that the entity is still around until those commands are flushed.
A potential `contains_entity` could also be added in this PR if desired, that would effectively be replacing Entities.contains but may be more discoverable if this is a common use case.
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
I'm build a UI system for bevy. In this UI system there is a concept of a system per UI entity. I had an issue where change detection wasn't working how I would expect and it's because when a function system is ran the `last_change_tick` is updated with the latest tick(from world). In my particular case I want to "wait" to update the `last_change_tick` until after my system runs for each entity.
## Solution
Initially I thought bypassing the change detection all together would be a good fix, but on talking to some users in discord a simpler fix is to just expose `last_change_tick` to the end users. This is achieved by adding the following to the `System` trait:
```rust
/// Allows users to get the system's last change tick.
fn get_last_change_tick(&self) -> u32;
/// Allows users to set the system's last change tick.
fn set_last_change_tick(&mut self, last_change_tick: u32);
```
This causes a bit of weirdness with two implementors of `System`. `FixedTimestep` and `ChainSystem` both implement system and thus it's required that some sort of implementation be given for the new functions. I solved this by outputting a warning and not doing anything for these systems.
I think it's important to understand why I can't add the new functions only to the function system and not to the `System` trait. In my code I store the systems generically as `Box<dyn System<...>>`. I do this because I have differing parameters that are being passed in depending on the UI widget's system. As far as I can tell there isn't a way to take a system trait and cast it into a specific type without knowing what those parameters are.
In my own code this ends up looking something like:
```rust
// Runs per entity.
let old_tick = widget_system.get_last_change_tick();
should_update_children = widget_system.run((widget_tree.clone(), entity.0), world);
widget_system.set_last_change_tick(old_tick);
// later on after all the entities have been processed:
for system in context.systems.values_mut() {
system.set_last_change_tick(world.read_change_tick());
}
```
## Changelog
- Added `get_last_change_tick` and `set_last_change_tick` to `System`'s.
# Objective
- `for_each` methods inconsistently used an actual generic param or `impl Trait` change it to use `impl Trait` always, change them to be consistent
- some methods returned `'w 's` or `'_ '_`, change them to return `'_ 's`
## Solution
- Do what i just said
---
## Changelog
- `iter_unsafe` and `get_unchecked` no longer return borrows tied to `'w`
## Migration Guide
transmute the returned borrow from `iter_unsafe` and `get_unchecked` if this broke you (although preferably find a way to write your code that doesnt need to do this...)
# Objective
remove `insert_resource_with_id` because `insert_resource_by_id` exists and does almost exactly the same thing
blocked on #5587 because otherwise we will leak a resource when it's inserted
## Solution
remove the function and also add a safety invariant of to `insert_resource_by_id` that the id be valid for the world.
I didn't see any discussion in #4447 about this safety invariant being left off in favor of a panic so I'm curious if there was one or if it just seemed nicer to have less safety invariants for callers to uphold 😅
---
## Changelog
- safety invariant added to `insert_resource_by_id` requiring the id to be valid for world
## Migration Guide
- audit any calls to `insert_resource_by_id` making sure that the id is valid for the world
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Fixes#5687
## Solution
Update the methods on the `Entity` struct to be `const`, so we can
define compile-time constants and more generally use them in a const
context.
---
## Changelog
### Added
- Most `Entity` methods are now `const fn`.
# Objective
- Reduce debugging burden when using events by telling user when they missed an event.
## Solution
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#5817.
- Removes std::vec::Vec ambiguities in derive_bundle macro
## Solution
Prepend :: to standard library full Vec qualified type name (::std::vec::Vec)
# Objective
- Document `QueryCombinationIter`
## Solution
- Describe the item, add usage and examples
- Copy notes about the number of query items generated from the corresponding query methods (they will be removed in #5742 ([motivation]))
## Additional notes
- Derived from #4989
[motivation]: https://github.com/bevyengine/bevy/pull/4989#issuecomment-1208421496
# Objective
Right now, users have to implement basic system adapters such as `Option` <-> `Result` conversions by themselves. This is slightly annoying and discourages the use of system chaining.
## Solution
Add the module `system_adapter` to the prelude, which contains a collection of common adapters. This is very ergonomic in practice.
## Examples
Convenient early returning.
```rust
use bevy::prelude::*;
App::new()
// If the system fails, just try again next frame.
.add_system(pet_dog.chain(system_adapter::ignore))
.run();
#[derive(Component)]
struct Dog;
fn pet_dog(dogs: Query<(&Name, Option<&Parent>), With<Dog>>) -> Option<()> {
let (dog, dad) = dogs.iter().next()?;
println!("You pet {dog}. He/she/they are a good boy/girl/pupper.");
let (dad, _) = dogs.get(dad?.get()).ok()?;
println!("Their dad's name is {dad}");
Some(())
}
```
Converting the output of a system
```rust
use bevy::prelude::*;
App::new()
.add_system(
find_name
.chain(system_adapter::new(String::from))
.chain(spawn_with_name),
)
.run();
fn find_name() -> &'static str { /* ... */ }
fn spawn_with_name(In(name): In<String>, mut commands: Commands) {
commands.spawn().insert(Name::new(name));
}
```
---
## Changelog
* Added the module `bevy_ecs::prelude::system_adapter`, which contains a collection of common system chaining adapters.
* `new` - Converts a regular fn to a system adapter.
* `unwrap` - Similar to `Result::unwrap`
* `ignore` - Discards the output of the previous system.
# Objective
- Fixes#4451
## Solution
- Conditionally compile entity ID cursor as `AtomicI32` when compiling on a platform that does not support 64-bit atomics.
- This effectively raises the MSRV to 1.60 as it uses a `#[cfg]` that was only just stabilized there. (should this be noted in changelog?)
---
## Changelog
- Added `bevy_ecs` support for platforms without 64-bit atomic ints
## Migration Guide
N/A
# Objective
- Fixes#5365
- The `assert!()` when the resource from `World::resource_scope` is inserted into the world is not descriptive.
## Solution
- Add more context to the assert inside of `World::resource_scope` when the `FnOnce` param inserts the resource.
# Objective
- Similar to `SystemChangeTick`, probably somewhat useful for debugging messages.
---
## Changelog
- Added `SystemName` which copies the `SystemMeta::name` field so it can be accessed within a system.
# Objective
Rust 1.63 resolved [an issue](https://github.com/rust-lang/rust/issues/83701) that prevents you from combining explicit generic arguments with `impl Trait` arguments.
Now, we no longer need to use dynamic dispatch to work around this.
## Migration Guide
The methods `Schedule::get_stage` and `get_stage_mut` now accept `impl StageLabel` instead of `&dyn StageLabel`.
### Before
```rust
let stage = schedule.get_stage_mut::<SystemStage>(&MyLabel)?;
```
### After
```rust
let stage = schedule.get_stage_mut::<SystemStage>(MyLabel)?;
```
# Objective
Make CI pass on bevy main.
Update to rust-1.63, updated clippy to 1.63 which introduced the following enhancements:
- [undocumented_unsafe_blocks](https://rust-lang.github.io/rust-clippy/master/index.html#undocumented_unsafe_blocks): Now also lints on unsafe trait implementations
This caught two incorrectly written ( but existing) safety comments for unsafe traits.
## Solution
Fix the comment to use `SAFETY:`
# Objective
While trying out the lint `unsafe_op_in_unsafe_fn` I noticed that `insert_resource_by_id` didn't drop the old value if it already existed, and reimplemented `Column::replace` manually for no apparent reason.
## Solution
- use `Column::replace` and add a test expecting the correct drop count
---
## Changelog
- `World::insert_resource_by_id` will now correctly drop the old resource value, if one already existed
# Objective
- `ReflectMut` served no purpose that wasn't met by `Mut<dyn Reflect>` which is easier to understand since you have to deal with fewer types
- there is another `ReflectMut` type that could be confused with this one
## Solution/Changelog
- relax `T: ?Sized` bound in `Mut<T>`
- replace all instances of `ReflectMut` with `Mut<dyn Reflect>`
# Objective
Provide a safe API to access an `EntityMut`'s `World`.
## Solution
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
---
## Changelog
* Add `EntityMut::into_world_mut` for safe access to the entity's world.
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.
While ergonomic, this results in several drawbacks:
* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
* Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
*ira: My commits are not as well organized :')*
* I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
* I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.
## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.
## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.
If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.
`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.
Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Simplify the worldquery trait hierarchy as much as possible by putting it all in one trait. If/when gats are stabilised this can be trivially migrated over to use them, although that's not why I made this PR, those reasons are:
- Moves all of the conceptually related unsafe code for a worldquery next to eachother
- Removes now unnecessary traits simplifying the "type system magic" in bevy_ecs
---
## Changelog
All methods/functions/types/consts on `FetchState` and `Fetch` traits have been moved to the `WorldQuery` trait and the other traits removed. `WorldQueryGats` now only contains an `Item` and `Fetch` assoc type.
## Migration Guide
Implementors should move items in impls to the `WorldQuery/Gats` traits and remove any `Fetch`/`FetchState` impls
Any use sites of items in the `Fetch`/`FetchState` traits should be updated to use the `WorldQuery` trait items instead
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Currently, actually using a `Local` on a system requires that it be `T: FromWorld`, but that requirement is only expressed on the `SystemParam` machinery, which leads to the confusing error message for when the user attempts to add an invalid system. By adding these bounds to `Local` directly, it improves clarity on usage and semantics.
## Solution
- Add `T: FromWorld` bound to `Local`'s definition
## Migration Guide
- It might be possible for references to `Local`s without `T: FromWorld` to exist, but these should be exceedingly rare and probably dead code. In the event that one of these is encountered, the easiest solutions are to delete the code or wrap the inner `T` in an `Option` to allow it to be default constructed to `None`.
# Objective
Replace `many_for_each_mut` with `iter_many_mut` using the same tricks to avoid aliased mutability that `iter_combinations_mut` uses.
<sub>I tried rebasing the draft PR I made for this before and it died. F</sub>
## Why
`many_for_each_mut` is worse for a few reasons:
1. The closure prevents the use of `continue`, `break`, and `return` behaves like a limited `continue`.
2. rustfmt will crumple it and double the indentation when the line gets too long.
```rust
query.many_for_each_mut(
&entity_list,
|(mut transform, velocity, mut component_c)| {
// Double trouble.
},
);
```
3. It is more surprising to have `many_for_each_mut` as a mutable counterpart to `iter_many` than `iter_many_mut`.
4. It required a separate unsafe fn; more unsafe code to maintain.
5. The `iter_many_mut` API matches the existing `iter_combinations_mut` API.
Co-authored-by: devil-ira <justthecooldude@gmail.com>
# Objective
`ReadOnlyWorldQuery` should have required `Self::ReadOnly = Self` so that calling `.iter()` on a readonly query is equivelent to calling `iter_mut()`.
## Solution
add `ReadOnly = Self` to the definition of `ReadOnlyWorldQuery`
---
## Changelog
ReadOnlyWorldQuery's `ReadOnly` assoc type is now always equal to `Self`
## Migration Guide
Make `Self::ReadOnly = Self` hold
# Objective
Enable treating components and resources equally, which can
simplify the implementation of some systems where only the change
detection feature is relevant and not the kind of object (resource or
component).
## Solution
Implement `From<ResMut<T>>` and `From<NonSendMut<T>>` for
`Mut`. Since the 3 structs are similar, and only differ by their system
param role, the conversion is trivial.
---
## Changelog
Added - `From<ResMut>` and `From<NonSendMut>` for `Mut<T>`.
# Objective
I noticed while working on #5366 that the documentation for label types wasn't working correctly. Having experimented with this for a few weeks, I believe that generating docs in macros is more effort than it's worth.
## Solution
Add more boilerplate, copy-paste and edit the docs across types. This also lets us add custom doctests for specific types. Also, we don't need `concat_idents` as a dependency anymore.
# Objective
- Allows conversion of mutable queries to immutable queries.
- Fixes#4606
## Solution
- Add `to_readonly` method on `Query`, which uses `QueryState::as_readonly`
- `AsRef` is not feasible because creation of new queries is needed.
---
## Changelog
### Added
- Allows conversion of mutable queries to immutable queries using `Query::to_readonly`.
after #5355, three methods were added on world:
* `send_event`
* `send_event_batch`
* `send_default_event`
rename `send_default_event` to `send_event_default` for better discoverability
# Objective
- With access to `World`, it's not obvious how to send an event.
- This is especially useful if you are writing a `Command` that needs to send an `Event`.
- `Events` are a first-class construct in bevy, even though they are just `Resources` under the hood. Their methods should be discoverable.
## Solution
- Provide a simple helpers to send events through `Res<Events<T>>`.
---
## Changelog
> `send_event`, `send_default_event`, and `send_event_batch` methods added to `World`.
# Objective
Fixes#5362
## Solution
Add the attribute `#[label(ignore_fields)]` for `*Label` types.
```rust
#[derive(SystemLabel)]
pub enum MyLabel {
One,
// Previously this was not allowed since labels cannot contain data.
#[system_label(ignore_fields)]
Two(PhantomData<usize>),
}
```
## Notes
This label makes it possible for equality to behave differently depending on whether or not you are treating the type as a label. For example:
```rust
#[derive(SystemLabel, PartialEq, Eq)]
#[system_label(ignore_fields)]
pub struct Foo(usize);
```
If you compare it as a label, it will ignore the wrapped fields as the user requested. But if you compare it as a `Foo`, the derive will incorrectly compare the inner fields. I see a few solutions
1. Do nothing. This is technically intended behavior, but I think we should do our best to prevent footguns.
2. Generate impls of `PartialEq` and `Eq` along with the `#[derive(Label)]` macros. This is a breaking change as it requires all users to remove these derives from their types.
3. Only allow `PhantomData` to be used with `ignore_fields` -- seems needlessly prescriptive.
---
## Changelog
* Added the `ignore_fields` attribute to the derive macros for `*Label` types.
* Added an example showing off different forms of the derive macro.
<!--
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change.
-->