mirror of
https://github.com/bevyengine/bevy
synced 2025-01-04 09:18:54 +00:00
104 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Zachary Harrold
|
a6adced9ed
|
Deny derive_more error feature and replace it with thiserror (#16684)
# Objective - Remove `derive_more`'s error derivation and replace it with `thiserror` ## Solution - Added `derive_more`'s `error` feature to `deny.toml` to prevent it sneaking back in. - Reverted to `thiserror` error derivation ## Notes Merge conflicts were too numerous to revert the individual changes, so this reversion was done manually. Please scrutinise carefully during review. |
||
Martín Maita
|
72321ca3c5
|
Update notify-debouncer-full requirement from 0.3.1 to 0.4.0 (#16133)
# Objective - Supersedes #16126 ## Solution - Updated code in `file_watcher.rs` to fix breaking changes introduced in the new version. - Check changelog here: https://github.com/notify-rs/notify/blob/main/CHANGELOG.md#debouncer-full-040-2024-10-25. - Relevant PR with the breaking change: https://github.com/notify-rs/notify/pull/557. ## Testing - CI checks passing locally --------- Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> |
||
Zachary Harrold
|
35edb256ab
|
Remove thiserror from bevy_asset (#15778)
# Objective - Contributes to #15460 ## Solution - Removed `thiserror` from `bevy_asset` |
||
vero
|
8b0388c74a
|
Split off bevy_image from bevy_render (#15650)
# Objective - bevy_render is gargantuan ## Solution - Split off bevy_image ## Testing - Ran some examples |
||
François Mockers
|
23b0dd6ffd
|
move ANDROID_APP to bevy_window (#15585)
# Objective - Remove dependency in bevy_asset to bevy_winit - First step for #15565 ## Solution - the static `ANDROID_APP` and the `android_activity` reexport are now in `bevy_window` ## Migration Guide If you use the `android_activity` reexport from `bevy::winit::android_activity`, it is now in `bevy:🪟:android_activity`. Same for the `ANDROID_APP` static |
||
aecsocket
|
1df8238e8d
|
bevy_asset: Improve NestedLoader API (#15509)
# Objective The `NestedLoader` API as it stands right now is somewhat lacking: - It consists of several types `NestedLoader`, `UntypedNestedLoader`, `DirectNestedLoader`, and `UntypedDirectNestedLoader`, where a typestate pattern on `NestedLoader` would be make it more obvious what it does, and allow centralising the documentation - The term "untyped" in the asset loader code is overloaded. It can mean either: - we have literally no idea what the type of this asset will be when we load it (I dub this "unknown type") - we know what type of asset it will be, but we don't know it statically - we only have a TypeId (I dub this "dynamic type" / "erased") - There is no way to get an `UntypedHandle` (erased) given a `TypeId` ## Solution Changes `NestedLoader` into a type-state pattern, adding two type params: - `T` determines the typing - `StaticTyped`, the default, where you pass in `A` statically into `fn load<A>() -> ..` - `DynamicTyped`, where you give a `TypeId`, giving you a `UntypedHandle` - `UnknownTyped`, where you have literally no idea what type of asset you're loading, giving you a `Handle<LoadedUntypedAsset>` - `M` determines the "mode" (bikeshedding TBD, I couldn't come up with a better name) - `Deferred`, the default, won't load the asset when you call `load`, but it does give you a `Handle` to it (this is nice since it can be a sync fn) - `Immediate` will load the asset as soon as you call it, and give you access to it, but you must be in an async context to call it Changes some naming of internals in `AssetServer` to fit the new definitions of "dynamic type" and "unknown type". Note that I didn't do a full pass over this code to keep the diff small. That can probably be done in a new PR - I think the definiton I laid out of unknown type vs. erased makes it pretty clear where each one applies. <details> <summary>Old issue</summary> The only real problem I have with this PR is the requirement to pass in `type_name` (from `core::any::type_name`) into Erased. Users might not have that type name, only the ID, and it just seems sort of weird to *have* to give an asset type name. However, the reason we need it is because of this: ```rs pub(crate) fn get_or_create_path_handle_erased( &mut self, path: AssetPath<'static>, type_id: TypeId, type_name: &str, loading_mode: HandleLoadingMode, meta_transform: Option<MetaTransform>, ) -> (UntypedHandle, bool) { let result = self.get_or_create_path_handle_internal( path, Some(type_id), loading_mode, meta_transform, ); // it is ok to unwrap because TypeId was specified above unwrap_with_context(result, type_name).unwrap() } pub(crate) fn unwrap_with_context<T>( result: Result<T, GetOrCreateHandleInternalError>, type_name: &str, ) -> Option<T> { match result { Ok(value) => Some(value), Err(GetOrCreateHandleInternalError::HandleMissingButTypeIdNotSpecified) => None, Err(GetOrCreateHandleInternalError::MissingHandleProviderError(_)) => { panic!("Cannot allocate an Asset Handle of type '{type_name}' because the asset type has not been initialized. \ Make sure you have called app.init_asset::<{type_name}>()") } } } ``` This `unwrap_with_context` is literally the only reason we need the `type_name`. Potentially, this can be turned into an `impl Into<Option<&str>>`, and output a different error message if the type name is missing. Since if we are loading an asset where we only know the type ID, by definition we can't output that error message, since we don't have the type name. I'm open to suggestions on this. </details> ## Testing Not sure how to test this, since I kept most of the actual NestedLoader logic the same. The only new API is loading an `UntypedHandle` when in the `DynamicTyped, Immediate` state. ## Migration Guide Code which uses `bevy_asset`'s `LoadContext::loader` / `NestedLoader` will see some naming changes: - `untyped` is replaced by `with_unknown_type` - `with_asset_type` is replaced by `with_static_type` - `with_asset_type_id` is replaced by `with_dynamic_type` - `direct` is replaced by `immediate` (the opposite of "immediate" is "deferred") |
||
Benjamin Brienen
|
8a6d0b063c
|
Use crate: disqualified (#15372)
# Objective Fixes #15351 ## Solution - Created new external crate and ported over the code ## Testing - CI ## Migration guide Replace references to `bevy_utils::ShortName` with `disqualified::ShortName`. |
||
Chris Juchem
|
e08497dc8f
|
Replace bevy_utils::CowArc with atomicow (#14977)
# Objective - Fixes https://github.com/bevyengine/bevy/issues/14975 ## Solution - Replace usages of `bevy_utils::CowArc` with `atomicow::CowArc` - Remove bevy_utils::CowArc ## Testing - `bevy_asset` test suite continues to pass. --- ## Migration Guide `bevy_utils::CowArc` has moved to a new crate called [atomicow](https://crates.io/crates/atomicow). |
||
Giacomo Stevanato
|
71c5f1e3e4
|
Generate links to definition in source code pages on docs.rs and dev-docs.bevyengine.org (#12965)
# Objective - Fix issue #2611 ## Solution - Add `--generate-link-to-definition` to all the `rustdoc-args` arrays in the `Cargo.toml`s (for docs.rs) - Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment variable in the docs workflow (for dev-docs.bevyengine.org) - Document all the workspace crates in the docs workflow (needed because otherwise only the source code of the `bevy` package will be included, making the argument useless) - I think this also fixes #3662, since it fixes the bug on dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while on their side. --- ## Changelog - The source code viewer on docs.rs now includes links to the definitions. |
||
Coder-Joe458
|
8f5345573c
|
Remove manual --cfg docsrs (#14376)
# Objective - Fixes #14132 ## Solution - Remove the cfg docsrs |
||
github-actions[bot]
|
8df10d2713
|
Bump Version after Release (#14219)
Bump version after release This PR has been auto-generated Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François Mockers <mockersf@gmail.com> |
||
Joseph
|
5876352206
|
Optimize common usages of AssetReader (#14082)
# Objective The `AssetReader` trait allows customizing the behavior of fetching bytes for an `AssetPath`, and expects implementors to return `dyn AsyncRead + AsyncSeek`. This gives implementors of `AssetLoader` great flexibility to tightly integrate their asset loading behavior with the asynchronous task system. However, almost all implementors of `AssetLoader` don't use the async functionality at all, and just call `AsyncReadExt::read_to_end(&mut Vec<u8>)`. This is incredibly inefficient, as this method repeatedly calls `poll_read` on the trait object, filling the vector 32 bytes at a time. At my work we have assets that are hundreds of megabytes which makes this a meaningful overhead. ## Solution Turn the `Reader` type alias into an actual trait, with a provided method `read_to_end`. This provided method should be more efficient than the existing extension method, as the compiler will know the underlying type of `Reader` when generating this function, which removes the repeated dynamic dispatches and allows the compiler to make further optimizations after inlining. Individual implementors are able to override the provided implementation -- for simple asset readers that just copy bytes from one buffer to another, this allows removing a large amount of overhead from the provided implementation. Now that `Reader` is an actual trait, I also improved the ergonomics for implementing `AssetReader`. Currently, implementors are expected to box their reader and return it as a trait object, which adds unnecessary boilerplate to implementations. This PR changes that trait method to return a pseudo trait alias, which allows implementors to return `impl Reader` instead of `Box<dyn Reader>`. Now, the boilerplate for boxing occurs in `ErasedAssetReader`. ## Testing I made identical changes to my company's fork of bevy. Our app, which makes heavy use of `read_to_end` for asset loading, still worked properly after this. I am not aware if we have a more systematic way of testing asset loading for correctness. --- ## Migration Guide The trait method `bevy_asset::io::AssetReader::read` (and `read_meta`) now return an opaque type instead of a boxed trait object. Implementors of these methods should change the type signatures appropriately ```rust impl AssetReader for MyReader { // Before async fn read<'a>(&'a self, path: &'a Path) -> Result<Box<Reader<'a>>, AssetReaderError> { let reader = // construct a reader Box::new(reader) as Box<Reader<'a>> } // After async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> { // create a reader } } ``` `bevy::asset::io::Reader` is now a trait, rather than a type alias for a trait object. Implementors of `AssetLoader::load` will need to adjust the method signature accordingly ```rust impl AssetLoader for MyLoader { async fn load<'a>( &'a self, // Before: reader: &'a mut bevy::asset::io::Reader, // After: reader: &'a mut dyn bevy::asset::io::Reader, _: &'a Self::Settings, load_context: &'a mut LoadContext<'_>, ) -> Result<Self::Asset, Self::Error> { } ``` Additionally, implementors of `AssetReader` that return a type implementing `futures_io::AsyncRead` and `AsyncSeek` might need to explicitly implement `bevy::asset::io::Reader` for that type. ```rust impl bevy::asset::io::Reader for MyAsyncReadAndSeek {} ``` |
||
Sean Sullivan
|
a4597a9c14
|
bevy_asset: Add missing web-sys feature and cleanup unused ones (#13281)
# Objective - **Describe the objective or issue this PR addresses.** `bevy_asset` includes code [here]( |
||
andristarr
|
bb76a2c69c
|
multi_threaded feature rename (#12997)
# Objective Fixes #12966 ## Solution Renaming multi_threaded feature to match snake case ## Migration Guide Bevy feature multi-threaded should be refered to multi_threaded from now on. |
||
Chris Russell
|
e3f55d6dfc
|
Instrument asset loading and processing. (#12988)
# Objective As described in #12467, Bevy does not have any spans for any of the tasks scheduled onto the IO and async compute task pools. ## Solution Instrument all asset loads and asset processing. Since this change is restricted to asset tasks, it does not completely solve #12467, but it does mean we can record the asset path in the trace. ![image](https://github.com/bevyengine/bevy/assets/8494645/59faee63-1f69-40af-bf47-312c4d67d1e2) --- ## Changelog Tracing will now include spans for asset loading and asset processing. |
||
Ame
|
72c51cdab9
|
Make feature(doc_auto_cfg) work (#12642)
# Objective - In #12366 `![cfg_attr(docsrs, feature(doc_auto_cfg))] `was added. But to apply it it needs `--cfg=docsrs` in rustdoc-args. ## Solution - Apply `--cfg=docsrs` to all crates and CI. I also added `[package.metadata.docs.rs]` to all crates to avoid adding code behind a feature and forget adding the metadata. Before: ![Screenshot 2024-03-22 at 00 51 57](https://github.com/bevyengine/bevy/assets/104745335/6a9dfdaa-8710-4784-852b-5f9b74e3522c) After: ![Screenshot 2024-03-22 at 00 51 32](https://github.com/bevyengine/bevy/assets/104745335/c5bd6d8e-8ddb-45b3-b844-5ecf9f88961c) |
||
Al M
|
52e3f2007b
|
Add "all-features = true" to docs.rs metadata for most crates (#12366)
# Objective Fix missing `TextBundle` (and many others) which are present in the main crate as default features but optional in the sub-crate. See: - https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html - https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html ~~There are probably other instances in other crates that I could track down, but maybe "all-features = true" should be used by default in all sub-crates? Not sure.~~ (There were many.) I only noticed this because rust-analyzer's "open docs" features takes me to the sub-crate, not the main one. ## Solution Add "all-features = true" to docs.rs metadata for crates that use features. ## Changelog ### Changed - Unified features documented on docs.rs between main crate and sub-crates |
||
James Liu
|
512b7463a3
|
Disentangle bevy_utils/bevy_core's reexported dependencies (#12313)
# Objective Make bevy_utils less of a compilation bottleneck. Tackle #11478. ## Solution * Move all of the directly reexported dependencies and move them to where they're actually used. * Remove the UUID utilities that have gone unused since `TypePath` took over for `TypeUuid`. * There was also a extraneous bytemuck dependency on `bevy_core` that has not been used for a long time (since `encase` became the primary way to prepare GPU buffers). * Remove the `all_tuples` macro reexport from bevy_ecs since it's accessible from `bevy_utils`. --- ## Changelog Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax, smallvec, and thiserror). Removed: bevy_core's reexports of bytemuck. ## Migration Guide bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror have been removed. bevy_core' reexports of bytemuck's types has been removed. Add them as dependencies in your own crate instead. |
||
James Liu
|
5619bd09d1
|
Replace bevy_log's tracing reexport with bevy_utils' (#12254)
# Objective Fixes #11298. Make the use of bevy_log vs bevy_utils::tracing more consistent. ## Solution Replace all uses of bevy_log's logging macros with the reexport from bevy_utils. Remove bevy_log as a dependency where it's no longer needed anymore. Ideally we should just be using tracing directly, but given that all of these crates are already using bevy_utils, this likely isn't that great of a loss right now. |
||
github-actions[bot]
|
e7c3359c4b
|
Bump Version after Release (#12020)
Fixes #12016. Bump version after release This PR has been auto-generated Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François <mockersf@gmail.com> |
||
Carter Anderson
|
abb8c353f4
|
Release 0.13.0 (#11920)
Bump Bevy crates to 0.13.0 in preparation for release. (Note that we accidentally skipped the `0.13.0-dev` step this cycle) |
||
Alice Cecile
|
1065028154
|
Remove trailing whitespace (#10723)
# Objective - Make CI green. ## Solution - Remove one (1) space. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
Trent
|
6f56380826
|
bump bevy_tasks futures-lite to 2.0.1 (#10675)
# Objective Updates [`futures-lite`](https://github.com/smol-rs/futures-lite) in bevy_tasks to the next major version (1 -> 2). Also removes the duplication of `futures-lite`, as `async-fs` requires v 2, so there are currently 2 copies of futures-lite in the dependency tree. Futures-lite has received [a number of updates](https://github.com/smol-rs/futures-lite/blob/master/CHANGELOG.md) since bevy's current version `1.4`. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Mike <mike.hsu@gmail.com> |
||
Martín Maita
|
4ffd5104f3
|
Bumps async crates requirements to latest major version (#10370)
# Objective - Closes #10316 ## Solution - Grouped a bunch of version requirement bumps for most of the `async` crates. |
||
Ame
|
951c9bb1a2
|
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective - Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796 ## Solution - Use the new [lints] table that will land in 1.74 (https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints) - inherit lint to the workspace, crates and examples. ``` [lints] workspace = true ``` ## Changelog - Bump rust version to 1.74 - Enable lints table for the workspace ```toml [workspace.lints.clippy] type_complexity = "allow" ``` - Allow type complexity for all crates and examples ```toml [lints] workspace = true ``` --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com> |
||
MevLyshkin
|
2b32de9ba2
|
Fix wasm builds with file_watcher enabled (#10589)
# Objective - Currently, in 0.12 there is an issue that it is not possible to build bevy for Wasm with feature "file_watcher" enabled. It still would not compile, but now with proper explanation. - Fixes https://github.com/bevyengine/bevy/issues/10507 ## Solution - Remove `notify-debouncer-full` dependency on WASM platform entirely. - Compile with "file_watcher" feature now on platform `wasm32` gives meaningful compile error. --- ## Changelog ### Fixed - Compile with "file_watcher" feature now on platform `wasm32` gives meaningful compile error. |
||
github-actions[bot]
|
bf30a25efc
|
Release 0.12 (#10362)
Preparing next release This PR has been auto-generated --------- Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François <mockersf@gmail.com> |
||
Thierry Berger
|
442a316a1d
|
few fmt tweaks (#10264)
few format tweaks, initially spotted working on https://github.com/bevyengine/bevy/pull/8745 |
||
François
|
d938275b9c
|
assets: use blake3 instead of md5 (#10208)
# Objective - Replace md5 by another hasher, as suggested in https://github.com/bevyengine/bevy/pull/8624#discussion_r1359291028 - md5 is not secure, and is slow. use something more secure and faster ## Solution - Replace md5 by blake3 Putting this PR in the 0.12 as once it's released, changing the hash algorithm will be a painful breaking change |
||
Carter Anderson
|
6f27e0e35f
|
Add asset_processor feature and remove AssetMode::ProcessedDev (#10194)
# Objective Users shouldn't need to change their source code between "development workflows" and "releasing". Currently, Bevy Asset V2 has two "processed" asset modes `Processed` (assumes assets are already processed) and `ProcessedDev` (starts an asset processor and processes assets). This means that the mode must be changed _in code_ when switching from "app dev" to "release". Very suboptimal. We have already removed "runtime opt-in" for hot-reloading. Enabling the `file_watcher` feature _automatically_ enables file watching in code. This means deploying a game (without hot reloading enabled) just means calling `cargo build --release` instead of `cargo run --features bevy/file_watcher`. We should adopt this pattern for asset processing. ## Solution This adds the `asset_processor` feature, which will start the `AssetProcessor` when an `AssetPlugin` runs in `AssetMode::Processed`. The "asset processing workflow" is now: 1. Enable `AssetMode::Processed` on `AssetPlugin` 2. When developing, run with the `asset_processor` and `file_watcher` features 3. When releasing, build without these features. The `AssetMode::ProcessedDev` mode has been removed. |
||
Carter Anderson
|
35073cf7aa
|
Multiple Asset Sources (#9885)
This adds support for **Multiple Asset Sources**. You can now register a named `AssetSource`, which you can load assets from like you normally would: ```rust let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl"); ``` Notice that `AssetPath` now supports `some_source://` syntax. This can now be accessed through the `asset_path.source()` accessor. Asset source names _are not required_. If one is not specified, the default asset source will be used: ```rust let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl"); ``` The behavior of the default asset source has not changed. Ex: the `assets` folder is still the default. As referenced in #9714 ## Why? **Multiple Asset Sources** enables a number of often-asked-for scenarios: * **Loading some assets from other locations on disk**: you could create a `config` asset source that reads from the OS-default config folder (not implemented in this PR) * **Loading some assets from a remote server**: you could register a new `remote` asset source that reads some assets from a remote http server (not implemented in this PR) * **Improved "Binary Embedded" Assets**: we can use this system for "embedded-in-binary assets", which allows us to replace the old `load_internal_asset!` approach, which couldn't support asset processing, didn't support hot-reloading _well_, and didn't make embedded assets accessible to the `AssetServer` (implemented in this pr) ## Adding New Asset Sources An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`, and `AssetWatcher` entries. You can configure new asset sources like this: ```rust app.register_asset_source( "other", AssetSource::build() .with_reader(|| Box::new(FileAssetReader::new("other"))) ) ) ``` Note that `AssetSource` construction _must_ be repeatable, which is why a closure is accepted. `AssetSourceBuilder` supports `with_reader`, `with_writer`, `with_watcher`, `with_processed_reader`, `with_processed_writer`, and `with_processed_watcher`. Note that the "asset source" system replaces the old "asset providers" system. ## Processing Multiple Sources The `AssetProcessor` now supports multiple asset sources! Processed assets can refer to assets in other sources and everything "just works". Each `AssetSource` defines an unprocessed and processed `AssetReader` / `AssetWriter`. Currently this is all or nothing for a given `AssetSource`. A given source is either processed or it is not. Later we might want to add support for "lazy asset processing", where an `AssetSource` (such as a remote server) can be configured to only process assets that are directly referenced by local assets (in order to save local disk space and avoid doing extra work). ## A new `AssetSource`: `embedded` One of the big features motivating **Multiple Asset Sources** was improving our "embedded-in-binary" asset loading. To prove out the **Multiple Asset Sources** implementation, I chose to build a new `embedded` `AssetSource`, which replaces the old `load_interal_asset!` system. The old `load_internal_asset!` approach had a number of issues: * The `AssetServer` was not aware of (or capable of loading) internal assets. * Because internal assets weren't visible to the `AssetServer`, they could not be processed (or used by assets that are processed). This would prevent things "preprocessing shaders that depend on built in Bevy shaders", which is something we desperately need to start doing. * Each "internal asset" needed a UUID to be defined in-code to reference it. This was very manual and toilsome. The new `embedded` `AssetSource` enables the following pattern: ```rust // Called in `crates/bevy_pbr/src/render/mesh.rs` embedded_asset!(app, "mesh.wgsl"); // later in the app let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl"); ``` Notice that this always treats the crate name as the "root path", and it trims out the `src` path for brevity. This is generally predictable, but if you need to debug you can use the new `embedded_path!` macro to get a `PathBuf` that matches the one used by `embedded_asset`. You can also reference embedded assets in arbitrary assets, such as WGSL shaders: ```rust #import "embedded://bevy_pbr/render/mesh.wgsl" ``` This also makes `embedded` assets go through the "normal" asset lifecycle. They are only loaded when they are actually used! We are also discussing implicitly converting asset paths to/from shader modules, so in the future (not in this PR) you might be able to load it like this: ```rust #import bevy_pbr::render::mesh::Vertex ``` Compare that to the old system! ```rust pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450); load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl); // The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer. ``` ## Hot Reloading `embedded` You can enable `embedded` hot reloading by enabling the `embedded_watcher` cargo feature: ``` cargo run --features=embedded_watcher ``` ## Improved Hot Reloading Workflow First: the `filesystem_watcher` cargo feature has been renamed to `file_watcher` for brevity (and to match the `FileAssetReader` naming convention). More importantly, hot asset reloading is no longer configured in-code by default. If you enable any asset watcher feature (such as `file_watcher` or `rust_source_watcher`), asset watching will be automatically enabled. This removes the need to _also_ enable hot reloading in your app code. That means you can replace this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes())) ``` with this: ```rust app.add_plugins(DefaultPlugins) ``` If you want to hot reload assets in your app during development, just run your app like this: ``` cargo run --features=file_watcher ``` This means you can use the same code for development and deployment! To deploy an app, just don't include the watcher feature ``` cargo build --release ``` My intent is to move to this approach for pretty much all dev workflows. In a future PR I would like to replace `AssetMode::ProcessedDev` with a `runtime-processor` cargo feature. We could then group all common "dev" cargo features under a single `dev` feature: ```sh # this would enable file_watcher, embedded_watcher, runtime-processor, and more cargo run --features=dev ``` ## AssetMode `AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and `AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field on `AssetPlugin`. ```rust // before app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ }) // after app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() }) ``` This aligns `AssetPlugin` with our other struct-like plugins. The old "source" and "destination" `AssetProvider` fields in the enum variants have been replaced by the "asset source" system. You no longer need to configure the AssetPlugin to "point" to custom asset providers. ## AssetServerMode To improve the implementation of **Multiple Asset Sources**, `AssetServer` was made aware of whether or not it is using "processed" or "unprocessed" assets. You can check that like this: ```rust if asset_server.mode() == AssetServerMode::Processed { /* do something */ } ``` Note that this refactor should also prepare the way for building "one to many processed output files", as it makes the server aware of whether it is loading from processed or unprocessed sources. Meaning we can store and read processed and unprocessed assets differently! ## AssetPath can now refer to folders The "file only" restriction has been removed from `AssetPath`. The `AssetServer::load_folder` API now accepts an `AssetPath` instead of a `Path`, meaning you can load folders from other asset sources! ## Improved AssetPath Parsing AssetPath parsing was reworked to support sources, improve error messages, and to enable parsing with a single pass over the string. `AssetPath::new` was replaced by `AssetPath::parse` and `AssetPath::try_parse`. ## AssetWatcher broken out from AssetReader `AssetReader` is no longer responsible for constructing `AssetWatcher`. This has been moved to `AssetSourceBuilder`. ## Duplicate Event Debouncing Asset V2 already debounced duplicate filesystem events, but this was _input_ events. Multiple input event types can produce the same _output_ `AssetSourceEvent`. Now that we have `embedded_watcher`, which does expensive file io on events, it made sense to debounce output events too, so I added that! This will also benefit the AssetProcessor by preventing integrity checks for duplicate events (and helps keep the noise down in trace logs). ## Next Steps * **Port Built-in Shaders**: Currently the primary (and essentially only) user of `load_interal_asset` in Bevy's source code is "built-in shaders". I chose not to do that in this PR for a few reasons: 1. We need to add the ability to pass shader defs in to shaders via meta files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def values in that are defined in code. 2. We need to revisit the current shader module naming system. I think we _probably_ want to imply modules from source structure (at least by default). Ideally in a way that can losslessly convert asset paths to/from shader modules (to enable the asset system to resolve modules using the asset server). 3. I want to keep this change set minimal / get this merged first. * **Deprecate `load_internal_asset`**: we can't do that until we do (1) and (2) * **Relative Asset Paths**: This PR significantly increases the need for relative asset paths (which was already pretty high). Currently when loading dependencies, it is assumed to be an absolute path, which means if in an `AssetLoader` you call `context.load("some/path/image.png")` it will assume that is the "default" asset source, _even if the current asset is in a different asset source_. This will cause breakage for AssetLoaders that are not designed to add the current source to whatever paths are being used. AssetLoaders should generally not need to be aware of the name of their current asset source, or need to think about the "current asset source" generally. We should build apis that support relative asset paths and then encourage using relative paths as much as possible (both via api design and docs). Relative paths are also important because they will allow developers to move folders around (even across providers) without reprocessing, provided there is no path breakage. |
||
Zachary Harrold
|
dd46fd3aee
|
Removed anyhow (#10003)
# Objective - Fixes #8140 ## Solution - Added Explicit Error Typing for `AssetLoader` and `AssetSaver`, which were the last instances of `anyhow` in use across Bevy. --- ## Changelog - Added an associated type `Error` to `AssetLoader` and `AssetSaver` for use with the `load` and `save` methods respectively. - Changed `ErasedAssetLoader` and `ErasedAssetSaver` `load` and `save` methods to use `Box<dyn Error + Send + Sync + 'static>` to allow for arbitrary `Error` types from the non-erased trait variants. Note the strict requirements match the pre-existing requirements around `anyhow::Error`. ## Migration Guide - `anyhow` is no longer exported by `bevy_asset`; Add it to your own project (if required). - `AssetLoader` and `AssetSaver` have an associated type `Error`; Define an appropriate error type (e.g., using `thiserror`), or use a pre-made error type (e.g., `anyhow::Error`). Note that using `anyhow::Error` is a drop-in replacement. - `AssetLoaderError` has been removed; Define a new error type, or use an alternative (e.g., `anyhow::Error`) - All the first-party `AssetLoader`'s and `AssetSaver`'s now return relevant (and narrow) error types instead of a single ambiguous type; Match over the specific error type, or encapsulate (`Box<dyn>`, `thiserror`, `anyhow`, etc.) ## Notes A simpler PR to resolve this issue would simply define a Bevy `Error` type defined as `Box<dyn std::error::Error + Send + Sync + 'static>`, but I think this type of error handling should be discouraged when possible. Since only 2 traits required the use of `anyhow`, it isn't a substantive body of work to solidify these error types, and remove `anyhow` entirely. End users are still encouraged to use `anyhow` if that is their preferred error handling style. Arguably, adding the `Error` associated type gives more freedom to end-users to decide whether they want more or less explicit error handling (`anyhow` vs `thiserror`). As an aside, I didn't perform any testing on Android or WASM. CI passed locally, but there may be mistakes for those platforms I missed. |
||
dependabot[bot]
|
4eb9b9f7d7
|
Update notify-debouncer-full requirement from 0.2.0 to 0.3.1 (#9757)
Updates the requirements on [notify-debouncer-full](https://github.com/notify-rs/notify) to permit the latest version. <details> <summary>Changelog</summary> <p><em>Sourced from <a href="https://github.com/notify-rs/notify/blob/main/CHANGELOG.md">notify-debouncer-full's changelog</a>.</em></p> <blockquote> <h2>debouncer-full 0.3.1 (2023-08-21)</h2> <ul> <li>CHANGE: remove serde binary experiment opt-out after it got removed <a href="https://redirect.github.com/notify-rs/notify/issues/530">#530</a></li> </ul> <h2>debouncer-mini 0.4.1 (2023-08-21)</h2> <ul> <li>CHANGE: remove serde binary experiment opt-out after it got removed <a href="https://redirect.github.com/notify-rs/notify/issues/530">#530</a></li> </ul> <h2>notify 6.1.1 (2023-08-21)</h2> <ul> <li>CHANGE: remove serde binary experiment opt-out after it got removed <a href="https://redirect.github.com/notify-rs/notify/issues/530">#530</a></li> </ul> <h2>file-id 0.2.1 (2023-08-21)</h2> <ul> <li>CHANGE: remove serde binary experiment opt-out after it got removed <a href="https://redirect.github.com/notify-rs/notify/issues/530">#530</a></li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/530">#530</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/530">notify-rs/notify#530</a></p> <h2>debouncer-full 0.3.0 (2023-08-18)</h2> <ul> <li>CHANGE: opt-out of the serde binary experiment by restricting it to < 1.0.172 <a href="https://redirect.github.com/notify-rs/notify/issues/528">#528</a></li> <li>CHANGE: license changed to dual-license of MIT OR Apache-2.0 <a href="https://redirect.github.com/notify-rs/notify/issues/520">#520</a></li> <li>CHANGE: upgrade to file-id 0.2.0 for high resolution file IDs <a href="https://redirect.github.com/notify-rs/notify/issues/494">#494</a></li> <li>FEATURE: derive debug for the debouncer struct <a href="https://redirect.github.com/notify-rs/notify/issues/510">#510</a></li> </ul> <h2>debouncer-mini 0.4.0 (2023-08-18)</h2> <ul> <li>CHANGE: opt-out of the serde binary experiment by restricting it to < 1.0.172 <a href="https://redirect.github.com/notify-rs/notify/issues/528">#528</a></li> <li>CHANGE: license changed to dual-license of MIT OR Apache-2.0 <a href="https://redirect.github.com/notify-rs/notify/issues/520">#520</a></li> <li>CHANGE: replace active polling with passive loop, removing empty ticks <a href="https://redirect.github.com/notify-rs/notify/issues/467">#467</a></li> <li>FEATURE: derive debug for the debouncer struct <a href="https://redirect.github.com/notify-rs/notify/issues/510">#510</a></li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/467">#467</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/467">notify-rs/notify#467</a> <a href="https://redirect.github.com/notify-rs/notify/issues/510">#510</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/510">notify-rs/notify#510</a></p> <h2>notify 6.1.0 (2023-08-18)</h2> <ul> <li>CHANGE: opt-out of the serde binary experiment by restricting it to < 1.0.172 <a href="https://redirect.github.com/notify-rs/notify/issues/528">#528</a></li> <li>CHANGE: license changed to only CC0-1.0 <a href="https://redirect.github.com/notify-rs/notify/issues/520">#520</a></li> <li>CHANGE: use logging <a href="https://redirect.github.com/notify-rs/notify/issues/499">#499</a></li> <li>CHANGE: upgrade windows-sys to 0.48 <a href="https://redirect.github.com/notify-rs/notify/issues/479">#479</a></li> <li>CHANGE: bump filetime to 0.2.22 <a href="https://redirect.github.com/notify-rs/notify/issues/521">#521</a></li> <li>FEATURE: support manual polling of PollWatcher and disabling automatic polling <a href="https://redirect.github.com/notify-rs/notify/issues/524">#524</a></li> <li>FEATURE: support listening to the initial pollwatcher file scan <a href="https://redirect.github.com/notify-rs/notify/issues/507">#507</a></li> <li>FIX: fix moved folders not being watched on linux <a href="https://redirect.github.com/notify-rs/notify/issues/498">#498</a></li> <li>FIX: fixup potential future double free on windows <a href="https://redirect.github.com/notify-rs/notify/issues/517">#517</a></li> <li>FIX: require bitflags only on macos and upgrade the crate <a href="https://redirect.github.com/notify-rs/notify/issues/505">#505</a></li> <li>DOCS: add more known issues, typos and cleanup examples <a href="https://redirect.github.com/notify-rs/notify/issues/523">#523</a> <a href="https://redirect.github.com/notify-rs/notify/issues/502">#502</a> <a href="https://redirect.github.com/notify-rs/notify/issues/522">#522</a></li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/524">#524</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/524">notify-rs/notify#524</a></p> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li><a href=" |
||
Carter Anderson
|
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
robtfm
|
b30ff2ab76
|
allow asset loader pre-registration (#9429)
# Objective - When loading gltf files during app creation (for example using a FromWorld impl and adding that as a resource), no loader was found. - As the gltf loader can load compressed formats, it needs to know what the GPU supports so it's not available at app creation time. ## Solution alternative to #9426 - add functionality to preregister the loader. loading assets with matching extensions will block until a real loader is registered. - preregister "gltf" and "glb". - prereigster image formats. the way this is set up, if a set of extensions are all registered with a single preregistration call, then later a loader is added that matches some of the extensions, assets using the remaining extensions will then fail. i think that should work well for image formats that we don't know are supported until later. |
||
Carter Anderson
|
7c3131a761
|
Bump Version after Release (#9106)
CI-capable version of #9086 --------- Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: François <mockersf@gmail.com> |
||
Carter Anderson
|
8ba9571eed
|
Release 0.11.0 (#9080)
I created this manually as Github didn't want to run CI for the workflow-generated PR. I'm guessing we didn't hit this in previous releases because we used bors. Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> |
||
dependabot[bot]
|
d6d25d8c78
|
Update notify requirement from 5.0.0 to 6.0.0 (#8757)
Updates the requirements on [notify](https://github.com/notify-rs/notify) to permit the latest version. <details> <summary>Changelog</summary> <p><em>Sourced from <a href="https://github.com/notify-rs/notify/blob/main/CHANGELOG.md">notify's changelog</a>.</em></p> <blockquote> <h2>notify 6.0.0 (2023-05-17)</h2> <ul> <li>CHANGE: files and directories moved into a watch folder on Linux will now be reported as <code>rename to</code> events instead of <code>create</code> events <a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li> <li>CHANGE: on Linux <code>rename from</code> events will be emitted immediately without starting a new thread <a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li> <li>CHANGE: raise MSRV to 1.60 <a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li> </ul> <h2>debouncer-mini 0.3.0 (2023-05-17)</h2> <ul> <li>CHANGE: upgrade to notify 6.0.0, pushing MSRV to 1.60 <a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></li> </ul> <h2>debouncer-full 0.1.0 (2023-05-17)</h2> <p>Newly introduced alternative debouncer with more features. <a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a></p> <ul> <li>FEATURE: only emit a single <code>rename</code> event if the rename <code>From</code> and <code>To</code> events can be matched</li> <li>FEATURE: merge multiple <code>rename</code> events</li> <li>FEATURE: keep track of the file system IDs all files and stiches rename events together (FSevents, Windows)</li> <li>FEATURE: emit only one <code>remove</code> event when deleting a directory (inotify)</li> <li>FEATURE: don't emit duplicate create events</li> <li>FEATURE: don't emit <code>Modify</code> events after a <code>Create</code> event</li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/480">#480</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/480">notify-rs/notify#480</a></p> <h2>notify 5.2.0 (2023-05-17)</h2> <ul> <li>CHANGE: implement <code>Copy</code> for <code>EventKind</code> and <code>ModifyKind</code> <a href="https://redirect.github.com/notify-rs/notify/issues/481">#481</a></li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/481">#481</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/481">notify-rs/notify#481</a></p> <h2>notify 5.1.0 (2023-01-15)</h2> <ul> <li>CHANGE: switch from winapi to windows-sys <a href="https://redirect.github.com/notify-rs/notify/issues/457">#457</a></li> <li>FIX: kqueue-backend: batch file-watching together to improve performance <a href="https://redirect.github.com/notify-rs/notify/issues/454">#454</a></li> <li>DOCS: include license file in crate again <a href="https://redirect.github.com/notify-rs/notify/issues/461">#461</a></li> <li>DOCS: typo and examples fixups</li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/454">#454</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/454">notify-rs/notify#454</a> <a href="https://redirect.github.com/notify-rs/notify/issues/461">#461</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/461">notify-rs/notify#461</a> <a href="https://redirect.github.com/notify-rs/notify/issues/457">#457</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/457">notify-rs/notify#457</a></p> <h2>debouncer-mini 0.2.1 (2022-09-05)</h2> <ul> <li>DOCS: correctly document the <code>crossbeam</code> feature <a href="https://redirect.github.com/notify-rs/notify/issues/440">#440</a></li> </ul> <p><a href="https://redirect.github.com/notify-rs/notify/issues/440">#440</a>: <a href="https://redirect.github.com/notify-rs/notify/pull/440">notify-rs/notify#440</a></p> <h2>debouncer-mini 0.2.0 (2022-08-30)</h2> <p>Upgrade notify dependency to 5.0.0</p> <!-- raw HTML omitted --> </blockquote> <p>... (truncated)</p> </details> <details> <summary>Commits</summary> <ul> <li>See full diff in <a href="https://github.com/notify-rs/notify/commits">compare view</a></li> </ul> </details> <br /> Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting `@dependabot rebase`. [//]: # (dependabot-automerge-start) [//]: # (dependabot-automerge-end) --- <details> <summary>Dependabot commands and options</summary> <br /> You can trigger Dependabot actions by commenting on this PR: - `@dependabot rebase` will rebase this PR - `@dependabot recreate` will recreate this PR, overwriting any edits that have been made to it - `@dependabot merge` will merge this PR after your CI passes on it - `@dependabot squash and merge` will squash and merge this PR after your CI passes on it - `@dependabot cancel merge` will cancel a previously requested merge and block automerging - `@dependabot reopen` will reopen this PR if it is closed - `@dependabot close` will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually - `@dependabot ignore this major version` will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this minor version` will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself) - `@dependabot ignore this dependency` will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself) </details> Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> |
||
github-actions[bot]
|
6898351348
|
chore: Release (#7920)
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com> |
||
github-actions[bot]
|
b44af49200 |
Release 0.10.0 (#7919)
Preparing next release This PR has been auto-generated |
||
github-actions[bot]
|
8eb67932f1 |
Bump Version after Release (#7918)
Bump version after release This PR has been auto-generated |
||
François
|
3900b48c88 |
update winit to 0.28 (#7480)
# Objective - Update winit to 0.28 ## Solution - Small API change - A security advisory has been added for a unmaintained crate used by a dependency of winit build script for wayland I didn't do anything for Android support in this PR though it should be fixable, it should be done in a separate one, maybe https://github.com/bevyengine/bevy/pull/6830 --- ## Changelog - `window.always_on_top` has been removed, you can now use `window.window_level` ## Migration Guide before: ```rust app.new() .add_plugins(DefaultPlugins.set(WindowPlugin { primary_window: Some(Window { always_on_top: true, ..default() }), ..default() })); ``` after: ```rust app.new() .add_plugins(DefaultPlugins.set(WindowPlugin { primary_window: Some(Window { window_level: bevy:🪟:WindowLevel::AlwaysOnTop, ..default() }), ..default() })); ``` |
||
github-actions[bot]
|
920543c824 |
Release 0.9.0 (#6568)
Preparing next release This PR has been auto-generated |
||
VitalyR
|
c313e21d65 |
Update wgpu to 0.14.0, naga to 0.10.0 , winit to 0.27.4, raw-window-handle to 0.5.0, ndk to 0.7 (#6218)
# Objective - Update `wgpu` to 0.14.0, `naga` to `0.10.0`, `winit` to 0.27.4, `raw-window-handle` to 0.5.0, `ndk` to 0.7. ## Solution --- ## Changelog ### Changed - Changed `RawWindowHandleWrapper` to `RawHandleWrapper` which wraps both `RawWindowHandle` and `RawDisplayHandle`, which satisfies the `impl HasRawWindowHandle and HasRawDisplayHandle` that `wgpu` 0.14.0 requires. - Changed `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, change its type from `bool` to `bevy_window::CursorGrabMode`. ## Migration Guide - Adjust usage of `bevy_window::WindowDescriptor`'s `cursor_locked` to `cursor_grab_mode`, and adjust its type from `bool` to `bevy_window::CursorGrabMode`. |
||
Ixentus
|
17d84e8811 |
Update to notify 5.0 stable (#5865)
# Objective - Update notify dependency to 5.0.0 stable - Fix breaking changes - Closes #5861 ## Solution - RecommendedWatcher now takes a Config argument. Giving it the default Config should be the same behavior as before (check every 30 seconds) |
||
github-actions[bot]
|
444150025d |
Bump Version after Release (#5576)
Bump version after release This PR has been auto-generated |
||
github-actions[bot]
|
856588ed7c |
Release 0.8.0 (#5490)
Preparing next release This PR has been auto-generated |
||
Zicklag
|
ee3368b201 |
Update Notify Dependency (#5396)
# Objective I want to use the `deno_runtime` crate in my game, but it has a conflict with the version of the `notify` crate that Bevy depends on. ## Solution Updates the version of the `notify` crate the Bevy depends on. |
||
François
|
814f8d1635 |
update wgpu to 0.13 (#5168)
# Objective - Update wgpu to 0.13 - ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now - Also update parking_lot to 0.12 and naga to 0.9 ## Solution - Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax - Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes - fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704 |
||
Ben Reeves
|
847f47d8d4 |
Remove rand crate from dependency tree (#3992)
This replaces `rand` with `fastrand` as the source of randomness for `HandleId::new()` in `bevy_asset`. This was the only crate with a dependency on `rand`, and now the dependency exists only as a dev-dependency. `fastrand` was already in the dependency tree, thanks to `futures-lite`, `async-executor`, and `tempfile` to name a few. ## Changelog Removed `rand` from dependencies in `bevy_asset` in favor of existing in-tree `fast-rand` |