mirror of
https://github.com/bevyengine/bevy
synced 2024-12-30 06:53:13 +00:00
975 commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Griffin
|
a15d152635
|
Deferred Renderer (#9258)
# Objective - Add a [Deferred Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy. - This allows subsequent passes to access per pixel material information before/during shading. - Accessing this per pixel material information is needed for some features, like GI. It also makes other features (ex. Decals) simpler to implement and/or improves their capability. There are multiple approaches to accomplishing this. The deferred shading approach works well given the limitations of WebGPU and WebGL2. Motivation: [I'm working on a GI solution for Bevy](https://youtu.be/eH1AkL-mwhI) # Solution - The deferred renderer is implemented with a prepass and a deferred lighting pass. - The prepass renders opaque objects into the Gbuffer attachment (`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same way as the forward implementation and then [packs it into the Gbuffer]( |
||
Elabajaba
|
665dbcbb21
|
wgpu 0.17 (#9302)
~~Currently blocked on an upstream bug that causes crashes when minimizing/resizing on dx12 https://github.com/gfx-rs/wgpu/issues/3967~~ wgpu 0.17.1 is out which fixes it # Objective Keep wgpu up to date. ## Solution Update wgpu and naga_oil. Currently this depends on an unreleased (and unmerged) branch of naga_oil, and hasn't been properly tested yet. The wgpu side of this seems to have been an extremely trivial upgrade (all the upgrade work seems to be in naga_oil). This also lets us remove the workarounds for pack/unpack4x8unorm in the SSAO shaders. Lets us close the dx12 part of https://github.com/bevyengine/bevy/issues/8888 related: https://github.com/bevyengine/bevy/issues/9304 --- ## Changelog Update to wgpu 0.17 and naga_oil 0.9 |
||
Marco Buono
|
12a2f83edd
|
Add consuming builder methods for more ergonomic Mesh creation (#10056)
# Objective - This PR aims to make creating meshes a little bit more ergonomic, specifically by removing the need for intermediate mutable variables. ## Solution - We add methods that consume the `Mesh` and return a mesh with the specified changes, so that meshes can be entirely constructed via builder-style calls, without intermediate variables; - Methods are flagged with `#[must_use]` to ensure proper use; - Examples are updated to use the new methods where applicable. Some examples are kept with the mutating methods so that users can still easily discover them, and also where the new methods wouldn't really be an improvement. ## Examples Before: ```rust let mut mesh = Mesh::new(PrimitiveTopology::TriangleList); mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, vs); mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, vns); mesh.insert_attribute(Mesh::ATTRIBUTE_UV_0, vts); mesh.set_indices(Some(Indices::U32(tris))); mesh ``` After: ```rust Mesh::new(PrimitiveTopology::TriangleList) .with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, vs) .with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vns) .with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, vts) .with_indices(Some(Indices::U32(tris))) ``` Before: ```rust let mut cube = Mesh::from(shape::Cube { size: 1.0 }); cube.generate_tangents().unwrap(); PbrBundle { mesh: meshes.add(cube), ..default() } ``` After: ```rust PbrBundle { mesh: meshes.add( Mesh::from(shape::Cube { size: 1.0 }) .with_generated_tangents() .unwrap(), ), ..default() } ``` --- ## Changelog - Added consuming builder methods for more ergonomic `Mesh` creation: `with_inserted_attribute()`, `with_removed_attribute()`, `with_indices()`, `with_duplicated_vertices()`, `with_computed_flat_normals()`, `with_generated_tangents()`, `with_morph_targets()`, `with_morph_target_names()`. |
||
Patrick Walton
|
e67d63aa79
|
Refactor the render instance logic in #9903 so that it's easier for other components to adopt. (#10002)
# Objective Currently, the only way for custom components that participate in rendering to opt into the higher-performance extraction method in #9903 is to implement the `RenderInstances` data structure and the extraction logic manually. This is inconvenient compared to the `ExtractComponent` API. ## Solution This commit creates a new `RenderInstance` trait that mirrors the existing `ExtractComponent` method but uses the higher-performance approach that #9903 uses. Additionally, `RenderInstance` is more flexible than `ExtractComponent`, because it can extract multiple components at once. This makes high-performance rendering components essentially as easy to write as the existing ones based on component extraction. --- ## Changelog ### Added A new `RenderInstance` trait is available mirroring `ExtractComponent`, but using a higher-performance method to extract one or more components to the render world. If you have custom components that rendering takes into account, you may consider migration from `ExtractComponent` to `RenderInstance` for higher performance. |
||
Zachary Harrold
|
dd46fd3aee
|
Removed anyhow (#10003)
# Objective - Fixes #8140 ## Solution - Added Explicit Error Typing for `AssetLoader` and `AssetSaver`, which were the last instances of `anyhow` in use across Bevy. --- ## Changelog - Added an associated type `Error` to `AssetLoader` and `AssetSaver` for use with the `load` and `save` methods respectively. - Changed `ErasedAssetLoader` and `ErasedAssetSaver` `load` and `save` methods to use `Box<dyn Error + Send + Sync + 'static>` to allow for arbitrary `Error` types from the non-erased trait variants. Note the strict requirements match the pre-existing requirements around `anyhow::Error`. ## Migration Guide - `anyhow` is no longer exported by `bevy_asset`; Add it to your own project (if required). - `AssetLoader` and `AssetSaver` have an associated type `Error`; Define an appropriate error type (e.g., using `thiserror`), or use a pre-made error type (e.g., `anyhow::Error`). Note that using `anyhow::Error` is a drop-in replacement. - `AssetLoaderError` has been removed; Define a new error type, or use an alternative (e.g., `anyhow::Error`) - All the first-party `AssetLoader`'s and `AssetSaver`'s now return relevant (and narrow) error types instead of a single ambiguous type; Match over the specific error type, or encapsulate (`Box<dyn>`, `thiserror`, `anyhow`, etc.) ## Notes A simpler PR to resolve this issue would simply define a Bevy `Error` type defined as `Box<dyn std::error::Error + Send + Sync + 'static>`, but I think this type of error handling should be discouraged when possible. Since only 2 traits required the use of `anyhow`, it isn't a substantive body of work to solidify these error types, and remove `anyhow` entirely. End users are still encouraged to use `anyhow` if that is their preferred error handling style. Arguably, adding the `Error` associated type gives more freedom to end-users to decide whether they want more or less explicit error handling (`anyhow` vs `thiserror`). As an aside, I didn't perform any testing on Android or WASM. CI passed locally, but there may be mistakes for those platforms I missed. |
||
robtfm
|
30cb95d96e
|
fix custom shader imports (#10030)
# Objective assets v2 broke custom shader imports. fix them ## Solution store handles of any file dependencies in the `Shader` to avoid them being immediately dropped. also added a use into the `shader_material` example so that it'll be harder to break support in future. |
||
Mike
|
687e379800
|
Updates for rust 1.73 (#10035)
# Objective - Updates for rust 1.73 ## Solution - new doc check for `redundant_explicit_links` - updated to text for compile fail tests --- ## Changelog - updates for rust 1.73 |
||
Patrick Walton
|
44a9a4cc86
|
Import the second UV map if present in glTF files. (#9992)
Conventionally, the second UV map (`TEXCOORD1`, `UV1`) is used for lightmap UVs. This commit allows Bevy to import them, so that a custom shader that applies lightmaps can use those UVs if desired. Note that this doesn't actually apply lightmaps to Bevy meshes; that will be a followup. It does, however, open the door to future Bevy plugins that implement baked global illumination. ## Changelog ### Added The Bevy glTF loader now imports a second UV channel (`TEXCOORD1`, `UV1`) from meshes if present. This can be used by custom shaders to implement lightmapping. |
||
François
|
eb1effa643
|
Android: handle suspend / resume (#9937)
# Objective - Handle suspend / resume events on Android without exiting ## Solution - On suspend: despawn the window, and set the control flow to wait for events from the OS - On resume: spawn a new window, and set the control flow to poll In this video, you can see the Android example being suspended, stopping receiving events, and working again after being resumed https://github.com/bevyengine/bevy/assets/8672791/aaaf4b09-ee6a-4a0d-87ad-41f05def7945 |
||
Zachary Harrold
|
450328d15e
|
Replaced parking_lot with std::sync (#9545)
# Objective - Fixes #4610 ## Solution - Replaced all instances of `parking_lot` locks with equivalents from `std::sync`. Acquiring locks within `std::sync` can fail, so `.expect("Lock Poisoned")` statements were added where required. ## Comments In [this comment](https://github.com/bevyengine/bevy/issues/4610#issuecomment-1592407881), the lack of deadlock detection was mentioned as a potential reason to not make this change. From what I can gather, Bevy doesn't appear to be using this functionality within the engine. Unless it was expected that a Bevy consumer was expected to enable and use this functionality, it appears to be a feature lost without consequence. Unfortunately, `cpal` and `wgpu` both still rely on `parking_lot`, leaving it in the dependency graph even after this change. From my basic experimentation, this change doesn't appear to have any performance impacts, positive or negative. I tested this using `bevymark` with 50,000 entities and observed 20ms of frame-time before and after the change. More extensive testing with larger/real projects should probably be done. |
||
Mike
|
1d7577fc42
|
ignore time channel error (#9981)
# Objective - sometimes when bevy shuts down on certain machines the render thread tries to send the time after the main world has been dropped. - fixes an error mentioned in a reply in https://github.com/bevyengine/bevy/issues/9543 --- ## Changelog - ignore disconnected errors from the time channel. |
||
Robert Swain
|
b6ead2be95
|
Use EntityHashMap<Entity, T> for render world entity storage for better performance (#9903)
# Objective - Improve rendering performance, particularly by avoiding the large system commands costs of using the ECS in the way that the render world does. ## Solution - Define `EntityHasher` that calculates a hash from the `Entity.to_bits()` by `i | (i.wrapping_mul(0x517cc1b727220a95) << 32)`. `0x517cc1b727220a95` is something like `u64::MAX / N` for N that gives a value close to π and that works well for hashing. Thanks for @SkiFire13 for the suggestion and to @nicopap for alternative suggestions and discussion. This approach comes from `rustc-hash` (a.k.a. `FxHasher`) with some tweaks for the case of hashing an `Entity`. `FxHasher` and `SeaHasher` were also tested but were significantly slower. - Define `EntityHashMap` type that uses the `EntityHashser` - Use `EntityHashMap<Entity, T>` for render world entity storage, including: - `RenderMaterialInstances` - contains the `AssetId<M>` of the material associated with the entity. Also for 2D. - `RenderMeshInstances` - contains mesh transforms, flags and properties about mesh entities. Also for 2D. - `SkinIndices` and `MorphIndices` - contains the skin and morph index for an entity, respectively - `ExtractedSprites` - `ExtractedUiNodes` ## Benchmarks All benchmarks have been conducted on an M1 Max connected to AC power. The tests are run for 1500 frames. The 1000th frame is captured for comparison to check for visual regressions. There were none. ### 2D Meshes `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` #### `--ordered-z` This test spawns the 2D meshes with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1112" alt="Screenshot 2023-09-27 at 07 50 45" src="https://github.com/bevyengine/bevy/assets/302146/e140bc98-7091-4a3b-8ae1-ab75d16d2ccb"> -39.1% median frame time. #### Random This test spawns the 2D meshes with random z. This not only makes the batching and transparent 2D pass lookups get a lot of cache misses, it also currently means that the meshes are almost certain to not be batchable. <img width="1108" alt="Screenshot 2023-09-27 at 07 51 28" src="https://github.com/bevyengine/bevy/assets/302146/29c2e813-645a-43ce-982a-55df4bf7d8c4"> -7.2% median frame time. ### 3D Meshes `many_cubes --benchmark` <img width="1112" alt="Screenshot 2023-09-27 at 07 51 57" src="https://github.com/bevyengine/bevy/assets/302146/1a729673-3254-4e2a-9072-55e27c69f0fc"> -7.7% median frame time. ### Sprites **NOTE: On `main` sprites are using `SparseSet<Entity, T>`!** `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` #### `--ordered-z` This test spawns the sprites with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1116" alt="Screenshot 2023-09-27 at 07 52 31" src="https://github.com/bevyengine/bevy/assets/302146/bc8eab90-e375-4d31-b5cd-f55f6f59ab67"> +13.0% median frame time. #### Random This test spawns the sprites with random z. This makes the batching and transparent 2D pass lookups get a lot of cache misses. <img width="1109" alt="Screenshot 2023-09-27 at 07 53 01" src="https://github.com/bevyengine/bevy/assets/302146/22073f5d-99a7-49b0-9584-d3ac3eac3033"> +0.6% median frame time. ### UI **NOTE: On `main` UI is using `SparseSet<Entity, T>`!** `many_buttons` <img width="1111" alt="Screenshot 2023-09-27 at 07 53 26" src="https://github.com/bevyengine/bevy/assets/302146/66afd56d-cbe4-49e7-8b64-2f28f6043d85"> +15.1% median frame time. ## Alternatives - Cart originally suggested trying out `SparseSet<Entity, T>` and indeed that is slightly faster under ideal conditions. However, `PassHashMap<Entity, T>` has better worst case performance when data is randomly distributed, rather than in sorted render order, and does not have the worst case memory usage that `SparseSet`'s dense `Vec<usize>` that maps from the `Entity` index to sparse index into `Vec<T>`. This dense `Vec` has to be as large as the largest Entity index used with the `SparseSet`. - I also tested `PassHashMap<u32, T>`, intending to use `Entity.index()` as the key, but this proved to sometimes be slower and mostly no different. - The only outstanding approach that has not been implemented and tested is to _not_ clear the render world of its entities each frame. That has its own problems, though they could perhaps be solved. - Performance-wise, if the entities and their component data were not cleared, then they would incur table moves on spawn, and should not thereafter, rather just their component data would be overwritten. Ideally we would have a neat way of either updating data in-place via `&mut T` queries, or inserting components if not present. This would likely be quite cumbersome to have to remember to do everywhere, but perhaps it only needs to be done in the more performance-sensitive systems. - The main problem to solve however is that we want to both maintain a mapping between main world entities and render world entities, be able to run the render app and world in parallel with the main app and world for pipelined rendering, and at the same time be able to spawn entities in the render world in such a way that those Entity ids do not collide with those spawned in the main world. This is potentially quite solvable, but could well be a lot of ECS work to do it in a way that makes sense. --- ## Changelog - Changed: Component data for entities to be drawn are no longer stored on entities in the render world. Instead, data is stored in a `EntityHashMap<Entity, T>` in various resources. This brings significant performance benefits due to the way the render app clears entities every frame. Resources of most interest are `RenderMeshInstances` and `RenderMaterialInstances`, and their 2D counterparts. ## Migration Guide Previously the render app extracted mesh entities and their component data from the main world and stored them as entities and components in the render world. Now they are extracted into essentially `EntityHashMap<Entity, T>` where `T` are structs containing an appropriate group of data. This means that while extract set systems will continue to run extract queries against the main world they will store their data in hash maps. Also, systems in later sets will either need to look up entities in the available resources such as `RenderMeshInstances`, or maintain their own `EntityHashMap<Entity, T>` for their own data. Before: ```rust fn queue_custom( material_meshes: Query<(Entity, &MeshTransforms, &Handle<Mesh>), With<InstanceMaterialData>>, ) { ... for (entity, mesh_transforms, mesh_handle) in &material_meshes { ... } } ``` After: ```rust fn queue_custom( render_mesh_instances: Res<RenderMeshInstances>, instance_entities: Query<Entity, With<InstanceMaterialData>>, ) { ... for entity in &instance_entities { let Some(mesh_instance) = render_mesh_instances.get(&entity) else { continue; }; // The mesh handle in `AssetId<Mesh>` form, and the `MeshTransforms` can now // be found in `mesh_instance` which is a `RenderMeshInstance` ... } } ``` --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
Rob Parrett
|
7063c86ed4
|
Fix some typos (#9934)
# Objective To celebrate the turning of the seasons, I took a small walk through the codebase guided by the "[code spell checker](https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker)" VS Code extension and fixed a few typos. |
||
piper
|
bc88f33e48
|
Allow other plugins to create renderer resources (#9925)
This is a duplicate of #9632, it was created since I forgot to make a new branch when I first made this PR, so I was having trouble resolving merge conflicts, meaning I had to rebuild my PR. # Objective - Allow other plugins to create the renderer resources. An example of where this would be required is my [OpenXR plugin](https://github.com/awtterpip/bevy_openxr) ## Solution - Changed the bevy RenderPlugin to optionally take precreated render resources instead of a configuration. ## Migration Guide The `RenderPlugin` now takes a `RenderCreation` enum instead of `WgpuSettings`. `RenderSettings::default()` returns `RenderSettings::Automatic(WgpuSettings::default())`. `RenderSettings` also implements `From<WgpuSettings>`. ```rust // before RenderPlugin { wgpu_settings: WgpuSettings { ... }, } // now RenderPlugin { render_creation: RenderCreation::Automatic(WgpuSettings { ... }), } // or RenderPlugin { render_creation: WgpuSettings { ... }.into(), } ``` --------- Co-authored-by: Malek <pocmalek@gmail.com> Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
James Liu
|
12032cd296
|
Directly copy data into uniform buffers (#9865)
# Objective This is a minimally disruptive version of #8340. I attempted to update it, but failed due to the scope of the changes added in #8204. Fixes #8307. Partially addresses #4642. As seen in https://github.com/bevyengine/bevy/issues/8284, we're actually copying data twice in Prepare stage systems. Once into a CPU-side intermediate scratch buffer, and once again into a mapped buffer. This is inefficient and effectively doubles the time spent and memory allocated to run these systems. ## Solution Skip the scratch buffer entirely and use `wgpu::Queue::write_buffer_with` to directly write data into mapped buffers. Separately, this also directly uses `wgpu::Limits::min_uniform_buffer_offset_alignment` to set up the alignment when writing to the buffers. Partially addressing the issue raised in #4642. Storage buffers and the abstractions built on top of `DynamicUniformBuffer` will need to come in followup PRs. This may not have a noticeable performance difference in this PR, as the only first-party systems affected by this are view related, and likely are not going to be particularly heavy. --- ## Changelog Added: `DynamicUniformBuffer::get_writer`. Added: `DynamicUniformBufferWriter`. |
||
Bruce Mitchener
|
ae95ba5278
|
Fix typos. (#9922)
# Objective - Have docs with fewer typos.1 ## Solution - Fix typos as they are found. |
||
Robert Swain
|
5c884c5a15
|
Automatic batching/instancing of draw commands (#9685)
# Objective - Implement the foundations of automatic batching/instancing of draw commands as the next step from #89 - NOTE: More performance improvements will come when more data is managed and bound in ways that do not require rebinding such as mesh, material, and texture data. ## Solution - The core idea for batching of draw commands is to check whether any of the information that has to be passed when encoding a draw command changes between two things that are being drawn according to the sorted render phase order. These should be things like the pipeline, bind groups and their dynamic offsets, index/vertex buffers, and so on. - The following assumptions have been made: - Only entities with prepared assets (pipelines, materials, meshes) are queued to phases - View bindings are constant across a phase for a given draw function as phases are per-view - `batch_and_prepare_render_phase` is the only system that performs this batching and has sole responsibility for preparing the per-object data. As such the mesh binding and dynamic offsets are assumed to only vary as a result of the `batch_and_prepare_render_phase` system, e.g. due to having to split data across separate uniform bindings within the same buffer due to the maximum uniform buffer binding size. - Implement `GpuArrayBuffer` for `Mesh2dUniform` to store Mesh2dUniform in arrays in GPU buffers rather than each one being at a dynamic offset in a uniform buffer. This is the same optimisation that was made for 3D not long ago. - Change batch size for a range in `PhaseItem`, adding API for getting or mutating the range. This is more flexible than a size as the length of the range can be used in place of the size, but the start and end can be otherwise whatever is needed. - Add an optional mesh bind group dynamic offset to `PhaseItem`. This avoids having to do a massive table move just to insert `GpuArrayBufferIndex` components. ## Benchmarks All tests have been run on an M1 Max on AC power. `bevymark` and `many_cubes` were modified to use 1920x1080 with a scale factor of 1. I run a script that runs a separate Tracy capture process, and then runs the bevy example with `--features bevy_ci_testing,trace_tracy` and `CI_TESTING_CONFIG=../benchmark.ron` with the contents of `../benchmark.ron`: ```rust ( exit_after: Some(1500) ) ``` ...in order to run each test for 1500 frames. The recent changes to `many_cubes` and `bevymark` added reproducible random number generation so that with the same settings, the same rng will occur. They also added benchmark modes that use a fixed delta time for animations. Combined this means that the same frames should be rendered both on main and on the branch. The graphs compare main (yellow) to this PR (red). ### 3D Mesh `many_cubes --benchmark` <img width="1411" alt="Screenshot 2023-09-03 at 23 42 10" src="https://github.com/bevyengine/bevy/assets/302146/2088716a-c918-486c-8129-090b26fd2bc4"> The mesh and material are the same for all instances. This is basically the best case for the initial batching implementation as it results in 1 draw for the ~11.7k visible meshes. It gives a ~30% reduction in median frame time. The 1000th frame is identical using the flip tool: ![flip many_cubes-main-mesh3d many_cubes-batching-mesh3d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2511f37a-6df8-481a-932f-706ca4de7643) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4615 seconds ``` ### 3D Mesh `many_cubes --benchmark --material-texture-count 10` <img width="1404" alt="Screenshot 2023-09-03 at 23 45 18" src="https://github.com/bevyengine/bevy/assets/302146/5ee9c447-5bd2-45c6-9706-ac5ff8916daf"> This run uses 10 different materials by varying their textures. The materials are randomly selected, and there is no sorting by material bind group for opaque 3D so any batching is 'random'. The PR produces a ~5% reduction in median frame time. If we were to sort the opaque phase by the material bind group, then this should be a lot faster. This produces about 10.5k draws for the 11.7k visible entities. This makes sense as randomly selecting from 10 materials gives a chance that two adjacent entities randomly select the same material and can be batched. The 1000th frame is identical in flip: ![flip many_cubes-main-mesh3d-mtc10 many_cubes-batching-mesh3d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/2b3a8614-9466-4ed8-b50c-d4aa71615dbb) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4537 seconds ``` ### 3D Mesh `many_cubes --benchmark --vary-per-instance` <img width="1394" alt="Screenshot 2023-09-03 at 23 48 44" src="https://github.com/bevyengine/bevy/assets/302146/f02a816b-a444-4c18-a96a-63b5436f3b7f"> This run varies the material data per instance by randomly-generating its colour. This is the worst case for batching and that it performs about the same as `main` is a good thing as it demonstrates that the batching has minimal overhead when dealing with ~11k visible mesh entities. The 1000th frame is identical according to flip: ![flip many_cubes-main-mesh3d-vpi many_cubes-batching-mesh3d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ac5f5c14-9bda-4d1a-8219-7577d4aac68c) ``` Mean: 0.000000 Weighted median: 0.000000 1st weighted quartile: 0.000000 3rd weighted quartile: 0.000000 Min: 0.000000 Max: 0.000000 Evaluation time: 0.4568 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` <img width="1412" alt="Screenshot 2023-09-03 at 23 59 56" src="https://github.com/bevyengine/bevy/assets/302146/cb02ae07-237b-4646-ae9f-fda4dafcbad4"> This spawns 160 waves of 1000 quad meshes that are shaded with ColorMaterial. Each wave has a different material so 160 waves currently should result in 160 batches. This results in a 50% reduction in median frame time. Capturing a screenshot of the 1000th frame main vs PR gives: ![flip bevymark-main-mesh2d bevymark-batching-mesh2d 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/80102728-1217-4059-87af-14d05044df40) ``` Mean: 0.001222 Weighted median: 0.750432 1st weighted quartile: 0.453494 3rd weighted quartile: 0.969758 Min: 0.000000 Max: 0.990296 Evaluation time: 0.4255 seconds ``` So they seem to produce the same results. I also double-checked the number of draws. `main` does 160000 draws, and the PR does 160, as expected. ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --material-texture-count 10` <img width="1392" alt="Screenshot 2023-09-04 at 00 09 22" src="https://github.com/bevyengine/bevy/assets/302146/4358da2e-ce32-4134-82df-3ab74c40849c"> This generates 10 textures and generates materials for each of those and then selects one material per wave. The median frame time is reduced by 50%. Similar to the plain run above, this produces 160 draws on the PR and 160000 on `main` and the 1000th frame is identical (ignoring the fps counter text overlay). ![flip bevymark-main-mesh2d-mtc10 bevymark-batching-mesh2d-mtc10 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/ebed2822-dce7-426a-858b-b77dc45b986f) ``` Mean: 0.002877 Weighted median: 0.964980 1st weighted quartile: 0.668871 3rd weighted quartile: 0.982749 Min: 0.000000 Max: 0.992377 Evaluation time: 0.4301 seconds ``` ### 2D Mesh `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d --vary-per-instance` <img width="1396" alt="Screenshot 2023-09-04 at 00 13 53" src="https://github.com/bevyengine/bevy/assets/302146/b2198b18-3439-47ad-919a-cdabe190facb"> This creates unique materials per instance by randomly-generating the material's colour. This is the worst case for 2D batching. Somehow, this PR manages a 7% reduction in median frame time. Both main and this PR issue 160000 draws. The 1000th frame is the same: ![flip bevymark-main-mesh2d-vpi bevymark-batching-mesh2d-vpi 67ppd ldr](https://github.com/bevyengine/bevy/assets/302146/a2ec471c-f576-4a36-a23b-b24b22578b97) ``` Mean: 0.001214 Weighted median: 0.937499 1st weighted quartile: 0.635467 3rd weighted quartile: 0.979085 Min: 0.000000 Max: 0.988971 Evaluation time: 0.4462 seconds ``` ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` <img width="1396" alt="Screenshot 2023-09-04 at 12 21 12" src="https://github.com/bevyengine/bevy/assets/302146/8b31e915-d6be-4cac-abf5-c6a4da9c3d43"> This just spawns 160 waves of 1000 sprites. There should be and is no notable difference between main and the PR. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --material-texture-count 10` <img width="1389" alt="Screenshot 2023-09-04 at 12 36 08" src="https://github.com/bevyengine/bevy/assets/302146/45fe8d6d-c901-4062-a349-3693dd044413"> This spawns the sprites selecting a texture at random per instance from the 10 generated textures. This has no significant change vs main and shouldn't. ### 2D Sprite `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite --vary-per-instance` <img width="1401" alt="Screenshot 2023-09-04 at 12 29 52" src="https://github.com/bevyengine/bevy/assets/302146/762c5c60-352e-471f-8dbe-bbf10e24ebd6"> This sets the sprite colour as being unique per instance. This can still all be drawn using one batch. There should be no difference but the PR produces median frame times that are 4% higher. Investigation showed no clear sources of cost, rather a mix of give and take that should not happen. It seems like noise in the results. ### Summary | Benchmark | % change in median frame time | | ------------- | ------------- | | many_cubes | 🟩 -30% | | many_cubes 10 materials | 🟩 -5% | | many_cubes unique materials | 🟩 ~0% | | bevymark mesh2d | 🟩 -50% | | bevymark mesh2d 10 materials | 🟩 -50% | | bevymark mesh2d unique materials | 🟩 -7% | | bevymark sprite | 🟥 2% | | bevymark sprite 10 materials | 🟥 0.6% | | bevymark sprite unique materials | 🟥 4.1% | --- ## Changelog - Added: 2D and 3D mesh entities that share the same mesh and material (same textures, same data) are now batched into the same draw command for better performance. --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> Co-authored-by: Nicola Papale <nico@nicopap.ch> |
||
Martín Maita
|
cd1260585b
|
Revert "Update defaults for OrthographicProjection (#9537)" (#9878)
# Objective - Fixes #9876 ## Solution - Reverted commit `5012a0fd57748ab6f146776368b4cf988bba1eaa` to restore the previous default values for `OrthographicProjection`. --- ## Migration Guide - Migration guide steps from #9537 should be removed for next release. |
||
Nicola Papale
|
7163aabf29
|
Use a single line for of large binding lists (#9849)
# Objective - When adding/removing bindings in large binding lists, git would generate very difficult-to-read diffs ## Solution - Move the `@group(X) @binding(Y)` into the same line as the binding type declaration |
||
Nicola Papale
|
692ef9508c
|
Cleanup visibility module (#9850)
# Objective - `check_visibility` system in `bevy_render` had an `Option<&NoFrustumCulling>` that could be replaced by `Has`, which is theoretically faster and semantically more correct. - It also had some awkward indenting due to very large closure argument lists. - Some of the tests could be written more concisely ## Solution Use `Has`, move the tuple destructuring in a `let` binding, create a function for the tests. ## Note to reviewers Enable the "no white space diff" in the diff viewer to have a more meaningful diff in the `check_visibility` system. In the "Files changed" view, click on the little cog right of the "Jump to" text, on the row where the "Review changes" button is. then enable the "Hide whitespace" checkbox and click reload. --- ## Migration Guide - The `check_visibility` system's `Option<&NoFrustumCulling>` parameter has been replaced by `Has<NoFrustumCulling>`, if you were calling it manually, you should change the type to match it --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> |
||
François
|
401b2e77f3
|
renderer init: create a detached task only on wasm, block otherwise (#9830)
# Objective - When initializing the renderer, Bevy currently create a detached task - This is needed on wasm but not on native ## Solution - Don't create a detached task on native but block on the future |
||
Joseph
|
d5d355ae1f
|
Fix the clippy::explicit_iter_loop lint (#9834)
# Objective Replace instances of ```rust for x in collection.iter{_mut}() { ``` with ```rust for x in &{mut} collection { ``` This also changes CI to no longer suppress this lint. Note that since this lint only shows up when using clippy in pedantic mode, it was probably unnecessary to suppress this lint in the first place. |
||
Bruce Mitchener
|
5e91e5f3ce
|
Improve doc formatting. (#9840)
# Objective - Identifiers in docs should be marked up with backticks. ## Solution - Mark up more identifiers in the docs with backticks. |
||
robtfm
|
9d23f828f6
|
generate indices for Mikktspace (#8862)
# Objective mikktspace tangent generation requires mesh indices, and currently fails when they are not present. we can just generate them instead. ## Solution generate the indices. |
||
Sludge
|
b900b97aa2
|
Implement Reflect for Mesh (#9779)
# Objective - I want to associate `TypeData` with `Mesh`, to make it editable/inspectable in my reflection-based editor. `Mesh` has to implement `Reflect` for that. The precise reflection behavior does not matter. ## Solution - `#[derive(Reflect)]`, ignore fields whose types aren't reflectable. - Call `App::register_asset_reflect` in the `MeshPlugin`. --- ## Changelog - `Mesh` now implements `Reflect`. |
||
Joseph
|
8eb6ccdd87
|
Remove useless single tuples and trailing commas (#9720)
# Objective Title |
||
Carter Anderson
|
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
robtfm
|
6c1f4668c7
|
default 16bit rgb/rgba textures to unorm instead of uint (#9611)
# Objective fix #8185, #6710 replace #7005 (closed) rgb and rgba 16 bit textures currently default to `Rgba16Uint`, the more common use is `Rgba16Unorm`, which also matches the default type of rgb8 and rgba8 textures. ## Solution Change default to `Rgba16Unorm` |
||
robtfm
|
807d6465d2
|
warn and min for different vertex count (#9699)
# Objective Bevy currently crashes when meshes with different vertex counts for attributes are provided. ## Solution Instead of crashing we can warn and take the min length of all the given attributes. |
||
Kamil Koczurek
|
d04e4bbde1
|
derive Clone/Copy/Debug trio for shape::Cylinder (#9705)
# Objective I needed to copy a cylinder. Can be done with other shapes already. ## Solution Add proper `#[derive(..)]` attribute, |
||
Edgar Geier
|
118509e4aa
|
Replace IntoSystemSetConfig with IntoSystemSetConfigs (#9247)
# Objective - Fixes #9244. ## Solution - Changed the `(Into)SystemSetConfigs` traits and structs be more like the `(Into)SystemConfigs` traits and structs. - Replaced uses of `IntoSystemSetConfig` with `IntoSystemSetConfigs` - Added generic `ItemConfig` and `ItemConfigs` types. - Changed `SystemConfig(s)` and `SystemSetConfig(s)` to be type aliases to `ItemConfig(s)`. - Added generic `process_configs` to `ScheduleGraph`. - Changed `configure_sets_inner` and `add_systems_inner` to reuse `process_configs`. --- ## Changelog - Added `run_if` to `IntoSystemSetConfigs` - Deprecated `Schedule::configure_set` and `App::configure_set` - Removed `IntoSystemSetConfig` ## Migration Guide - Use `App::configure_sets` instead of `App::configure_set` - Use `Schedule::configure_sets` instead of `Schedule::configure_set` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Federico Rinaldi
|
532f3cb603
|
Improve SpatialBundle docs (#9673)
# Objective This PR aims to fix a handful of problems with the `SpatialBundle` docs: The docs describe the role of the single components of the bundle, overshadowing the purpose of `SpatialBundle` itself. Also, those items may be added, removed or changed over time, as it happened with #9497, requiring a higher maintenance effort, which will often result in errors, as it happened. ## Solution Just describe the role of `SpatialBundle` and of the transform and visibility concepts, without mentioning the specific component types. Since the bundle has public fields, the reader can easily click them and read the documentation if they need to know more. I removed the mention of numbers of components since they were four, now they are five, and who knows how many they will be in the future. In this process, I removed the bullet points, which are no longer needed, and were contextually wrong in the first place, since they were meant to list the components, but ended up describing use-cases and requirements for hierarchies. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
Robert Swain
|
4fdea02087
|
Use instancing for sprites (#9597)
# Objective - Supercedes #8872 - Improve sprite rendering performance after the regression in #9236 ## Solution - Use an instance-rate vertex buffer to store per-instance data. - Store color, UV offset and scale, and a transform per instance. - Convert Sprite rect, custom_size, anchor, and flip_x/_y to an affine 3x4 matrix and store the transpose of that in the per-instance data. This is similar to how MeshUniform uses transpose affine matrices. - Use a special index buffer that has batches of 6 indices referencing 4 vertices. The lower 2 bits indicate the x and y of a quad such that the corners are: ``` 10 11 00 01 ``` UVs are implicit but get modified by UV offset and scale The remaining upper bits contain the instance index. ## Benchmarks I will compare versus `main` before #9236 because the results should be as good as or faster than that. Running `bevymark -- 10000 16` on an M1 Max with `main` at `e8b38925` in yellow, this PR in red: ![Screenshot 2023-08-27 at 18 44 10](https://github.com/bevyengine/bevy/assets/302146/bdc5c929-d547-44bb-b519-20dce676a316) Looking at the median frame times, that's a 37% reduction from before. --- ## Changelog - Changed: Improved sprite rendering performance by leveraging an instance-rate vertex buffer. --------- Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com> |
||
Joseph
|
02b520b4e8
|
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
Joseph
|
23598d7bec
|
Add a method to compute a bounding box enclosing a set of points (#9630)
# Objective Make it easier to create bounding boxes in user code by providing a constructor that computes a box surrounding an arbitrary number of points. ## Solution Add `Aabb::enclosing`, which accepts iterators, slices, or arrays. --------- Co-authored-by: Tristan Guichaoua <33934311+tguichaoua@users.noreply.github.com> |
||
lelo
|
42e6dc8987
|
Refactor EventReader::iter to read (#9631)
# Objective - The current `EventReader::iter` has been determined to cause confusion among new Bevy users. It was suggested by @JoJoJet to rename the method to better clarify its usage. - Solves #9624 ## Solution - Rename `EventReader::iter` to `EventReader::read`. - Rename `EventReader::iter_with_id` to `EventReader::read_with_id`. - Rename `ManualEventReader::iter` to `ManualEventReader::read`. - Rename `ManualEventReader::iter_with_id` to `ManualEventReader::read_with_id`. --- ## Changelog - `EventReader::iter` has been renamed to `EventReader::read`. - `EventReader::iter_with_id` has been renamed to `EventReader::read_with_id`. - `ManualEventReader::iter` has been renamed to `ManualEventReader::read`. - `ManualEventReader::iter_with_id` has been renamed to `ManualEventReader::read_with_id`. - Deprecated `EventReader::iter` - Deprecated `EventReader::iter_with_id` - Deprecated `ManualEventReader::iter` - Deprecated `ManualEventReader::iter_with_id` ## Migration Guide - Existing usages of `EventReader::iter` and `EventReader::iter_with_id` will have to be changed to `EventReader::read` and `EventReader::read_with_id` respectively. - Existing usages of `ManualEventReader::iter` and `ManualEventReader::iter_with_id` will have to be changed to `ManualEventReader::read` and `ManualEventReader::read_with_id` respectively. |
||
Ame :]
|
fb094eab87
|
Move default docs (#9638)
# Objective - Make the default docs more useful like suggested in https://github.com/bevyengine/bevy/pull/9600#issuecomment-1696452118 ## Solution - Move the documentation to the `fn default()` method instead of the `impl Default`. Allows you to view the docs directly on the function without having to go to the implementation. ### Before ![Screenshot 2023-08-29 at 18 21 03](https://github.com/bevyengine/bevy/assets/104745335/6d31591e-f190-4b8e-8bc3-a570ada294f0) ### After ![Screenshot 2023-08-29 at 18 19 54](https://github.com/bevyengine/bevy/assets/104745335/e2442ec1-593d-47f3-b539-8c77a170f0b6) |
||
Rob Parrett
|
ce2ade2636
|
Remove unused regex dep from bevy_render (#9613)
# Objective As far as I can tell, this is no longer needed since the switch to fancier shader imports via `naga_oil`. This shouldn't have any affect on compile times because it's in our tree from `naga_oil`, `tracing-subscriber`, and `rodio`. |
||
Mike
|
33fdc5f5db
|
Move schedule name into Schedule (#9600)
# Objective - Move schedule name into `Schedule` to allow the schedule name to be used for errors and tracing in Schedule methods - Fixes #9510 ## Solution - Move label onto `Schedule` and adjust api's on `World` and `Schedule` to not pass explicit label where it makes sense to. - add name to errors and tracing. - `Schedule::new` now takes a label so either add the label or use `Schedule::default` which uses a default label. `default` is mostly used in doc examples and tests. --- ## Changelog - move label onto `Schedule` to improve error message and logging for schedules. ## Migration Guide `Schedule::new` and `App::add_schedule` ```rust // old let schedule = Schedule::new(); app.add_schedule(MyLabel, schedule); // new let schedule = Schedule::new(MyLabel); app.add_schedule(schedule); ``` if you aren't using a label and are using the schedule struct directly you can use the default constructor. ```rust // old let schedule = Schedule::new(); schedule.run(world); // new let schedule = Schedule::default(); schedule.run(world); ``` `Schedules:insert` ```rust // old let schedule = Schedule::new(); schedules.insert(MyLabel, schedule); // new let schedule = Schedule::new(MyLabel); schedules.insert(schedule); ``` `World::add_schedule` ```rust // old let schedule = Schedule::new(); world.add_schedule(MyLabel, schedule); // new let schedule = Schedule::new(MyLabel); world.add_schedule(schedule); ``` |
||
Ray Redondo
|
5012a0fd57
|
Update defaults for OrthographicProjection (#9537)
# Objective These new defaults match what is used by `Camera2dBundle::default()`, removing a potential footgun from overriding a field in the projection component of the bundle. ## Solution Adjusted the near clipping plane of `OrthographicProjection::default()` to `-1000.`. --- ## Changelog Changed: `OrthographicProjection::default()` now matches the value used in `Camera2dBundle::default()` ## Migration Guide Workarounds used to keep the projection consistent with the bundle defaults are no longer required. Meanwhile, uses of `OrthographicProjection` in 2D scenes may need to be adjusted; the `near` clipping plane default was changed from `0.0` to `-1000.0`. |
||
Sélène Amanita
|
44f677a38a
|
Improve documentation relating to Frustum and HalfSpace (#9136)
# Objective This PR's first aim is to fix a mistake in `HalfSpace`'s documentation. When defining a `Frustum` myself in bevy_basic_portals, I realised that the "distance" of the `HalfSpace` is not, as the current doc defines, the "distance from the origin along the normal", but actually the opposite of that. See the example I gave in this PR. This means one of two things: 1. The documentation about `HalfSpace` is wrong (it is either way because of the `n.p + d > 0` formula given later anyway, which is how it behaves, but in that formula `d` is indeed the opposite of the "distance from the origin along the normal", otherwise it should be `n.p > d`) 2. The distance is supposed to be the "distance from the origin along the normal" but when used in a Frustum it's used as the opposite, and it is a mistake 3. Same as 2, but it is somehow intended Since I think `HalfSpace` is only used for `Frustum`, and it's easier to fix documentation than code, I assumed for this PR we're in case number 1. If we're in case number 3, the documentation of `Frustum` needs to change, and in case number 2, the code needs to be fixed. While I was at it, I also : - Tried to improve the documentation for `Frustum`, `Aabb`, and `VisibilitySystems`, among others, since they're all related to `Frustum`. - Fixed documentation about frustum culling not applying to 2d objects, which is not true since https://github.com/bevyengine/bevy/pull/7885 ## Remarks and questions - What about a `HalfSpace` with an infinite distance, is it allowed and does it represents the whole space? If so it should probably be mentioned. - I referenced the `update_frusta` system in `bevy_render::view::visibility` directly instead of referencing its system set, should I reference the system set instead? It's a bit annoying since it's in 3 sets. - `visibility_propagate` is not public for some reason, I think it probably should be, but for now I only documented its system set, should I make it public? I don't think that would count as a breaking change? - Why is `Aabb` inserted by a system, with `NoFrustumCulling` as an opt-out, instead of having it inserted by default in `PbrBundle` for example and then the system calculating it when it's added? Is it because there is still no way to have an optional component inside a bundle? --------- Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
James O'Brien
|
4f1d9a6315
|
Reorder render sets, refactor bevy_sprite to take advantage (#9236)
This is a continuation of this PR: #8062 # Objective - Reorder render schedule sets to allow data preparation when phase item order is known to support improved batching - Part of the batching/instancing etc plan from here: https://github.com/bevyengine/bevy/issues/89#issuecomment-1379249074 - The original idea came from @inodentry and proved to be a good one. Thanks! - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the new ordering ## Solution - Move `Prepare` and `PrepareFlush` after `PhaseSortFlush` - Add a `PrepareAssets` set that runs in parallel with other systems and sets in the render schedule. - Put prepare_assets systems in the `PrepareAssets` set - If explicit dependencies are needed on Mesh or Material RenderAssets then depend on the appropriate system. - Add `ManageViews` and `ManageViewsFlush` sets between `ExtractCommands` and Queue - Move `queue_mesh*_bind_group` to the Prepare stage - Rename them to `prepare_` - Put systems that prepare resources (buffers, textures, etc.) into a `PrepareResources` set inside `Prepare` - Put the `prepare_..._bind_group` systems into a `PrepareBindGroup` set after `PrepareResources` - Move `prepare_lights` to the `ManageViews` set - `prepare_lights` creates views and this must happen before `Queue` - This system needs refactoring to stop handling all responsibilities - Gather lights, sort, and create shadow map views. Store sorted light entities in a resource - Remove `BatchedPhaseItem` - Replace `batch_range` with `batch_size` representing how many items to skip after rendering the item or to skip the item entirely if `batch_size` is 0. - `queue_sprites` has been split into `queue_sprites` for queueing phase items and `prepare_sprites` for batching after the `PhaseSort` - `PhaseItem`s are still inserted in `queue_sprites` - After sorting adjacent compatible sprite phase items are accumulated into `SpriteBatch` components on the first entity of each batch, containing a range of vertex indices. The associated `PhaseItem`'s `batch_size` is updated appropriately. - `SpriteBatch` items are then drawn skipping over the other items in the batch based on the value in `batch_size` - A very similar refactor was performed on `bevy_ui` --- ## Changelog Changed: - Reordered and reworked render app schedule sets. The main change is that data is extracted, queued, sorted, and then prepared when the order of data is known. - Refactor `bevy_sprite` and `bevy_ui` to take advantage of the reordering. ## Migration Guide - Assets such as materials and meshes should now be created in `PrepareAssets` e.g. `prepare_assets<Mesh>` - Queueing entities to `RenderPhase`s continues to be done in `Queue` e.g. `queue_sprites` - Preparing resources (textures, buffers, etc.) should now be done in `PrepareResources`, e.g. `prepare_prepass_textures`, `prepare_mesh_uniforms` - Prepare bind groups should now be done in `PrepareBindGroups` e.g. `prepare_mesh_bind_group` - Any batching or instancing can now be done in `Prepare` where the order of the phase items is known e.g. `prepare_sprites` ## Next Steps - Introduce some generic mechanism to ensure items that can be batched are grouped in the phase item order, currently you could easily have `[sprite at z 0, mesh at z 0, sprite at z 0]` preventing batching. - Investigate improved orderings for building the MeshUniform buffer - Implementing batching across the rest of bevy --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
Rob Parrett
|
a788e31ad5
|
Fix CI for Rust 1.72 (#9562)
# Objective [Rust 1.72.0](https://blog.rust-lang.org/2023/08/24/Rust-1.72.0.html) is now stable. # Notes - `let-else` formatting has arrived! - I chose to allow `explicit_iter_loop` due to https://github.com/rust-lang/rust-clippy/issues/11074. We didn't hit any of the false positives that prevent compilation, but fixing this did produce a lot of the "symbol soup" mentioned, e.g. `for image in &mut *image_events {`. Happy to undo this if there's consensus the other way. --------- Co-authored-by: François <mockersf@gmail.com> |
||
Robert Swain
|
b88ff154f2
|
ktx2: Fix Rgb8 -> Rgba8Unorm conversion (#9555)
# Objective - Fixes #9552 ## Solution - Only n_pixels bytes of data was being copied instead of 1 byte per component, i.e. n_pixels * 4 --- ## Changelog - Fixed: loading of Rgb8 ktx2 files. |
||
IDEDARY
|
af0323a55e
|
[RAINBOW EFFECT] Added methods to get HSL components from Color (#9201)
# Changes Added methods to Color enum to retrieve Hue, Saturation and Lightness values. ## Why? As you probably know, to create a color that iterates over the color spectrum (rainbow effect that can be seen on LED keyboards, PC components, etc..), you need to mix the color from Hue, Saturation and Luminosity. Bevy already supports multiple color formats, but provides only 4 methods of retrieving components for RGBA. Nothing like ".get_hue()", so I implemented them with all their variations that RGBA has. Now we can do true rainbow color blending (Example is a button hover effect): [Discord Showcase](https://discord.com/channels/691052431525675048/866787577687310356/1130960862232969400), [Video download](https://cdn.discordapp.com/attachments/866787577687310356/1130960861708697600/HSL_PR.mp4) ![image](https://github.com/bevyengine/bevy/assets/49441831/e8cf4905-2d09-45b3-8e5b-e6203da7fa9c) |
||
Fredrik Fornwall
|
80db794e3c
|
Make WgpuSettings::default() check WGPU_POWER_PREF (#9482)
# Objective Allow users to specify the power preference when selecting a wgpu adapter, which is useful for testing or workaround purposes, and makes the behaviour consistent with the already present check for `WGPU_BACKEND`. ## Solution In `WgpuSettings::default()`, allow users to specify the `WGPU_POWER_PREF` to affect the wgpu adapter choice. |
||
JMS55
|
5fac1fe0a9
|
Fix temporal jitter bug (#9462)
* Fixed jitter being applied in the wrong coordinate space, leading to aliasing. * Fixed incorrectly using the cached view_proj instead of account for temporal jitter. * Added a diagram to ensure the coordinate space is clear. Before: ![image](https://github.com/bevyengine/bevy/assets/47158642/55b4bed4-4fb0-4fb2-a271-cc10a987e4d7) After: ![image](https://github.com/bevyengine/bevy/assets/47158642/cbde4553-4e35-44d9-8ccf-f3a06e64a31f) |
||
Robert Swain
|
0a11af9375
|
Reduce the size of MeshUniform to improve performance (#9416)
# Objective - Significantly reduce the size of MeshUniform by only including necessary data. ## Solution Local to world, model transforms are affine. This means they only need a 4x3 matrix to represent them. `MeshUniform` stores the current, and previous model transforms, and the inverse transpose of the current model transform, all as 4x4 matrices. Instead we can store the current, and previous model transforms as 4x3 matrices, and we only need the upper-left 3x3 part of the inverse transpose of the current model transform. This change allows us to reduce the serialized MeshUniform size from 208 bytes to 144 bytes, which is over a 30% saving in data to serialize, and VRAM bandwidth and space. ## Benchmarks On an M1 Max, running `many_cubes -- sphere`, main is in yellow, this PR is in red: <img width="1484" alt="Screenshot 2023-08-11 at 02 36 43" src="https://github.com/bevyengine/bevy/assets/302146/7d99c7b3-f2bb-4004-a8d0-4c00f755cb0d"> A reduction in frame time of ~14%. --- ## Changelog - Changed: Redefined `MeshUniform` to improve performance by using 4x3 affine transforms and reconstructing 4x4 matrices in the shader. Helper functions were added to `bevy_pbr::mesh_functions` to unpack the data. `affine_to_square` converts the packed 4x3 in 3x4 matrix data to a 4x4 matrix. `mat2x4_f32_to_mat3x3` converts the 3x3 in mat2x4 + f32 matrix data back into a 3x3. ## Migration Guide Shader code before: ``` var model = mesh[instance_index].model; ``` Shader code after: ``` #import bevy_pbr::mesh_functions affine_to_square var model = affine_to_square(mesh[instance_index].model); ``` |
||
robtfm
|
b30ff2ab76
|
allow asset loader pre-registration (#9429)
# Objective - When loading gltf files during app creation (for example using a FromWorld impl and adding that as a resource), no loader was found. - As the gltf loader can load compressed formats, it needs to know what the GPU supports so it's not available at app creation time. ## Solution alternative to #9426 - add functionality to preregister the loader. loading assets with matching extensions will block until a real loader is registered. - preregister "gltf" and "glb". - prereigster image formats. the way this is set up, if a set of extensions are all registered with a single preregistration call, then later a loader is added that matches some of the extensions, assets using the remaining extensions will then fail. i think that should work well for image formats that we don't know are supported until later. |
||
Nicola Papale
|
da41aa35e8
|
Move window.rs to window/mod.rs in bevy_render (#9394)
# Objective Bevy prefers `mod.rs` inside `module_name` files over `module_name.rs` collocated with `module_name`. In `bevy_render`, it seems the `window` modules didn't follow this convention ## Solution - Follow the `mod.rs` convention. |