# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
1. UI texture slicing chops and scales an image to fit the size of a
node and isn't meant to place any constraints on the size of the node
itself, but because the required components changes required `ImageSize`
and `ContentSize` for nodes with `UiImage`, texture sliced nodes are
laid out using an `ImageMeasure`.
2. In 0.14 users could spawn a `(UiImage, NodeBundle)` which would
display an image stretched to fill the UI node's bounds ignoring the
image's instrinsic size. Now that `UiImage` requires `ContentSize`,
there's no option to display an image without its size placing
constrains on the UI layout (unless you force the `Node` to a fixed
size, but that's not a solution).
3. It's desirable that the `Sprite` and `UiImage` share similar APIs.
Fixes#16109
## Solution
* Remove the `Component` impl from `ImageScaleMode`.
* Add a `Stretch` variant to `ImageScaleMode`.
* Add a field `scale_mode: ImageScaleMode` to `Sprite`.
* Add a field `mode: UiImageMode` to `UiImage`.
* Add an enum `UiImageMode` similar to `ImageScaleMode` but with
additional UI specific variants.
* Remove the queries for `ImageScaleMode` from Sprite and UI extraction,
and refer to the new fields instead.
* Change `ui_layout_system` to update measure funcs on any change to
`ContentSize`s to enable manual clearing without removing the component.
* Don't add a measure unless `UiImageMode::Auto` is set in
`update_image_content_size_system`. Mutably deref the `Mut<ContentSize>`
if the `UiImage` is changed to force removal of any existing measure
func.
## Testing
Remove all the constraints from the ui_texture_slice example:
```rust
//! This example illustrates how to create buttons with their textures sliced
//! and kept in proportion instead of being stretched by the button dimensions
use bevy::{
color::palettes::css::{GOLD, ORANGE},
prelude::*,
winit::WinitSettings,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Only run the app when there is user input. This will significantly reduce CPU/GPU use.
.insert_resource(WinitSettings::desktop_app())
.add_systems(Startup, setup)
.add_systems(Update, button_system)
.run();
}
fn button_system(
mut interaction_query: Query<
(&Interaction, &Children, &mut UiImage),
(Changed<Interaction>, With<Button>),
>,
mut text_query: Query<&mut Text>,
) {
for (interaction, children, mut image) in &mut interaction_query {
let mut text = text_query.get_mut(children[0]).unwrap();
match *interaction {
Interaction::Pressed => {
**text = "Press".to_string();
image.color = GOLD.into();
}
Interaction::Hovered => {
**text = "Hover".to_string();
image.color = ORANGE.into();
}
Interaction::None => {
**text = "Button".to_string();
image.color = Color::WHITE;
}
}
}
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
let image = asset_server.load("textures/fantasy_ui_borders/panel-border-010.png");
let slicer = TextureSlicer {
border: BorderRect::square(22.0),
center_scale_mode: SliceScaleMode::Stretch,
sides_scale_mode: SliceScaleMode::Stretch,
max_corner_scale: 1.0,
};
// ui camera
commands.spawn(Camera2d);
commands
.spawn(Node {
width: Val::Percent(100.0),
height: Val::Percent(100.0),
align_items: AlignItems::Center,
justify_content: JustifyContent::Center,
..default()
})
.with_children(|parent| {
for [w, h] in [[150.0, 150.0], [300.0, 150.0], [150.0, 300.0]] {
parent
.spawn((
Button,
Node {
// width: Val::Px(w),
// height: Val::Px(h),
// horizontally center child text
justify_content: JustifyContent::Center,
// vertically center child text
align_items: AlignItems::Center,
margin: UiRect::all(Val::Px(20.0)),
..default()
},
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
))
.with_children(|parent| {
// parent.spawn((
// Text::new("Button"),
// TextFont {
// font: asset_server.load("fonts/FiraSans-Bold.ttf"),
// font_size: 33.0,
// ..default()
// },
// TextColor(Color::srgb(0.9, 0.9, 0.9)),
// ));
});
}
});
}
```
This should result in a blank window, since without any constraints the
texture slice image nodes should be zero-sized. But in main the image
nodes are given the size of the underlying unsliced source image
`textures/fantasy_ui_borders/panel-border-010.png`:
<img width="321" alt="slicing"
src="https://github.com/user-attachments/assets/cbd74c9c-14cd-4b4d-93c6-7c0152bb05ee">
For this PR need to change the lines:
```
UiImage::new(image.clone()),
ImageScaleMode::Sliced(slicer.clone()),
```
to
```
UiImage::new(image.clone()).with_mode(UiImageMode::Sliced(slicer.clone()),
```
and then nothing should be rendered, as desired.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- `MeshPickingBackend` and `SpritePickingBackend` do not have the
`Plugin` suffix
- `DefaultPickingPlugins` is masquerading as a `Plugin` when in reality
it should be a `PluginGroup`
- Fixes#16081.
## Solution
- Rename some structures:
|Original Name|New Name|
|-|-|
|`MeshPickingBackend`|`MeshPickingPlugin`|
|`MeshPickingBackendSettings`|`MeshPickingSettings`|
|`SpritePickingBackend`|`SpritePickingPlugin`|
|`UiPickingBackendPlugin`|`UiPickingPlugin`|
- Make `DefaultPickingPlugins` a `PluginGroup`.
- Because `DefaultPickingPlugins` is within the `DefaultPlugins` plugin
group, I also added support for nested plugin groups to the
`plugin_group!` macro.
## Testing
- I used ripgrep to ensure all references were properly renamed.
- For the `plugin_group!` macro, I used `cargo expand` to manually
inspect the expansion of `DefaultPlugins`.
---
## Migration Guide
> [!NOTE]
>
> All 3 of the changed structures were added after 0.14, so this does
not need to be included in the 0.14 to 0.15 migration guide.
- `MeshPickingBackend` is now named `MeshPickingPlugin`.
- `MeshPickingBackendSettings` is now named `MeshPickingSettings`.
- `SpritePickingBackend` is now named `SpritePickingPlugin`.
- `UiPickingBackendPlugin` is now named `UiPickingPlugin`.
- `DefaultPickingPlugins` is now a a `PluginGroup` instead of a
`Plugin`.
# Objective
Bevy seems to want to standardize on "American English" spellings. Not
sure if this is laid out anywhere in writing, but see also #15947.
While perusing the docs for `typos`, I noticed that it has a `locale`
config option and tried it out.
## Solution
Switch to `en-us` locale in the `typos` config and run `typos -w`
## Migration Guide
The following methods or fields have been renamed from `*dependants*` to
`*dependents*`.
- `ProcessorAssetInfo::dependants`
- `ProcessorAssetInfos::add_dependant`
- `ProcessorAssetInfos::non_existent_dependants`
- `AssetInfo::dependants_waiting_on_load`
- `AssetInfo::dependants_waiting_on_recursive_dep_load`
- `AssetInfos::loader_dependants`
- `AssetInfos::remove_dependants_and_labels`
# Objective
Closes#15799.
Many rendering people and maintainers are in favor of reverting default
mesh materials added in #15524, especially as the migration to required
component is already large and heavily breaking.
## Solution
Revert default mesh materials, and adjust docs accordingly.
- Remove `extract_default_materials`
- Remove `clear_material_instances`, and move the logic back into
`extract_mesh_materials`
- Remove `HasMaterial2d` and `HasMaterial3d`
- Change default material handles back to pink instead of white
- 2D uses `Color::srgb(1.0, 0.0, 1.0)`, while 3D uses `Color::srgb(1.0,
0.0, 0.5)`. Not sure if this is intended.
There is now no indication at all about missing materials for `Mesh2d`
and `Mesh3d`. Having a mesh without a material renders nothing.
## Testing
I ran `2d_shapes`, `mesh2d_manual`, and `3d_shapes`, with and without
mesh material components.
# Objective
#15320 is a particularly painful breaking change, and the new
`RenderEntity` in particular is very noisy, with a lot of `let entity =
entity.id()` spam.
## Solution
Implement `WorldQuery`, `QueryData` and `ReadOnlyQueryData` for
`RenderEntity` and `WorldEntity`.
These work the same as the `Entity` impls from a user-facing
perspective: they simply return an owned (copied) `Entity` identifier.
This dramatically reduces noise and eases migration.
Under the hood, these impls defer to the implementations for `&T` for
everything other than the "call .id() for the user" bit, as they involve
read-only access to component data. Doing it this way (as opposed to
implementing a custom fetch, as tried in the first commit) dramatically
reduces the maintenance risk of complex unsafe code outside of
`bevy_ecs`.
To make this easier (and encourage users to do this themselves!), I've
made `ReadFetch` and `WriteFetch` slightly more public: they're no
longer `doc(hidden)`. This is a good change, since trying to vendor the
logic is much worse than just deferring to the existing tested impls.
## Testing
I've run a handful of rendering examples (breakout, alien_cake_addict,
auto_exposure, fog_volumes, box_shadow) and nothing broke.
## Follow-up
We should lint for the uses of `&RenderEntity` and `&MainEntity` in
queries: this is just less nice for no reason.
---------
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
- We don't have to `collect` and `sort` invisible sprites in
`sprite_picking` system.
## Solution
- Filter by `ViewVisibility::get()` earlier
## Testing
- `sprite_picking` example still works.
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
# Objective
- Closes#15716
- Closes#15718
## Solution
- Replace `Handle<MeshletMesh>` with a new `MeshletMesh3d` component
- As expected there were some random things that needed fixing:
- A couple tests were storing handles just to prevent them from being
dropped I believe, which seems to have been unnecessary in some.
- The `SpriteBundle` still had a `Handle<Image>` field. I've removed
this.
- Tests in `bevy_sprite` incorrectly added a `Handle<Image>` field
outside of the `Sprite` component.
- A few examples were still inserting `Handle`s, switched those to their
corresponding wrappers.
- 2 examples that were still querying for `Handle<Image>` were changed
to query `Sprite`
## Testing
- I've verified that the changed example work now
## Migration Guide
`Handle` can no longer be used as a `Component`. All existing Bevy types
using this pattern have been wrapped in their own semantically
meaningful type. You should do the same for any custom `Handle`
components your project needs.
The `Handle<MeshletMesh>` component is now `MeshletMesh3d`.
The `WithMeshletMesh` type alias has been removed. Use
`With<MeshletMesh3d>` instead.
In order to create texture atlases from other systems (custom game
solutions) that are compatible with the ones generated by the bevy
builders, it would be nice to have the interface be fully public. This
field is pub(crate). Unless there's a good reason, can we promote this
to pub?
Alternatives:
- Don't do it.
# Objective
Continue migration of bevy APIs to required components, following
guidance of https://hackmd.io/@bevy/required_components/
## Solution
- Make `Sprite` require `Transform` and `Visibility` and
`SyncToRenderWorld`
- move image and texture atlas handles into `Sprite`
- deprecate `SpriteBundle`
- remove engine uses of `SpriteBundle`
## Testing
ran cargo tests on bevy_sprite and tested several sprite examples.
---
## Migration Guide
Replace all uses of `SpriteBundle` with `Sprite`. There are several new
convenience constructors: `Sprite::from_image`,
`Sprite::from_atlas_image`, `Sprite::from_color`.
WARNING: use of `Handle<Image>` and `TextureAtlas` as components on
sprite entities will NO LONGER WORK. Use the fields on `Sprite` instead.
I would have removed the `Component` impls from `TextureAtlas` and
`Handle<Image>` except it is still used within ui. We should fix this
moving forward with the migration.
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
- Rename `Pickable` to `PickingBehavior` to counter the easily-made
assumption that the component is required. It is optional
- Fix and clarify documentation
- The docs in `crates/bevy_ui/src/picking_backend.rs` were incorrect
about the necessity of `Pickable`
- Plus two minor code quality changes in this commit
(7c2e75f48d)
Closes#15632
# Objective
- bevy_render is gargantuan
## Solution
- Split out bevy_mesh
## Testing
- Ran some examples, everything looks fine
## Migration Guide
`bevy_render::mesh::morph::inherit_weights` is now
`bevy_render::mesh::inherit_weights`
if you were using `Mesh::compute_aabb`, you will need to `use
bevy_render::mesh::MeshAabb;` now
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:
![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)
![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)
Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
Mostly covers the first point in
https://github.com/bevyengine/bevy/issues/13713#issuecomment-2364786694
The idea here is that a lot of people want to load their own texture
atlases, and many of them do this by deserializing some custom version
of `TextureAtlasLayout`. This makes that a little easier by providing
`serde` impls for them.
## Solution
In order to make `TextureAtlasLayout` serializable, the custom texture
mappings that are added by `TextureAtlasBuilder` were separated into
their own type, `TextureAtlasSources`. The inner fields are made public
so people can create their own version of this type, although because it
embeds asset IDs, it's not as easily serializable. In particular,
atlases that are loaded directly (e.g. sprite sheets) will not have a
copy of this map, and so, don't need to construct it at all.
As an aside, since this is the very first thing in `bevy_sprite` with
`serde` impls, I've added a `serialize` feature to the crate and made
sure it gets activated when the `serialize` feature is enabled on the
parent `bevy` crate.
## Testing
I was kind of shocked that there isn't anywhere in the code besides a
single example that actually used this functionality, so, it was
relatively straightforward to do.
In #13713, among other places, folks have mentioned adding custom
serialization into their pipelines. It would be nice to hear from people
whether this change matches what they're doing in their code, and if
it's relatively seamless to adapt to. I suspect that the answer is yes,
but, that's mainly the only other kind of testing that can be added.
## Migration Guide
`TextureAtlasBuilder` no longer stores a mapping back to the original
images in `TextureAtlasLayout`; that functionality has been added to a
new struct, `TextureAtlasSources`, instead. This also means that the
signature for `TextureAtlasBuilder::finish` has changed, meaning that
calls of the form:
```rust
let (atlas_layout, image) = builder.build()?;
```
Will now change to the form:
```rust
let (atlas_layout, atlas_sources, image) = builder.build()?;
```
And instead of performing a reverse-lookup from the layout, like so:
```rust
let atlas_layout_handle = texture_atlases.add(atlas_layout.clone());
let index = atlas_layout.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout_handle,
index,
};
```
You can perform the lookup from the sources instead:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let index = atlas_sources.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout,
index,
};
```
Additionally, `TextureAtlasSources` also has a convenience method,
`handle`, which directly combines the index and an existing
`TextureAtlasLayout` handle into a new `TextureAtlas`:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let handle = atlas_sources.handle(atlas_layout, &my_handle);
```
## Extra notes
In the future, it might make sense to combine the three types returned
by `TextureAtlasBuilder` into their own struct, just so that people
don't need to assign variable names to all three parts. In particular,
when creating a version that can be loaded directly (like #11873), we
could probably use this new type.
# Objective
- Fix panic when atlas index is out of bounds
- Took the chance to clean it up a bit
## Solution
- Use texture dimensions like rendering pipeline. Dropped atlas layouts
and indexes out of bounds are shown as a sprite.
## Testing
Used sprite_picking example, drop layout and/or use indexes out of
bounds.
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Fixes#15142
## Solution
* Moved all the UI border geometry calculations that were scattered
through the UI extraction functions into `ui_layout_system`.
* Added a `border: BorderRect` field to `Node` to store the border size
computed by `ui_layout_system`.
* Use the border values returned from Taffy rather than calculate them
ourselves during extraction.
* Removed the `logical_rect` and `physical_rect` methods from `Node` the
descriptions and namings are deceptive, it's better to create the rects
manually instead.
* Added a method `outline_radius` to `Node` that calculates the border
radius of outlines.
* For border values `ExtractedUiNode` takes `BorderRect` and
`ResolvedBorderRadius` now instead of raw `[f32; 4]` values and converts
them in `prepare_uinodes`.
* Removed some unnecessary scaling and clamping of border values
(#15142).
* Added a `BorderRect::ZERO` constant.
* Added an `outlined_node_size` method to `Node`.
## Testing
Added some non-uniform borders to the border example. Everything seems
to be in order:
<img width="626" alt="nub"
src="https://github.com/user-attachments/assets/258ed8b5-1a9e-4ac5-99c2-6bf25c0ef31c">
## Migration Guide
The `logical_rect` and `physical_rect` methods have been removed from
`Node`. Use `Rect::from_center_size` with the translation and node size
instead.
The types of the fields border and border_radius of `ExtractedUiNode`
have been changed to `BorderRect` and `ResolvedBorderRadius`
respectively.
---------
Co-authored-by: UkoeHB <37489173+UkoeHB@users.noreply.github.com>
Co-authored-by: akimakinai <105044389+akimakinai@users.noreply.github.com>
# Objective
Fixes#15306
## Solution
- Add feature gate on the module and the place where each one is used
- Declare the features and make them default
## Testing
- CI
# Objective
> Rust 1.81 released the #[expect(...)] attribute, which works like
#[allow(...)] but throws a warning if the lint isn't raised. This is
preferred to #[allow(...)] because it tells us when it can be removed.
- Adopts the parts of #15118 that are complete, and updates the branch
so it can be merged.
- There were a few conflicts, let me know if I misjudged any of 'em.
Alice's
[recommendation](https://github.com/bevyengine/bevy/issues/15059#issuecomment-2349263900)
seems well-taken, let's do this crate by crate now that @BD103 has done
the lion's share of this!
(Relates to, but doesn't yet completely finish #15059.)
Crates this _doesn't_ cover:
- bevy_input
- bevy_gilrs
- bevy_window
- bevy_winit
- bevy_state
- bevy_render
- bevy_picking
- bevy_core_pipeline
- bevy_sprite
- bevy_text
- bevy_pbr
- bevy_ui
- bevy_gltf
- bevy_gizmos
- bevy_dev_tools
- bevy_internal
- bevy_dylib
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Ben Frankel <ben.frankel7@gmail.com>
Co-authored-by: Antony <antony.m.3012@gmail.com>
# Objective
Fixes#15258
## Solution
If my understanding is correct, sprites with NaN anywhere in their
transform won't even get onto the screen, so should not generate pick
events. This PR filters sprites with NaN in their transforms before
sorting by depth, then uses `FloatOrd` to simplify the comparison. Since
we're guaranteed to not have NaN values, it's technically unnecessary,
and we could instead sort with `a.partial_cmp(&b).unwrap()`, or even
`unwrap_unchecked()`.
## Testing
I ran the picking example to ensure Z sorting was working as intended.
# Objective
- Crate-level prelude modules, such as `bevy_ecs::prelude`, are plagued
with inconsistency! Let's fix it!
## Solution
Format all preludes based on the following rules:
1. All preludes should have brief documentation in the format of:
> The _name_ prelude.
>
> This includes the most common types in this crate, re-exported for
your convenience.
2. All documentation should be outer, not inner. (`///` instead of
`//!`.)
3. No prelude modules should be annotated with `#[doc(hidden)]`. (Items
within them may, though I'm not sure why this was done.)
## Testing
- I manually searched for the term `mod prelude` and updated all
occurrences by hand. 🫠
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/14593.
## Solution
- Add `ViewportConversionError` and return it from viewport conversion
methods on Camera.
## Testing
- I successfully compiled and ran all changed examples.
## Migration Guide
The following methods on `Camera` now return a `Result` instead of an
`Option` so that they can provide more information about failures:
- `world_to_viewport`
- `world_to_viewport_with_depth`
- `viewport_to_world`
- `viewport_to_world_2d`
Call `.ok()` on the `Result` to turn it back into an `Option`, or handle
the `Result` directly.
---------
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
# Objective
Add `bevy_picking` sprite backend as part of the `bevy_mod_picking`
upstreamening (#12365).
## Solution
More or less a copy/paste from `bevy_mod_picking`, with the changes
[here](https://github.com/aevyrie/bevy_mod_picking/pull/354). I'm
putting that link here since those changes haven't yet made it through
review, so should probably be reviewed on their own.
## Testing
I couldn't find any sprite-backend-specific tests in `bevy_mod_picking`
and unfortunately I'm not familiar enough with Bevy's testing patterns
to write tests for code that relies on windowing and input. I'm willing
to break the pointer hit system into testable blocks and add some more
modular tests if that's deemed important enough to block, otherwise I
can open an issue for adding tests as follow-up.
## Follow-up work
- More docs/tests
- Ignore pick events on transparent sprite pixels with potential opt-out
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
Adding more features to `AsBindGroup` proc macro means making the trait
arguments uglier. Downstream implementors of the trait without the proc
macro might want to do different things than our default arguments.
## Solution
Make `AsBindGroup` take an associated `Param` type.
## Migration Guide
`AsBindGroup` now allows the user to specify a `SystemParam` to be used
for creating bind groups.
# Objective
add a quick shorthand for creating a sprite with an custom size. This is
often desired when working with custom units or scaled sprites and
allows for a cleaner syntax in those cases/
## Solution
Implemented a `sized` function on the Sprite struct which creates a
Sprite, sets the custom size and leaves the rest at their default values
---
## Changelog
- Added `Sprite::sized(custom_size: Vec2)`
# Objective
currently if we use an image with the wrong sampler type in a material,
wgpu panics with an invalid texture format. turn this into a warning and
fail more gracefully.
## Solution
the expected sampler type is specified in the AsBindGroup derive, so we
can just check the image sampler is what it should be.
i am not totally sure about the mapping of image sampler type to
#[sampler(type)], i assumed:
```
"filtering" => [ TextureSampleType::Float { filterable: true } ],
"non_filtering" => [
TextureSampleType::Float { filterable: false },
TextureSampleType::Sint,
TextureSampleType::Uint,
],
"comparison" => [ TextureSampleType::Depth ],
```
# Objective
- Bevy now supports an opaque phase for mesh2d, but it's very common for
2d textures to have a transparent alpha channel.
## Solution
- Add an alpha mask phase identical to the one in 3d. It will do the
alpha masking in the shader before drawing the mesh.
- Uses the BinnedRenderPhase
- Since it's an opaque draw it also correctly writes to depth
## Testing
- Tested the mes2d_alpha_mode example and the bevymark example with
alpha mask mode enabled
---
## Showcase
![image](https://github.com/user-attachments/assets/9e5e4561-d0a7-4aa3-b049-d4b1247d5ed4)
The white logo on the right is rendered with alpha mask enabled.
Running the bevymark example I can get 65fps for 120k mesh2d all using
alpha mask.
## Notes
This is one more step for mesh2d improvements
https://github.com/bevyengine/bevy/issues/13265
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
- Wireframe plugins have inconsistencies between 3D and 2D versions.
This PR addresses the following
- 2d version uses `Srgba` for colors, 3d version uses `Color`.
## Solution
- This PR brings consistency by doing the following change
- `Wireframe2d` now uses `Color` instead of `Srgba`
## Testing
- `wireframe_2d` and `wireframe` examples were verified and they work as
before.
---
## Migration Guide
- `Wireframe2dConfig`.`default_color` type is now `Color` instead of
`Srgba`. Use `.into()` to convert between them.
- `Wireframe2dColor`.`color` type is now `Color` instead of `Srgba`. Use
`.into()` to convert between them.
Based on top of #12982 and #13069
# Objective
- Opaque2d was implemented with SortedRenderPhase but BinnedRenderPhase
should be much faster
## Solution
- Implement BinnedRenderPhase for Opaque2d
## Notes
While testing this PR, before the change I had ~14 fps in bevymark with
100k entities. After this change I get ~71 fps, compared to using
sprites where I only get ~63 fps. This means that after this PR mesh2d
with opaque meshes will be faster than the sprite path. This is not a 1
to 1 comparison since sprites do alpha blending.
This PR is based on top of #12982
# Objective
- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer
## Solution
- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly
## Testing
I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.
---
## Changelog
- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component
## Migration Guide
- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`
## Follow up PRs
- See tracking issue: #13265
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
# Objective
- Fix issue #2611
## Solution
- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes#3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.
---
## Changelog
- The source code viewer on docs.rs now includes links to the
definitions.
# Objective
- Before this fix, the view query in `prepare_mesh2d_view_bind_groups`
matched all views – leading to 2D view bind groups being prepared for 3D
cameras.
## Solution
- Added `With<Camera2d>` to the views query.
## Testing
- Verified the examples still work.
# Objective
- It's possible to have errors in a draw command, but these errors are
ignored
## Solution
- Return a result with the error
## Changelog
Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`
## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.
This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.
---------
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>