# Objective
- In #9623 I forgot to change the `FromWorld` requirement for
`ReflectResource`, fix that;
- Fix#12129
## Solution
- Use the same approach as in #9623 to try using `FromReflect` and
falling back to the `ReflectFromWorld` contained in the `TypeRegistry`
provided
- Just reflect `Resource` on `State<S>` since now that's possible
without introducing new bounds.
---
## Changelog
- `ReflectResource`'s `FromType<T>` implementation no longer requires
`T: FromWorld`, but instead now requires `FromReflect`.
- `ReflectResource::insert`, `ReflectResource::apply_or_insert` and
`ReflectResource::copy` now take an extra `&TypeRegistry` parameter.
## Migration Guide
- Users of `#[reflect(Resource)]` will need to also implement/derive
`FromReflect` (should already be the default).
- Users of `#[reflect(Resource)]` may now want to also add `FromWorld`
to the list of reflected traits in case their `FromReflect`
implementation may fail.
- Users of `ReflectResource` will now need to pass a `&TypeRegistry` to
its `insert`, `apply_or_insert` and `copy` methods.
# Objective
- Avoid misspellings throughout the codebase by using
[`typos`](https://github.com/crate-ci/typos) in CI
Inspired by https://github.com/gfx-rs/wgpu/pull/5191
Typos is a minimal code speller written in rust that finds and corrects
spelling mistakes among source code.
- Fast enough to run on monorepos
- Low false positives so you can run on PRs
## Solution
- Use
[typos-action](https://github.com/marketplace/actions/typos-action) in
CI
- Add how to use typos in the Contribution Guide
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
The multi-threaded executor currently runs in a dedicated task on a
single thread. When a system finishes running, it needs to notify that
task and wait for the thread to be available and running before the
executor can process the completion.
See #8304
## Solution
Run the multi-threaded executor at the end of each system task. This
allows it to run immediately instead of needing to wait for the main
thread to wake up. Move the mutable executor state into a separate
struct and wrap it in a mutex so it can be shared among the worker
threads.
While this should be faster in theory, I don't actually know how to
measure the performance impact myself.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes#12091
## Solution
- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check
---
## Changelog
- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)
## Migration Guide
No breaking changes
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#11821.
## Solution
* Run `System::apply_deferred` in `System::run` after executing the
system.
* Switch to using `System::run_unsafe` in `SingleThreadedExecutor` to
preserve the current behavior.
* Remove the `System::apply_deferred` in `SimpleExecutor` as it's now
redundant.
* Remove the `System::apply_deferred` when running one-shot systems, as
it's now redundant.
---
## Changelog
Changed: `System::run` will now immediately apply deferred system params
after running the system.
## Migration Guide
`System::run` will now always run `System::apply_deferred` immediately
after running the system now. If you were running systems and then
applying their deferred buffers at a later point in time, you can
eliminate the latter.
```rust
// in 0.13
system.run(world);
// .. sometime later ...
system.apply_deferred(world);
// in 0.14
system.run(world);
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Since #9822, `SimpleExecutor` panics when an automatic sync point is
inserted:
```rust
let mut sched = Schedule::default();
sched.set_executor_kind(ExecutorKind::Simple);
sched.add_systems((|_: Commands| (), || ()).chain());
sched.run(&mut World::new());
```
```
System's param_state was not found. Did you forget to initialize this system before running it?
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Encountered a panic in system `bevy_ecs::schedule::executor::apply_deferred`!
```
## Solution
Don't try to run the `apply_deferred` system.
# Objective
- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs
## Solution
Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".
---------
Co-authored-by: James Liu <contact@jamessliu.com>
## Objective
Always have `some_system.into_system().type_id() ==
some_system.into_system_set().system_type().unwrap()`.
System sets have a `fn system_type() -> Option<TypeId>` that is
implemented by `SystemTypeSet` to returning the TypeId of the system's
function type. This was implemented in
https://github.com/bevyengine/bevy/pull/7715 and is used in
`bevy_mod_debugdump` to handle `.after(function)` constraints.
Back then, `System::type_id` always also returned the type id of the
function item, not of `FunctionSystem<M, F>`.
https://github.com/bevyengine/bevy/pull/11728 changes the behaviour of
`System::type_id` so that it returns the id of the
`FunctionSystem`/`ExclusiveFunctionSystem` wrapper, but it did not
change `SystemTypeSet::system_type`, so doing the lookup breaks in
`bevy_mod_debugdump`.
## Solution
Change `IntoSystemSet` for functions to return a
`SystemTypeSet<FunctionSystem>` /
`SystemTypeSet<ExclusiveFunctionSystem>` instead of `SystemTypeSet<F>`.
# Objective
We deprecated quite a few APIs in 0.13. 0.13 has shipped already. It
should be OK to remove them in 0.14's release. Fixes#4059. Fixes#9011.
## Solution
Remove them.
# Objective
* Fixes#11932 (performance impact when stepping is disabled)
## Solution
The `Option<FixedBitSet>` argument added to `ScheduleExecutor::run()` in
#8453 caused a measurable performance impact even when stepping is
disabled. This can be seen by the benchmark of running `Schedule:run()`
on an empty schedule in a tight loop
(https://github.com/bevyengine/bevy/issues/11932#issuecomment-1950970236).
I was able to get the same performance results as on 0.12.1 by changing
the argument
`ScheduleExecutor::run()` from `Option<FixedBitSet>` to
`Option<&FixedBitSet>`. The down-side of this change is that
`Schedule::run()` now takes about 6% longer (3.7319 ms vs 3.9855ns) when
stepping is enabled
---
## Changelog
* Change `ScheduleExecutor::run()` `_skipped_systems` from
`Option<FixedBitSet>` to `Option<&FixedBitSet>`
* Added a few benchmarks to measure `Schedule::run()` performance with
various executors
# Objective
At the start of every schedule run, there's currently a guaranteed piece
of overhead as the async executor spawns the MultithreadeExecutor task
onto one of the ComputeTaskPool threads.
## Solution
Poll the executor once to immediately schedule systems without waiting
for the async executor, then spawn the task if and only if the executor
does not immediately terminate.
On a similar note, having the executor task immediately start executing
a system in the same async task might yield similar results over a
broader set of cases. However, this might be more involved, and may need
a solution like #8304.
# Objective
- Fixes#11679
## Solution
- Added `IntoSystem::system_type_id` which returns the equivalent of
`system.into_system().type_id()` without construction. This allows for
getting the `TypeId` of functions (a function is an unnamed type and
therefore you cannot call `TypeId::of::<apply_deferred::System>()`)
- Added default implementation of `System::type_id` to ensure
consistency between implementations. Some returned `Self`, while others
were returning an inner value instead. This ensures consistency with
`IntoSystem::system_type_id`.
## Migration Guide
If you use `System::type_id()` on function systems (exclusive or not),
ensure you are comparing its value to other `System::type_id()` calls,
or `IntoSystem::system_type_id()`.
This code wont require any changes, because `IntoSystem`'s are directly
compared to each other.
```rust
fn test_system() {}
let type_id = test_system.type_id();
// ...
// No change required
assert_eq!(test_system.type_id(), type_id);
```
Likewise, this code wont, because `System`'s are directly compared.
```rust
fn test_system() {}
let type_id = IntoSystem::into_system(test_system).type_id();
// ...
// No change required
assert_eq!(IntoSystem::into_system(test_system).type_id(), type_id);
```
The below _does_ require a change, since you're comparing a `System`
type to a `IntoSystem` type.
```rust
fn test_system() {}
// Before
assert_eq!(test_system.type_id(), IntoSystem::into_system(test_system).type_id());
// After
assert_eq!(test_system.system_type_id(), IntoSystem::into_system(test_system).type_id());
```
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Add interactive system debugging capabilities to bevy, providing
step/break/continue style capabilities to running system schedules.
* Original implementation: #8063
- `ignore_stepping()` everywhere was too much complexity
* Schedule-config & Resource discussion: #8168
- Decided on selective adding of Schedules & Resource-based control
## Solution
Created `Stepping` Resource. This resource can be used to enable
stepping on a per-schedule basis. Systems within schedules can be
individually configured to:
* AlwaysRun: Ignore any stepping state and run every frame
* NeverRun: Never run while stepping is enabled
- this allows for disabling of systems while debugging
* Break: If we're running the full frame, stop before this system is run
Stepping provides two modes of execution that reflect traditional
debuggers:
* Step-based: Only execute one system at a time
* Continue/Break: Run all systems, but stop before running a system
marked as Break
### Demo
https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov
Breakout has been modified to use Stepping. The game runs normally for a
couple of seconds, then stepping is enabled and the game appears to
pause. A list of Schedules & Systems appears with a cursor at the first
System in the list. The demo then steps forward full frames using the
spacebar until the ball is about to hit a brick. Then we step system by
system as the ball impacts a brick, showing the cursor moving through
the individual systems. Finally the demo switches back to frame stepping
as the ball changes course.
### Limitations
Due to architectural constraints in bevy, there are some cases systems
stepping will not function as a user would expect.
#### Event-driven systems
Stepping does not support systems that are driven by `Event`s as events
are flushed after 1-2 frames. Although game systems are not running
while stepping, ignored systems are still running every frame, so events
will be flushed.
This presents to the user as stepping the event-driven system never
executes the system. It does execute, but the events have already been
flushed.
This can be resolved by changing event handling to use a buffer for
events, and only dropping an event once all readers have read it.
The work-around to allow these systems to properly execute during
stepping is to have them ignore stepping:
`app.add_systems(event_driven_system.ignore_stepping())`. This was done
in the breakout example to ensure sound played even while stepping.
#### Conditional Systems
When a system is stepped, it is given an opportunity to run. If the
conditions of the system say it should not run, it will not.
Similar to Event-driven systems, if a system is conditional, and that
condition is only true for a very small time window, then stepping the
system may not execute the system. This includes depending on any sort
of external clock.
This exhibits to the user as the system not always running when it is
stepped.
A solution to this limitation is to ensure any conditions are consistent
while stepping is enabled. For example, all systems that modify any
state the condition uses should also enable stepping.
#### State-transition Systems
Stepping is configured on the per-`Schedule` level, requiring the user
to have a `ScheduleLabel`.
To support state-transition systems, bevy generates needed schedules
dynamically. Currently it’s very difficult (if not impossible, I haven’t
verified) for the user to get the labels for these schedules.
Without ready access to the dynamically generated schedules, and a
resolution for the `Event` lifetime, **stepping of the state-transition
systems is not supported**
---
## Changelog
- `Schedule::run()` updated to consult `Stepping` Resource to determine
which Systems to run each frame
- Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting
`Schedule::set_label()` and `Schedule::label()` methods
- `Stepping` needed to know which `Schedule` was running, and prior to
this PR, `Schedule` didn't track its own label
- Would have preferred to add `Schedule::with_label()` and remove
`Schedule::new()`, but this PR touches enough already
- Added calls to `Schedule.set_label()` to `App` and `World` as needed
- Added `Stepping` resource
- Added `Stepping::begin_frame()` system to `MainSchedulePlugin`
- Run before `Main::run_main()`
- Notifies any `Stepping` Resource a new render frame is starting
## Migration Guide
- Add a call to `Schedule::set_label()` for any custom `Schedule`
- This is only required if the `Schedule` will be stepped
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
While working on #11527 I spotted that the internal field for the label
of a `Schedule` is called `name`. Using `label` seems more in line with
the other naming across Bevy.
## Solution
Renaming the field was straightforward since it's not exposed outside of
the module. This also means a changelog or migration guide isn't
necessary.
# Objective
Adjust bevy internals to utilize `Option<Res<State<S>>>` instead of
`Res<State<S>>`, to allow for adding/removing states at runtime and
avoid unexpected panics.
As requested here:
https://github.com/bevyengine/bevy/pull/10088#issuecomment-1869185413
---
## Changelog
- Changed the use of `world.resource`/`world.resource_mut` to
`world.get_resource`/`world.get_resource_mut` in the
`run_enter_schedule` and `apply_state_transition` systems and handled
the `None` option.
- `in_state` now returns a ` FnMut(Option<Res<State<S>>>) -> bool +
Clone`, returning `false` if the resource doesn't exist.
- `state_exists_and_equals` was marked as deprecated, and now just runs
and returns `in_state`, since their bevhaviour is now identical
- `state_changed` now takes an `Option<Res<State<S>>>` and returns
`false` if it does not exist.
I would like to remove `state_exists_and_equals` fully, but wanted to
ensure that is acceptable before doing so.
---------
Co-authored-by: Mike <mike.hsu@gmail.com>
# Objective
- Make it possible to react to arbitrary state changes
- this will be useful regardless of the other changes to states
currently being discussed
## Solution
- added `StateTransitionEvent<S>` struct
- previously, this would have been impossible:
```rs
#[derive(States, Eq, PartialEq, Hash, Copy, Clone, Default)]
enum MyState {
#[default]
Foo,
Bar(MySubState),
}
enum MySubState {
Spam,
Eggs,
}
app.add_system(Update, on_enter_bar);
fn on_enter_bar(trans: EventReader<StateTransition<MyState>>){
for (befoare, after) in trans.read() {
match before, after {
MyState::Foo, MyState::Bar(_) => info!("detected transition foo => bar");
_, _ => ();
}
}
}
```
---
## Changelog
- Added
- `StateTransitionEvent<S>` - Fired on state changes of `S`
## Migration Guide
N/A no breaking changes
---------
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
# Objective
There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.
## Solution
I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
The documentation for the `States` trait contains an error! There is a
single colon missing from `OnExit<T:Variant>`.
## Solution
Replace `OnExit<T:Variant>` with `OnExit<T::Variant>`. (Notice the added
colon.)
---
## Changelog
### Added
- Added missing colon in `States` documentation.
---
Bevy community, you may now rest easy.
# Objective
Fix#10731.
## Solution
Rename `App::add_state<T>(&mut self)` to `init_state`, and add
`App::insert_state<T>(&mut self, state: T)`. I decided on these names
because they are more similar to `init_resource` and `insert_resource`.
I also removed the `States` trait's requirement for `Default`. Instead,
`init_state` requires `FromWorld`.
---
## Changelog
- Renamed `App::add_state` to `init_state`.
- Added `App::insert_state`.
- Removed the `States` trait's requirement for `Default`.
## Migration Guide
- Renamed `App::add_state` to `init_state`.
# Objective
- Users are often confused when their command effects are not visible in
the next system. This PR auto inserts sync points if there are deferred
buffers on a system and there are dependents on that system (systems
with after relationships).
- Manual sync points can lead to users adding more than needed and it's
hard for the user to have a global understanding of their system graph
to know which sync points can be merged. However we can easily calculate
which sync points can be merged automatically.
## Solution
1. Add new edge types to allow opting out of new behavior
2. Insert an sync point for each edge whose initial node has deferred
system params.
3. Reuse nodes if they're at the number of sync points away.
* add opt outs for specific edges with `after_ignore_deferred`,
`before_ignore_deferred` and `chain_ignore_deferred`. The
`auto_insert_apply_deferred` boolean on `ScheduleBuildSettings` can be
set to false to opt out for the whole schedule.
## Perf
This has a small negative effect on schedule build times.
```text
group auto-sync main-for-auto-sync
----- ----------- ------------------
build_schedule/1000_schedule 1.06 2.8±0.15s ? ?/sec 1.00 2.7±0.06s ? ?/sec
build_schedule/1000_schedule_noconstraints 1.01 26.2±0.88ms ? ?/sec 1.00 25.8±0.36ms ? ?/sec
build_schedule/100_schedule 1.02 13.1±0.33ms ? ?/sec 1.00 12.9±0.28ms ? ?/sec
build_schedule/100_schedule_noconstraints 1.08 505.3±29.30µs ? ?/sec 1.00 469.4±12.48µs ? ?/sec
build_schedule/500_schedule 1.00 485.5±6.29ms ? ?/sec 1.00 485.5±9.80ms ? ?/sec
build_schedule/500_schedule_noconstraints 1.00 6.8±0.10ms ? ?/sec 1.02 6.9±0.16ms ? ?/sec
```
---
## Changelog
- Auto insert sync points and added `after_ignore_deferred`,
`before_ignore_deferred`, `chain_no_deferred` and
`auto_insert_apply_deferred` APIs to opt out of this behavior
## Migration Guide
- `apply_deferred` points are added automatically when there is ordering
relationship with a system that has deferred parameters like `Commands`.
If you want to opt out of this you can switch from `after`, `before`,
and `chain` to the corresponding `ignore_deferred` API,
`after_ignore_deferred`, `before_ignore_deferred` or
`chain_ignore_deferred` for your system/set ordering.
- You can also set `ScheduleBuildSettings::auto_insert_sync_points` to
`false` if you want to do it for the whole schedule. Note that in this
mode you can still add `apply_deferred` points manually.
- For most manual insertions of `apply_deferred` you should remove them
as they cannot be merged with the automatically inserted points and
might reduce parallelizability of the system graph.
## TODO
- [x] remove any apply_deferred used in the engine
- [x] ~~decide if we should deprecate manually using apply_deferred.~~
We'll still allow inserting manual sync points for now for whatever edge
cases users might have.
- [x] Update migration guide
- [x] rerun schedule build benchmarks
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
- Make the implementation order consistent between all sources to fit
the order in the trait.
## Solution
- Change the implementation order.
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
Resolves#10743.
## Solution
Copied over the documentation written by @stepancheng from PR #10718.
I left out the lines from the doctest where `<()>` is removed, as that
seemed to be the part people couldn't decide on whether to keep or not.
# Objective
There is an if statement checking if a node is present in a graph
moments after it explicitly being added.
Unless the edge function has super weird side effects and the tests
don't pass, this is unnecessary.
## Solution
Removed it
# Objective
First of all, this PR took heavy inspiration from #7760 and #5715. It
intends to also fix#5569, but with a slightly different approach.
This also fixes#9335 by reexporting `DynEq`.
## Solution
The advantage of this API is that we can intern a value without
allocating for zero-sized-types and for enum variants that have no
fields. This PR does this automatically in the `SystemSet` and
`ScheduleLabel` derive macros for unit structs and fieldless enum
variants. So this should cover many internal and external use cases of
`SystemSet` and `ScheduleLabel`. In these optimal use cases, no memory
will be allocated.
- The interning returns a `Interned<dyn SystemSet>`, which is just a
wrapper around a `&'static dyn SystemSet`.
- `Hash` and `Eq` are implemented in terms of the pointer value of the
reference, similar to my first approach of anonymous system sets in
#7676.
- Therefore, `Interned<T>` does not implement `Borrow<T>`, only `Deref`.
- The debug output of `Interned<T>` is the same as the interned value.
Edit:
- `AppLabel` is now also interned and the old
`derive_label`/`define_label` macros were replaced with the new
interning implementation.
- Anonymous set ids are reused for different `Schedule`s, reducing the
amount of leaked memory.
### Pros
- `InternedSystemSet` and `InternedScheduleLabel` behave very similar to
the current `BoxedSystemSet` and `BoxedScheduleLabel`, but can be copied
without an allocation.
- Many use cases don't allocate at all.
- Very fast lookups and comparisons when using `InternedSystemSet` and
`InternedScheduleLabel`.
- The `intern` module might be usable in other areas.
- `Interned{ScheduleLabel, SystemSet, AppLabel}` does implement
`{ScheduleLabel, SystemSet, AppLabel}`, increasing ergonomics.
### Cons
- Implementors of `SystemSet` and `ScheduleLabel` still need to
implement `Hash` and `Eq` (and `Clone`) for it to work.
## Changelog
### Added
- Added `intern` module to `bevy_utils`.
- Added reexports of `DynEq` to `bevy_ecs` and `bevy_app`.
### Changed
- Replaced `BoxedSystemSet` and `BoxedScheduleLabel` with
`InternedSystemSet` and `InternedScheduleLabel`.
- Replaced `impl AsRef<dyn ScheduleLabel>` with `impl ScheduleLabel`.
- Replaced `AppLabelId` with `InternedAppLabel`.
- Changed `AppLabel` to use `Debug` for error messages.
- Changed `AppLabel` to use interning.
- Changed `define_label`/`derive_label` to use interning.
- Replaced `define_boxed_label`/`derive_boxed_label` with
`define_label`/`derive_label`.
- Changed anonymous set ids to be only unique inside a schedule, not
globally.
- Made interned label types implement their label trait.
### Removed
- Removed `define_boxed_label` and `derive_boxed_label`.
## Migration guide
- Replace `BoxedScheduleLabel` and `Box<dyn ScheduleLabel>` with
`InternedScheduleLabel` or `Interned<dyn ScheduleLabel>`.
- Replace `BoxedSystemSet` and `Box<dyn SystemSet>` with
`InternedSystemSet` or `Interned<dyn SystemSet>`.
- Replace `AppLabelId` with `InternedAppLabel` or `Interned<dyn
AppLabel>`.
- Types manually implementing `ScheduleLabel`, `AppLabel` or `SystemSet`
need to implement:
- `dyn_hash` directly instead of implementing `DynHash`
- `as_dyn_eq`
- Pass labels to `World::try_schedule_scope`, `World::schedule_scope`,
`World::try_run_schedule`. `World::run_schedule`, `Schedules::remove`,
`Schedules::remove_entry`, `Schedules::contains`, `Schedules::get` and
`Schedules::get_mut` by value instead of by reference.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Reduce code duplication and improve APIs of Bevy's [global
taskpools](https://github.com/bevyengine/bevy/blob/main/crates/bevy_tasks/src/usages.rs).
## Solution
- As all three of the global taskpools have identical implementations
and only differ in their identifiers, this PR moves the implementation
into a macro to reduce code duplication.
- The `init` method is renamed to `get_or_init` to more accurately
reflect what it really does.
- Add a new `try_get` method that just returns `None` when the pool is
uninitialized, to complement the other getter methods.
- Minor documentation improvements to accompany the above changes.
---
## Changelog
- Added a new `try_get` method to the global TaskPools
- The global TaskPools' `init` method has been renamed to `get_or_init`
for clarity
- Documentation improvements
## Migration Guide
- Uses of `ComputeTaskPool::init`, `AsyncComputeTaskPool::init` and
`IoTaskPool::init` should be changed to `::get_or_init`.
# Objective
- Updates for rust 1.73
## Solution
- new doc check for `redundant_explicit_links`
- updated to text for compile fail tests
---
## Changelog
- updates for rust 1.73
# Objective
- Fixes#9884
- Add API for ignoring ambiguities on certain resource or components.
## Solution
- Add a `IgnoreSchedulingAmbiguitiy` resource to the world which holds
the `ComponentIds` to be ignored
- Filter out ambiguities with those component id's.
## Changelog
- add `allow_ambiguous_component` and `allow_ambiguous_resource` apis
for ignoring ambiguities
---------
Co-authored-by: Ryan Johnson <ryanj00a@gmail.com>
# Objective
The `States::variants` method was once used to construct `OnExit` and
`OnEnter` schedules for every possible value of a given `States` type.
[Since the switch to lazily initialized
schedules](https://github.com/bevyengine/bevy/pull/8028/files#diff-b2fba3a0c86e496085ce7f0e3f1de5960cb754c7d215ed0f087aa556e529f97f),
we no longer need to track every possible value.
This also opens the door to `States` types that aren't enums.
## Solution
- Remove the unused `States::variants` method and its associated type.
- Remove the enum-only restriction on derived States types.
---
## Changelog
- Removed `States::variants` and its associated type.
- Derived `States` can now be datatypes other than enums.
## Migration Guide
- `States::variants` no longer exists. If you relied on this function,
consider using a library that provides enum iterators.
# Objective
- There were a few typos in the project.
- This PR fixes these typos.
## Solution
- Fixing the typos.
Signed-off-by: SADIK KUZU <sadikkuzu@hotmail.com>
# Objective
Scheduling low cost systems has significant overhead due to task pool
contention and the extra machinery to schedule and run them. Event
update systems are the prime example of a low cost system, requiring a
guaranteed O(1) operation, and there are a *lot* of them.
## Solution
Add a run condition to every event system so they only run when there is
an event in either of it's two internal Vecs.
---
## Changelog
Changed: Event update systems will not run if there are no events to
process.
## Migration Guide
`Events<T>::update_system` has been split off from the the type and can
be found at `bevy_ecs::event::event_update_system`.
---------
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
I'm adopting this ~~child~~ PR.
# Objective
- Working with exclusive world access is not always easy: in many cases,
a standard system or three is more ergonomic to write, and more
modularly maintainable.
- For small, one-off tasks (commonly handled with scripting), running an
event-reader system incurs a small but flat overhead cost and muddies
the schedule.
- Certain forms of logic (e.g. turn-based games) want very fine-grained
linear and/or branching control over logic.
- SystemState is not automatically cached, and so performance can suffer
and change detection breaks.
- Fixes https://github.com/bevyengine/bevy/issues/2192.
- Partial workaround for https://github.com/bevyengine/bevy/issues/279.
## Solution
- Adds a SystemRegistry resource to the World, which stores initialized
systems keyed by their SystemSet.
- Allows users to call world.run_system(my_system) and
commands.run_system(my_system), without re-initializing or losing state
(essential for change detection).
- Add a Callback type to enable convenient use of dynamic one shot
systems and reduce the mental overhead of working with Box<dyn
SystemSet>.
- Allow users to run systems based on their SystemSet, enabling more
complex user-made abstractions.
## Future work
- Parameterized one-shot systems would improve reusability and bring
them closer to events and commands. The API could be something like
run_system_with_input(my_system, my_input) and use the In SystemParam.
- We should evaluate the unification of commands and one-shot systems
since they are two different ways to run logic on demand over a World.
### Prior attempts
- https://github.com/bevyengine/bevy/pull/2234
- https://github.com/bevyengine/bevy/pull/2417
- https://github.com/bevyengine/bevy/pull/4090
- https://github.com/bevyengine/bevy/pull/7999
This PR continues the work done in
https://github.com/bevyengine/bevy/pull/7999.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Federico Rinaldi <gisquerin@gmail.com>
Co-authored-by: MinerSebas <66798382+MinerSebas@users.noreply.github.com>
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Alejandro Pascual Pozo <alejandro.pascual.pozo@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Dmytro Banin <banind@cs.washington.edu>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Replace instances of
```rust
for x in collection.iter{_mut}() {
```
with
```rust
for x in &{mut} collection {
```
This also changes CI to no longer suppress this lint. Note that since
this lint only shows up when using clippy in pedantic mode, it was
probably unnecessary to suppress this lint in the first place.
# Objective
Rename RemovedComponents::iter/iter_with_id to read/read_with_id to make
it clear that it consume the data
Fixes#9755.
(It's my first pull request, if i've made any mistake, please let me
know)
## Solution
Refactor RemovedComponents::iter/iter_with_id to read/read_with_id
## Changelog
Refactor RemovedComponents::iter/iter_with_id to read/read_with_id
Deprecate RemovedComponents::iter/iter_with_id
Remove IntoIterator implementation
Update removal_detection example accordingly
---
## Migration Guide
Rename calls of RemovedComponents::iter/iter_with_id to
read/read_with_id
Replace IntoIterator iteration (&mut <RemovedComponents>) with .read()
---------
Co-authored-by: denshi_ika <mojang2824@gmail.com>
# Objective
- Make it possible to snapshot/save states
- Useful for re-using parts of the state system for rollback safe states
- Or to save states with scenes/savegames
## Solution
- Conditionally add the derive if the `bevy_reflect` is enabled
---
## Changelog
- `NextState<S>` and `State<S>` now implement `Reflect` as long as `S`
does.