# Objective
I wanted to have reflection for BinaryHeap for a personal project.
I'm running into some issues:
- I wanted to represent BinaryHeap as a reflect::List type since it's
essentially a wrapper around a Vec, however there's no public way to
access the underlying Vec, which makes it hard to implement the
reflect::List methods. I have omitted the reflect::List methods for
now.. I'm not sure if that's a blocker?
- what would be the alternatives? Simply not implement `reflect::List`?
It is possible to implement `FromReflect` without it. Would the type be
`Struct` then?
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
Add reflect for `std::any::TypeId`.
I couldn't add ReflectSerialize/ReflectDeserialize for it, it was giving
me an error. I don't really understand why, since it works for
`std::path::PathBuf`.
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
- Addresses #12462
- When we serialize an enum, deserialize it, then reserialize it, the
correct variant should be selected.
## Solution
- Change `dynamic_enum.set_variant` to
`dynamic_enum.set_variant_with_index` in `EnumVisitor`
# Objective
Rotating vectors is a very common task. It is required for a variety of
things both within Bevy itself and in many third party plugins, for
example all over physics and collision detection, and for things like
Bevy's bounding volumes and several gizmo implementations.
For 3D, we can do this using a `Quat`, but for 2D, we do not have a
clear and efficient option. `Mat2` can be used for rotating vectors if
created using `Mat2::from_angle`, but this is not obvious to many users,
it doesn't have many rotation helpers, and the type does not give any
guarantees that it represents a valid rotation.
We should have a proper type for 2D rotations. In addition to allowing
for potential optimization, it would allow us to have a consistent and
explicitly documented representation used throughout the engine, i.e.
counterclockwise and in radians.
## Representation
The mathematical formula for rotating a 2D vector is the following:
```
new_x = x * cos - y * sin
new_y = x * sin + y * cos
```
Here, `sin` and `cos` are the sine and cosine of the rotation angle.
Computing these every time when a vector needs to be rotated can be
expensive, so the rotation shouldn't be just an `f32` angle. Instead, it
is often more efficient to represent the rotation using the sine and
cosine of the angle instead of storing the angle itself. This can be
freely passed around and reused without unnecessary computations.
The two options are either a 2x2 rotation matrix or a unit complex
number where the cosine is the real part and the sine is the imaginary
part. These are equivalent for the most part, but the unit complex
representation is a bit more memory efficient (two `f32`s instead of
four), so I chose that. This is like Nalgebra's
[`UnitComplex`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.UnitComplex.html)
type, which can be used for the
[`Rotation2`](https://docs.rs/nalgebra/latest/nalgebra/geometry/type.Rotation2.html)
type.
## Implementation
Add a `Rotation2d` type represented as a unit complex number:
```rust
/// A counterclockwise 2D rotation in radians.
///
/// The rotation angle is wrapped to be within the `]-pi, pi]` range.
pub struct Rotation2d {
/// The cosine of the rotation angle in radians.
///
/// This is the real part of the unit complex number representing the rotation.
pub cos: f32,
/// The sine of the rotation angle in radians.
///
/// This is the imaginary part of the unit complex number representing the rotation.
pub sin: f32,
}
```
Using it is similar to using `Quat`, but in 2D:
```rust
let rotation = Rotation2d::radians(PI / 2.0);
// Rotate vector (also works on Direction2d!)
assert_eq!(rotation * Vec2::X, Vec2::Y);
// Get angle as degrees
assert_eq!(rotation.as_degrees(), 90.0);
// Getting sin and cos is free
let (sin, cos) = rotation.sin_cos();
// "Subtract" rotations
let rotation2 = Rotation2d::FRAC_PI_4; // there are constants!
let diff = rotation * rotation2.inverse();
assert_eq!(diff.as_radians(), PI / 4.0);
// This is equivalent to the above
assert_eq!(rotation2.angle_between(rotation), PI / 4.0);
// Lerp
let rotation1 = Rotation2d::IDENTITY;
let rotation2 = Rotation2d::FRAC_PI_2;
let result = rotation1.lerp(rotation2, 0.5);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_4);
// Slerp
let rotation1 = Rotation2d::FRAC_PI_4);
let rotation2 = Rotation2d::degrees(-180.0); // we can use degrees too!
let result = rotation1.slerp(rotation2, 1.0 / 3.0);
assert_eq!(result.as_radians(), std::f32::consts::FRAC_PI_2);
```
There's also a `From<f32>` implementation for `Rotation2d`, which means
that methods can still accept radians as floats if the argument uses
`impl Into<Rotation2d>`. This means that adding `Rotation2d` shouldn't
even be a breaking change.
---
## Changelog
- Added `Rotation2d`
- Bounding volume methods now take an `impl Into<Rotation2d>`
- Gizmo methods with rotation now take an `impl Into<Rotation2d>`
## Future use cases
- Collision detection (a type like this is quite essential considering
how common vector rotations are)
- `Transform` helpers (e.g. return a 2D rotation about the Z axis from a
`Transform`)
- The rotation used for `Transform2d` (#8268)
- More gizmos, maybe meshes... everything in 2D that uses rotation
---------
Co-authored-by: Tristan Guichaoua <33934311+tguichaoua@users.noreply.github.com>
Co-authored-by: Robert Walter <robwalter96@gmail.com>
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
# Objective
Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:
- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html
~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.
## Solution
Add "all-features = true" to docs.rs metadata for crates that use
features.
## Changelog
### Changed
- Unified features documented on docs.rs between main crate and
sub-crates
This is an implementation of RFC #51:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
Note that the implementation strategy is different from the one outlined
in that RFC, because two-phase animation has now landed.
# Objective
Bevy needs animation blending. The RFC for this is [RFC 51].
## Solution
This is an implementation of the RFC. Note that the implementation
strategy is different from the one outlined there, because two-phase
animation has now landed.
This is just a draft to get the conversation started. Currently we're
missing a few things:
- [x] A fully-fleshed-out mechanism for transitions
- [x] A serialization format for `AnimationGraph`s
- [x] Examples are broken, other than `animated_fox`
- [x] Documentation
---
## Changelog
### Added
* The `AnimationPlayer` has been reworked to support blending multiple
animations together through an `AnimationGraph`, and as such will no
longer function unless a `Handle<AnimationGraph>` has been added to the
entity containing the player. See [RFC 51] for more details.
* Transition functionality has moved from the `AnimationPlayer` to a new
component, `AnimationTransitions`, which works in tandem with the
`AnimationGraph`.
## Migration Guide
* `AnimationPlayer`s can no longer play animations by themselves and
need to be paired with a `Handle<AnimationGraph>`. Code that was using
`AnimationPlayer` to play animations will need to create an
`AnimationGraph` asset first, add a node for the clip (or clips) you
want to play, and then supply the index of that node to the
`AnimationPlayer`'s `play` method.
* The `AnimationPlayer::play_with_transition()` method has been removed
and replaced with the `AnimationTransitions` component. If you were
previously using `AnimationPlayer::play_with_transition()`, add all
animations that you were playing to the `AnimationGraph`, and create an
`AnimationTransitions` component to manage the blending between them.
[RFC 51]:
https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md
---------
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.
## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.
---
## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.
## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.
bevy_core' reexports of bytemuck's types has been removed.
Add them as dependencies in your own crate instead.
# Objective
`bevy_utils::Entry` is only useful when using
`BuildHasherDefault<AHasher>`. It would be great if we didn't have to
write out `bevy_utils::hashbrown::hash_map::Entry` whenever we want to
use a different `BuildHasher`, such as when working with
`bevy_utils::TypeIdMap`.
## Solution
Give `bevy_utils::Entry` a new optional type parameter for defining a
custom `BuildHasher`, such as `NoOpHash`. This parameter defaults to
`BuildHasherDefault<AHasher>`— the `BuildHasher` used by
`bevy_utils::HashMap`.
---
## Changelog
- Added an optional third type parameter to `bevy_utils::Entry` to
specify a custom `BuildHasher`
# Objective
Resolves#4154
Currently, registration must all be done manually:
```rust
#[derive(Reflect)]
struct Foo(Bar);
#[derive(Reflect)]
struct Bar(Baz);
#[derive(Reflect)]
struct Baz(usize);
fn main() {
// ...
app
.register_type::<Foo>()
.register_type::<Bar>()
.register_type::<Baz>()
// .register_type::<usize>() <- This one is handled by Bevy, thankfully
// ...
}
```
This can grow really quickly and become very annoying to add, remove,
and update as types change. It would be great if we could help reduce
the number of types that a user must manually implement themselves.
## Solution
As suggested in #4154, this PR adds automatic recursive registration.
Essentially, when a type is registered, it may now also choose to
register additional types along with it using the new
`GetTypeRegistration::register_type_dependencies` trait method.
The `Reflect` derive macro now automatically does this for all fields in
structs, tuple structs, struct variants, and tuple variants. This is
also done for tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`.
This allows us to simplify the code above like:
```rust
#[derive(Reflect)]
struct Foo(Bar);
#[derive(Reflect)]
struct Bar(Baz);
#[derive(Reflect)]
struct Baz(usize);
fn main() {
// ...
app.register_type::<Foo>()
// ...
}
```
This automatic registration only occurs if the type has not yet been
registered. If it has been registered, we simply skip it and move to the
next one. This reduces the cost of registration and prevents overwriting
customized registrations.
## Considerations
While this does improve ergonomics on one front, it's important to look
at some of the arguments against adopting a PR like this.
#### Generic Bounds
~~Since we need to be able to register the fields individually, we need
those fields to implement `GetTypeRegistration`. This forces users to
then add this trait as a bound on their generic arguments. This
annoyance could be relieved with something like #5772.~~
This is no longer a major issue as the `Reflect` derive now adds the
`GetTypeRegistration` bound by default. This should technically be okay,
since we already add the `Reflect` bound.
However, this can also be considered a breaking change for manual
implementations that left out a `GetTypeRegistration` impl ~~or for
items that contain dynamic types (e.g. `DynamicStruct`) since those also
do not implement `GetTypeRegistration`~~.
#### Registration Assumptions
By automatically registering fields, users might inadvertently be
relying on certain types to be automatically registered. If `Foo`
auto-registers `Bar`, but `Foo` is later removed from the code, then
anywhere that previously used or relied on `Bar`'s registration would
now fail.
---
## Changelog
- Added recursive type registration to structs, tuple structs, struct
variants, tuple variants, tuples, arrays, `Vec<T>`, `HashMap<K, V>`, and
`Option<T>`
- Added a new trait in the hidden `bevy_reflect::__macro_exports` module
called `RegisterForReflection`
- Added `GetTypeRegistration` impl for
`bevy_render::render_asset::RenderAssetUsages`
## Migration Guide
All types that derive `Reflect` will now automatically add
`GetTypeRegistration` as a bound on all (unignored) fields. This means
that all reflected fields will need to also implement
`GetTypeRegistration`.
If all fields **derive** `Reflect` or are implemented in `bevy_reflect`,
this should not cause any issues. However, manual implementations of
`Reflect` that excluded a `GetTypeRegistration` impl for their type will
need to add one.
```rust
#[derive(Reflect)]
struct Foo<T: FromReflect> {
data: MyCustomType<T>
}
// OLD
impl<T: FromReflect> Reflect for MyCustomType<T> {/* ... */}
// NEW
impl<T: FromReflect + GetTypeRegistration> Reflect for MyCustomType<T> {/* ... */}
impl<T: FromReflect + GetTypeRegistration> GetTypeRegistration for MyCustomType<T> {/* ... */}
```
---------
Co-authored-by: James Liu <contact@jamessliu.com>
Co-authored-by: radiish <cb.setho@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
Split up from #12017, rename Bevy's direction types.
Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.
However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.
This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.
Some examples of what it looks like: (copied from #12017)
```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);
// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```
```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Direction3d::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
// After
let hit = spatial_query.cast_ray(
Vec3::ZERO,
Dir3::X,
f32::MAX,
true,
SpatialQueryFilter::default(),
);
```
```rust
// Before
self.circle(
Vec3::new(0.0, -2.0, 0.0),
Direction3d::Y,
5.0,
Color::TURQUOISE,
);
// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```
## Solution
Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.
---
## Migration Guide
The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.
## Additional Context
This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.
---------
Co-authored-by: IceSentry <c.giguere42@gmail.com>
# Objective
Added reflect support for `std::HashSet`, `BTreeSet` and `BTreeMap`.
The set support is limited to `reflect_value` since that's the level of
support prior art `bevy_util::HashSet` got.
## Changelog
Dropped `Hash` Requirement on `MapInfo` since it's not needed on
`BTreeMap`s.
# Objective
- Fixes#12001.
- Note this PR doesn't change any feature flags, however flaky the issue
revealed they are.
## Solution
- Use `FromReflect` to convert proxy types to concrete ones in
`ReflectSerialize::get_serializable`.
- Use `get_represented_type_info() -> type_id()` to get the correct type
id to interact with the registry in
`bevy_reflect::serde::ser::get_serializable`.
---
## Changelog
- Registering `ReflectSerialize` now imposes additional `FromReflect`
and `TypePath` bounds.
## Migration Guide
- If `ReflectSerialize` is registered on a type, but `TypePath` or
`FromReflect` implementations are omitted (perhaps by
`#[reflect(type_path = false)` or `#[reflect(from_reflect = false)]`),
the traits must now be implemented.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Split up from #12017, add an aligned version of `Direction3d` for SIMD,
and move direction types out of `primitives`.
## Solution
Add `Direction3dA` and move direction types into a new `direction`
module.
---
## Migration Guide
The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have
been moved out of `bevy::math::primitives`.
Before:
```rust
use bevy::math::primitives::Direction3d;
```
After:
```rust
use bevy::math::Direction3d;
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Add the new `-Zcheck-cfg` checks to catch more warnings
- Fixes#12091
## Solution
- Create a new `cfg-check` to the CI that runs `cargo check -Zcheck-cfg
--workspace` using cargo nightly (and fails if there are warnings)
- Fix all warnings generated by the new check
---
## Changelog
- Remove all redundant imports
- Fix cfg wasm32 targets
- Add 3 dead code exceptions (should StandardColor be unused?)
- Convert ios_simulator to a feature (I'm not sure if this is the right
way to do it, but the check complained before)
## Migration Guide
No breaking changes
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Currently, the `ambiguous_names` hash set in `TypeRegistry` is used to
keep track of short type names that are ambiguous, and to require the
use of long type names for these types.
However, there's no way for the consumer of `TypeRegistry` to known
whether a given call to `get_with_short_type_path()` or
`get_with_short_type_path_mut()` failed because a type was not
registered at all, or because the short name is ambiguous.
This can be used, for example, for better error reporting to the user by
an editor tool. Here's some code that uses this, from my remote protocol
exploration branch:
```rust
let type_registration = type_registry
.get_with_type_path(component_name)
.or_else(|| registry.get_with_short_type_path(component_name))
.ok_or_else(|| {
if type_registry.is_ambiguous(component_name) {
BrpError::ComponentAmbiguous(component_name.clone())
} else {
BrpError::MissingTypeRegistration(component_name.clone())
}
})?
```
## Solution
- Introduces a `is_ambiguous()` method.
- Also drive-by fixes two documentation comments that had broken links.
---
## Changelog
- Added a `TypeRegistry::is_ambiguous()` method, for checking whether a
given short type path is ambiguous (e.g. `MyType` potentially matching
either `some_crate::MyType` or `another_crate::MyType`)
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.
# Solution
Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.
To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.
# Migration guide
* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
# Objective
Reduce the size of `bevy_utils`
(https://github.com/bevyengine/bevy/issues/11478)
## Solution
Move `EntityHash` related types into `bevy_ecs`. This also allows us
access to `Entity`, which means we no longer need `EntityHashMap`'s
first generic argument.
---
## Changelog
- Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` into `bevy::ecs::entity::hash` .
- Removed `EntityHashMap`'s first generic argument. It is now hardcoded
to always be `Entity`.
## Migration Guide
- Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap,
EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`.
- Uses of `EntityHashMap` no longer have to specify the first generic
parameter. It is now hardcoded to always be `Entity`.
# Objective
Fix https://github.com/bevyengine/bevy/issues/11657
## Solution
Add a `ReflectKind` enum, add `Reflect::reflect_kind` which returns a
`ReflectKind`, and add `kind` method implementions to `ReflectRef`,
`ReflectMut`, and `ReflectOwned`, which returns a `ReflectKind`.
I also changed `AccessError` to use this new struct instead of it's own
`TypeKind` struct.
---
## Changelog
- Added `ReflectKind`, an enumeration over the kinds of a reflected type
without its data.
- Added `Reflect::reflect_kind` (with default implementation)
- Added implementation for the `kind` method on `ReflectRef`,
`ReflectMut`, and `ReflectOwned` which gives their kind without any
information, as a `ReflectKind`
# Objective
We currently over/underpromise hash stability:
- `HashMap`/`HashSet` use `BuildHasherDefault<AHasher>` instead of
`RandomState`. As a result, the hash is stable within the same run.
- [aHash isn't stable between devices (and
versions)](https://github.com/tkaitchuck/ahash?tab=readme-ov-file#goals-and-non-goals),
yet it's used for `StableHashMap`/`StableHashSet`
- the specialized hashmaps are stable
Interestingly, `StableHashMap`/`StableHashSet` aren't used by Bevy
itself (anymore).
## Solution
Add/fix documentation
## Alternatives
For `StableHashMap`/`StableHashSet`:
- remove them
- revive #7107
---
## Changelog
- added iteration stability guarantees for different hashmaps
# Objective
I wanted to pass in a `String` to `DynamicStruct::insert_boxed` but it
took in a &str. That's fine but I also saw that it immediately converted
the `&str` to a `String`. Which is wasteful.
## Solution
I made `DynamicStruct::insert_boxed` take in a `impl Into<Cow<str>>`.
Same for `DynamicStruct::insert`.
---
## Changelog
- `DynamicStruct::insert_boxed` and `DynamicStruct::insert` now support
taking in anything that implements `impl Into<Cow<str>>`.
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
I'm working on a developer console plugin, and I wanted to get a
field/index of a struct/list/tuple. My command parser already parses
member expressions and all that, so I wanted to construct a `ParsedPath`
manually, but it's all private.
## Solution
Make the internals of `ParsedPath` public and add documentation for
everything, and I changed the boxed slice inside `ParsedPath` to a
vector for more flexibility.
I also did a bunch of code cleanup. Improving documentation, error
messages, code, type names, etc.
---
## Changelog
- Added the ability to manually create `ParsedPath`s from their
elements, without the need of string parsing.
- Improved `ReflectPath` error handling.
## Migration Guide
- `bevy::reflect::AccessError` has been refactored.
That should be it I think, everything else that was changed was private
before this PR.
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
- `impl_reflect_struct` doesn't cover tuple structs or enums.
- Problem brought up [on
Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1190623345817960463).
## Solution
- Replaces `impl_reflect_struct` with the new `impl_reflect` which works
for tuple structs and enums too.
---
## Changelog
- Internally in `bevy_reflect_derive`, we have a new `ReflectProvenance`
type which is composed of `ReflectTraitToImpl` and `ReflectSource`.
- `impl_reflect_struct` is gone and totally superseded by
`impl_reflect`.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Revert the changes to type parameter bounds introduced in #9046,
improves the `#[reflect(where)]` attribute (also from #9046), and adds
the ability to opt out of field bounds.
This is based on suggestions by @soqb and discussion on
[Discord](https://discord.com/channels/691052431525675048/1002362493634629796/1201227833826103427).
## Solution
Reverts the changes to type parameter bounds when deriving `Reflect`,
introduced in #9046. This was originally done as a means of fixing a
recursion issue (#8965). However, as @soqb pointed out, we could achieve
the same result by simply making an opt-out attribute instead of messing
with the type parameter bounds.
This PR has four main changes:
1. Reverts the type parameter bounds from #9046
2. Includes `TypePath` as a default bound for active fields
3. Changes `#reflect(where)]` to be strictly additive
4. Adds `#reflect(no_field_bounds)]` to opt out of field bounds
Change 1 means that, like before, type parameters only receive at most
the `TypePath` bound (if `#[reflect(type_path = false)]` is not present)
and active fields receive the `Reflect` or `FromReflect` bound. And with
Change 2, they will also receive `TypePath` (since it's indirectly
required by `Typed` to construct `NamedField` and `UnnamedField`
instances).
Change 3 was made to make room for Change 4. By splitting out the
responsibility of `#reflect(where)]`, we can use it with or without
`#reflect(no_field_bounds)]` for various use cases.
For example, if we hadn't done this, the following would have failed:
```rust
// Since we're not using `#reflect(no_field_bounds)]`,
// `T::Assoc` is automatically given the required bounds
// of `FromReflect + TypePath`
#[derive(Reflect)]
#[reflect(where T::Assoc: OtherTrait)]
struct Foo<T: MyTrait> {
value: T::Assoc,
}
```
This provides more flexibility to the user while still letting them add
or remove most trait bounds.
And to solve the original recursion issue, we can do:
```rust
#[derive(Reflect)]
#[reflect(no_field_bounds)] // <-- Added
struct Foo {
foo: Vec<Foo>
}
```
#### Bounds
All in all, we now have four sets of trait bounds:
- `Self` gets the bounds `Any + Send + Sync`
- Type parameters get the bound `TypePath`. This can be opted out of
with `#[reflect(type_path = false)]`
- Active fields get the bounds `TypePath` and `FromReflect`/`Reflect`
bounds. This can be opted out of with `#reflect(no_field_bounds)]`
- Custom bounds can be added with `#[reflect(where)]`
---
## Changelog
- Revert some changes #9046
- `#reflect(where)]` is now strictly additive
- Added `#reflect(no_field_bounds)]` attribute to opt out of automatic
field trait bounds when deriving `Reflect`
- Made the `TypePath` requirement on fields when deriving `Reflect` more
explicit
## Migration Guide
> [!important]
> This PR shouldn't be a breaking change relative to the current version
of Bevy (v0.12). And since it removes the breaking parts of #9046, that
PR also won't need a migration guide.
# Objective
Currently, the `Capsule` primitive is technically dimension-agnostic in
that it implements both `Primitive2d` and `Primitive3d`. This seems good
on paper, but it can often be useful to have separate 2D and 3D versions
of primitives.
For example, one might want a two-dimensional capsule mesh. We can't
really implement both 2D and 3D meshing for the same type using the
upcoming `Meshable` trait (see #11431). We also currently don't
implement `Bounded2d` for `Capsule`, see
https://github.com/bevyengine/bevy/pull/11336#issuecomment-1890797788.
Having 2D and 3D separate at a type level is more explicit, and also
more consistent with the existing primitives, as there are no other
types that implement both `Primitive2d` and `Primitive3d` at the same
time.
## Solution
Rename `Capsule` to `Capsule3d` and add `Capsule2d`. `Capsule2d`
implements `Bounded2d`.
For now, I went for `Capsule2d` for the sake of consistency and clarity.
Mathematically the more accurate term would be `Stadium` or `Pill` (see
[Wikipedia](https://en.wikipedia.org/wiki/Stadium_(geometry))), but
those might be less obvious to game devs. For reference, Godot has
[`CapsuleShape2D`](https://docs.godotengine.org/en/stable/classes/class_capsuleshape2d.html).
I can rename it if others think the geometrically correct name is better
though.
---
## Changelog
- Renamed `Capsule` to `Capsule3d`
- Added `Capsule2d` with `Bounded2d` implemented
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Fixes#8965.
#### Background
For convenience and to ensure everything is setup properly, we
automatically add certain bounds to the derived types. The current
implementation does this by taking the types from all active fields and
adding them to the where-clause of the generated impls. I believe this
method was chosen because it won't add bounds to types that are
otherwise ignored.
```rust
#[derive(Reflect)]
struct Foo<T, U: SomeTrait, V> {
t: T,
u: U::Assoc,
#[reflect(ignore)]
v: [V; 2]
}
// Generates something like:
impl<T, U: SomeTrait, V> for Foo<T, U, V>
where
// Active:
T: Reflect,
U::Assoc: Reflect,
// Ignored:
[V; 2]: Send + Sync + Any
{
// ...
}
```
The self-referential type fails because it ends up using _itself_ as a
type bound due to being one of its own active fields.
```rust
#[derive(Reflect)]
struct Foo {
foo: Vec<Foo>
}
// Foo where Vec<Foo>: Reflect -> Vec<T> where T: Reflect -> Foo where Vec<Foo>: Reflect -> ...
```
## Solution
We can't simply parse all field types for the name of our type. That
would be both complex and prone to errors and false-positives. And even
if it wasn't, what would we replace the bound with?
Instead, I opted to go for a solution that only adds the bounds to what
really needs it: the type parameters. While the bounds on concrete types
make errors a bit cleaner, they aren't strictly necessary. This means we
can change our generated where-clause to only add bounds to generic type
parameters.
Doing this, though, returns us back to the problem of over-bounding
parameters that don't need to be bounded. To solve this, I added a new
container attribute (based on
[this](https://github.com/dtolnay/syn/issues/422#issuecomment-406882925)
comment and @nicopap's
[comment](https://github.com/bevyengine/bevy/pull/9046#issuecomment-1623593780))
that allows us to pass in a custom where clause to modify what bounds
are added to these type parameters.
This allows us to do stuff like:
```rust
trait Trait {
type Assoc;
}
// We don't need `T` to be reflectable since we only care about `T::Assoc`.
#[derive(Reflect)]
#[reflect(where T::Assoc: FromReflect)]
struct Foo<T: Trait>(T::Assoc);
#[derive(TypePath)]
struct Bar;
impl Trait for Bar {
type Assoc = usize;
}
#[derive(Reflect)]
struct Baz {
a: Foo<Bar>,
}
```
> **Note**
> I also
[tried](dc139ea34c)
allowing `#[reflect(ignore)]` to be used on the type parameters
themselves, but that proved problematic since the derive macro does not
consume the attribute. This is why I went with the container attribute
approach.
### Alternatives
One alternative could possibly be to just not add reflection bounds
automatically (i.e. only add required bounds like `Send`, `Sync`, `Any`,
and `TypePath`).
The downside here is we add more friction to using reflection, which
already comes with its own set of considerations. This is a potentially
viable option, but we really need to consider whether or not the
ergonomics hit is worth it.
If we did decide to go the more manual route, we should at least
consider something like #5772 to make it easier for users to add the
right bounds (although, this could still become tricky with
`FromReflect` also being automatically derived).
### Open Questions
1. Should we go with this approach or the manual alternative?
2. ~~Should we add a `skip_params` attribute to avoid the `T: 'static`
trick?~~ ~~Decided to go with `custom_where()` as it's the simplest~~
Scratch that, went with a normal where clause
3. ~~`custom_where` bikeshedding?~~ No longer needed since we are using
a normal where clause
### TODO
- [x] Add compile-fail tests
---
## Changelog
- Fixed issue preventing recursive types from deriving `Reflect`
- Changed how where-clause bounds are generated by the `Reflect` derive
macro
- They are now only applied to the type parameters, not to all active
fields
- Added `#[reflect(where T: Trait, U::Assoc: Trait, ...)]` container
attribute
## Migration Guide
When deriving `Reflect`, generic type params that do not need the
automatic reflection bounds (such as `Reflect`) applied to them will
need to opt-out using a custom where clause like: `#[reflect(where T:
Trait, U::Assoc: Trait, ...)]`.
The attribute can define custom bounds only used by the reflection
impls. To simply opt-out all the type params, we can pass in an empty
where clause: `#[reflect(where)]`.
```rust
// BEFORE:
#[derive(Reflect)]
struct Foo<T>(#[reflect(ignore)] T);
// AFTER:
#[derive(Reflect)]
#[reflect(where)]
struct Foo<T>(#[reflect(ignore)] T);
```
---------
Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
# Objective
- Implement common traits on primitives
## Solution
- Derive PartialEq on types that were missing it.
- Derive Copy on small types that were missing it.
- Derive Serialize/Deserialize if the feature on bevy_math is enabled.
- Add a lot of cursed stuff to the bevy_reflect `impls` module.
# Objective
- Address junk leftover by TypeUuid removal
## Solution
- Get rid of unused deps and imports
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
TypeUuid is deprecated, remove it.
## Migration Guide
Convert any uses of `#[derive(TypeUuid)]` with `#[derive(TypePath]` for
more complex uses see the relevant
[documentation](https://docs.rs/bevy/latest/bevy/prelude/trait.TypePath.html)
for more information.
---------
Co-authored-by: ebola <dev@axiomatic>
# Objective
- Extend reflection to the standard library's `Wrapping` and
`Saturating` generic types.
This wasn't my use-case but someone in the discord was surprised that
this wasn't already done. I decided to make a PR because the other
`std::num` items were reflected and if there's a reason to exclude
`Wrapping` and `Saturating`, I am unaware of it.
## Solution
Trivial fix
---
## Changelog
Implemented `Reflect` for `Wrapping<T>` and `Saturating<T>` from
`std::num`.
# Objective
- Tests are manually checking whether derived types implement certain
traits. (Specifically in `bevy_reflect.)
- #11182 introduces
[`static_assertions`](https://docs.rs/static_assertions/) to
automatically check this.
- Simplifies `Reflect` test in #11195.
- Closes#11196.
## Solution
- Add `static_assertions` and replace current tests.
---
I wasn't sure whether to remove the existing test or not. What do you
think?
# Objective
- Fix#11117 by implementing `Reflect` for `EntityHashMap`
## Solution
- By implementing `TypePath` for `EntityHash`, Bevy will automatically
implement `Reflect` for `EntityHashMap`
---
## Changelog
- `TypePath` is implemented for `EntityHash`
- A test called `entity_hashmap_should_impl_reflect` was created to
verify that #11117 was solved.
# Objective
There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.
## Solution
I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
Fix ci hang, so we can merge pr's again.
## Solution
- switch ppa action to use mesa stable versions
https://launchpad.net/~kisak/+archive/ubuntu/turtle
- use commit from #11123
---------
Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com>
# Objective
- Make the implementation order consistent between all sources to fit
the order in the trait.
## Solution
- Change the implementation order.
Matches versioning & features from other Cargo.toml files in the
project.
# Objective
Resolves#10932
## Solution
Added smallvec to the bevy_utils cargo.toml and added a line to
re-export the crate. Target version and features set to match what's
used in the other bevy crates.
# Objective
Printing `DynamicStruct` with a debug format does not show the contained
type anymore. For instance, in `examples/reflection/reflection.rs`,
adding `dbg!(&reflect_value);` to line 96 will print:
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(bevy_reflect::DynamicStruct {
a: 4,
nested: DynamicStruct(bevy_reflect::DynamicStruct {
b: 8,
}),
})
```
## Solution
Show the represented type instead (`reflection::Foo` and
`reflection::Bar` in this case):
```rust
[examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(reflection::Foo {
a: 4,
nested: DynamicStruct(reflection::Bar {
b: 8,
}),
})
```
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
The `generate_composite_uuid` utility function hidden in
`bevy_reflect::__macro_exports` could be generally useful to users.
For example, I previously relied on `Hash` to generate a `u64` to create
a deterministic `HandleId`. In v0.12, `HandleId` has been replaced by
`AssetId` which now requires a `Uuid`, which I could generate with this
function.
## Solution
Relocate `generate_composite_uuid` from `bevy_reflect::__macro_exports`
to `bevy_utils::uuid`.
It is still re-exported under `bevy_reflect::__macro_exports` so there
should not be any breaking changes (although, users should generally not
rely on pseudo-private/hidden modules like `__macro_exports`).
I chose to keep it in `bevy_reflect::__macro_exports` so as to not
clutter up our public API and to reduce the number of changes in this
PR. We could have also marked the export as `#[doc(hidden)]`, but
personally I like that we have a dedicated module for this (makes it
clear what is public and what isn't when just looking at the macro
code).
---
## Changelog
- Moved `generate_composite_uuid` to `bevy_utils::uuid` and made it
public
- Note: it was technically already public, just hidden
# Objective
- Fix#10499
## Solution
- Use `.get_represented_type_info()` module path and type ident instead
of `.reflect_*` module path and type ident when serializing the `Option`
enum
---
## Changelog
- Fix serialization bug
- Add simple test
- Add `serde_json` dev dependency
- Add `serde` with `derive` feature dev dependency (wouldn't compile for
me without it)
---------
Co-authored-by: hank <hank@hank.co.in>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
# Objective
Fixes#5101
Alternative to #6511
## Solution
Corrected the behavior for ignored fields in `FromReflect`, which was
previously using the incorrect field indexes.
Similarly, fields marked with `#[reflect(skip_serializing)]` no longer
break when using `FromReflect` after deserialization. This was done by
modifying `SerializationData` to store a function pointer that can later
be used to generate a default instance of the skipped field during
deserialization.
The function pointer points to a function generated by the derive macro
using the behavior designated by `#[reflect(default)]` (or just
`Default` if none provided). The entire output of the macro is now
wrapped in an [unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
which keeps this behavior hygienic.
#### Rationale
The biggest downside to this approach is that it requires fields marked
`#[reflect(skip_serializing)]` to provide the ability to create a
default instance— either via a `Default` impl or by specifying a custom
one. While this isn't great, I think it might be justified by the fact
that we really need to create this value when using `FromReflect` on a
deserialized object. And we need to do this _during_ deserialization
because after that (at least for tuples and tuple structs) we lose
information about which field is which: _"is the value at index 1 in
this `DynamicTupleStruct` the actual value for index 1 or is it really
the value for index 2 since index 1 is skippable...?"_
#### Alternatives
An alternative would be to store `Option<Box<dyn Reflect>>` within
`DynamicTuple` and `DynamicTupleStruct` instead of just `Box<dyn
Reflect>`. This would allow us to insert "empty"/"missing" fields during
deserialization, thus saving the positional information of the skipped
fields. However, this may require changing the API of `Tuple` and
`TupleStruct` such that they can account for their dynamic counterparts
returning `None` for a skipped field. In practice this would probably
mean exposing the `Option`-ness of the dynamics onto implementors via
methods like `Tuple::drain` or `TupleStruct::field`.
Personally, I think requiring `Default` would be better than muddying up
the API to account for these special cases. But I'm open to trying out
this other approach if the community feels that it's better.
---
## Changelog
### Public Changes
#### Fixed
- The behaviors of `#[reflect(ignore)]` and
`#[reflect(skip_serializing)]` are no longer dependent on field order
#### Changed
- Fields marked with `#[reflect(skip_serializing)]` now need to either
implement `Default` or specify a custom default function using
`#[reflect(default = "path::to::some_func")]`
- Deserializing a type with fields marked `#[reflect(skip_serializing)]`
will now include that field initialized to its specified default value
- `SerializationData::new` now takes the new `SkippedField` struct along
with the skipped field index
- Renamed `SerializationData::is_ignored_field` to
`SerializationData::is_field_skipped`
#### Added
- Added `SkippedField` struct
- Added methods `SerializationData::generate_default` and
`SerializationData::iter_skipped`
### Internal Changes
#### Changed
- Replaced `members_to_serialization_denylist` and `BitSet<u32>` with
`SerializationDataDef`
- The `Reflect` derive is more hygienic as it now outputs within an
[unnamed
constant](https://doc.rust-lang.org/stable/reference/items/constant-items.html#unnamed-constant)
- `StructField::index` has been split up into
`StructField::declaration_index` and `StructField::reflection_index`
#### Removed
- Removed `bitset` dependency
## Migration Guide
* Fields marked `#[reflect(skip_serializing)]` now must implement
`Default` or specify a custom default function with `#[reflect(default =
"path::to::some_func")]`
```rust
#[derive(Reflect)]
struct MyStruct {
#[reflect(skip_serializing)]
#[reflect(default = "get_foo_default")]
foo: Foo, // <- `Foo` does not impl `Default` so requires a custom
function
#[reflect(skip_serializing)]
bar: Bar, // <- `Bar` impls `Default`
}
#[derive(Reflect)]
struct Foo(i32);
#[derive(Reflect, Default)]
struct Bar(i32);
fn get_foo_default() -> Foo {
Foo(123)
}
```
* `SerializationData::new` has been changed to expect an iterator of
`(usize, SkippedField)` rather than one of just `usize`
```rust
// BEFORE
SerializationData::new([0, 3].into_iter());
// AFTER
SerializationData::new([
(0, SkippedField::new(field_0_default_fn)),
(3, SkippedField::new(field_3_default_fn)),
].into_iter());
```
* `Serialization::is_ignored_field` has been renamed to
`Serialization::is_field_skipped`
* Fields marked `#[reflect(skip_serializing)]` are now included in
deserialization output. This may affect logic that expected those fields
to be absent.