bevy/crates/bevy_app/src/app.rs

930 lines
31 KiB
Rust
Raw Normal View History

Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
use crate::{
CoreStage, Events, Plugin, PluginGroup, PluginGroupBuilder, StartupSchedule, StartupStage,
};
2021-11-22 23:16:36 +00:00
pub use bevy_derive::AppLabel;
Bevy ECS V2 (#1525) # Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor::new::<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
use bevy_ecs::{
prelude::{FromWorld, IntoExclusiveSystem},
schedule::{
IntoSystemDescriptor, RunOnce, Schedule, Stage, StageLabel, State, StateData, SystemSet,
SystemStage,
},
system::Resource,
Bevy ECS V2 (#1525) # Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor::new::<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
world::World,
};
use bevy_utils::{tracing::debug, HashMap};
use std::fmt::Debug;
#[cfg(feature = "trace")]
2020-11-13 01:23:57 +00:00
use bevy_utils::tracing::info_span;
bevy_utils::define_label!(AppLabel);
#[allow(clippy::needless_doctest_main)]
/// Containers of app logic and data
///
/// Bundles together the necessary elements, like [`World`] and [`Schedule`], to create
/// an ECS-based application. It also stores a pointer to a
/// [runner function](Self::set_runner). The runner is responsible for managing the application's
/// event loop and applying the [`Schedule`] to the [`World`] to drive application logic.
/// Apps are constructed with the builder pattern.
///
/// ## Example
/// Here is a simple "Hello World" Bevy app:
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
///
/// fn main() {
/// App::new()
/// .add_system(hello_world_system)
/// .run();
/// }
///
/// fn hello_world_system() {
/// println!("hello world");
/// }
/// ```
2020-04-06 03:19:02 +00:00
pub struct App {
/// The main ECS [`World`] of the [`App`].
/// This stores and provides access to all the main data of the application.
/// The systems of the [`App`] will run using this [`World`].
/// If additional separate [`World`]-[`Schedule`] pairs are needed, you can use [`sub_app`][App::add_sub_app]s.
2020-04-06 03:19:02 +00:00
pub world: World,
/// The [runner function](Self::set_runner) is primarily responsible for managing
/// the application's event loop and advancing the [`Schedule`].
/// Typically, it is not configured manually, but set by one of Bevy's built-in plugins.
/// See `bevy::winit::WinitPlugin` and [`ScheduleRunnerPlugin`](crate::schedule_runner::ScheduleRunnerPlugin).
pub runner: Box<dyn Fn(App)>,
/// A container of [`Stage`]s set to be run in a linear order.
2020-07-10 04:18:35 +00:00
pub schedule: Schedule,
sub_apps: HashMap<Box<dyn AppLabel>, SubApp>,
2021-04-11 20:13:07 +00:00
}
/// Each [`SubApp`] has its own [`Schedule`] and [`World`], enabling a separation of concerns.
2021-04-11 20:13:07 +00:00
struct SubApp {
app: App,
runner: Box<dyn Fn(&mut World, &mut App)>,
2020-04-06 03:19:02 +00:00
}
impl Default for App {
fn default() -> Self {
let mut app = App::empty();
#[cfg(feature = "bevy_reflect")]
app.init_resource::<bevy_reflect::TypeRegistryArc>();
app.add_default_stages()
.add_event::<AppExit>()
.add_system_to_stage(CoreStage::Last, World::clear_trackers.exclusive_system());
#[cfg(feature = "bevy_ci_testing")]
{
crate::ci_testing::setup_app(&mut app);
}
app
}
}
2020-04-06 03:19:02 +00:00
impl App {
/// Creates a new [`App`] with some default structure to enable core engine features.
/// This is the preferred constructor for most use cases.
pub fn new() -> App {
App::default()
}
/// Creates a new empty [`App`] with minimal default configuration.
///
/// This constructor should be used if you wish to provide a custom schedule, exit handling, cleanup, etc.
pub fn empty() -> App {
Self {
world: Default::default(),
schedule: Default::default(),
runner: Box::new(run_once),
sub_apps: HashMap::default(),
}
2020-04-06 03:19:02 +00:00
}
/// Advances the execution of the [`Schedule`] by one cycle.
///
/// This method also updates sub apps. See [`add_sub_app`](Self::add_sub_app) for more details.
///
/// See [`Schedule::run_once`] for more details.
2020-04-06 03:19:02 +00:00
pub fn update(&mut self) {
#[cfg(feature = "trace")]
let bevy_frame_update_span = info_span!("frame");
#[cfg(feature = "trace")]
let _bevy_frame_update_guard = bevy_frame_update_span.enter();
Bevy ECS V2 (#1525) # Bevy ECS V2 This is a rewrite of Bevy ECS (basically everything but the new executor/schedule, which are already awesome). The overall goal was to improve the performance and versatility of Bevy ECS. Here is a quick bulleted list of changes before we dive into the details: * Complete World rewrite * Multiple component storage types: * Tables: fast cache friendly iteration, slower add/removes (previously called Archetypes) * Sparse Sets: fast add/remove, slower iteration * Stateful Queries (caches query results for faster iteration. fragmented iteration is _fast_ now) * Stateful System Params (caches expensive operations. inspired by @DJMcNab's work in #1364) * Configurable System Params (users can set configuration when they construct their systems. once again inspired by @DJMcNab's work) * Archetypes are now "just metadata", component storage is separate * Archetype Graph (for faster archetype changes) * Component Metadata * Configure component storage type * Retrieve information about component size/type/name/layout/send-ness/etc * Components are uniquely identified by a densely packed ComponentId * TypeIds are now totally optional (which should make implementing scripting easier) * Super fast "for_each" query iterators * Merged Resources into World. Resources are now just a special type of component * EntityRef/EntityMut builder apis (more efficient and more ergonomic) * Fast bitset-backed `Access<T>` replaces old hashmap-based approach everywhere * Query conflicts are determined by component access instead of archetype component access (to avoid random failures at runtime) * With/Without are still taken into account for conflicts, so this should still be comfy to use * Much simpler `IntoSystem` impl * Significantly reduced the amount of hashing throughout the ecs in favor of Sparse Sets (indexed by densely packed ArchetypeId, ComponentId, BundleId, and TableId) * Safety Improvements * Entity reservation uses a normal world reference instead of unsafe transmute * QuerySets no longer transmute lifetimes * Made traits "unsafe" where relevant * More thorough safety docs * WorldCell * Exposes safe mutable access to multiple resources at a time in a World * Replaced "catch all" `System::update_archetypes(world: &World)` with `System::new_archetype(archetype: &Archetype)` * Simpler Bundle implementation * Replaced slow "remove_bundle_one_by_one" used as fallback for Commands::remove_bundle with fast "remove_bundle_intersection" * Removed `Mut<T>` query impl. it is better to only support one way: `&mut T` * Removed with() from `Flags<T>` in favor of `Option<Flags<T>>`, which allows querying for flags to be "filtered" by default * Components now have is_send property (currently only resources support non-send) * More granular module organization * New `RemovedComponents<T>` SystemParam that replaces `query.removed::<T>()` * `world.resource_scope()` for mutable access to resources and world at the same time * WorldQuery and QueryFilter traits unified. FilterFetch trait added to enable "short circuit" filtering. Auto impled for cases that don't need it * Significantly slimmed down SystemState in favor of individual SystemParam state * System Commands changed from `commands: &mut Commands` back to `mut commands: Commands` (to allow Commands to have a World reference) Fixes #1320 ## `World` Rewrite This is a from-scratch rewrite of `World` that fills the niche that `hecs` used to. Yes, this means Bevy ECS is no longer a "fork" of hecs. We're going out our own! (the only shared code between the projects is the entity id allocator, which is already basically ideal) A huge shout out to @SanderMertens (author of [flecs](https://github.com/SanderMertens/flecs)) for sharing some great ideas with me (specifically hybrid ecs storage and archetype graphs). He also helped advise on a number of implementation details. ## Component Storage (The Problem) Two ECS storage paradigms have gained a lot of traction over the years: * **Archetypal ECS**: * Stores components in "tables" with static schemas. Each "column" stores components of a given type. Each "row" is an entity. * Each "archetype" has its own table. Adding/removing an entity's component changes the archetype. * Enables super-fast Query iteration due to its cache-friendly data layout * Comes at the cost of more expensive add/remove operations for an Entity's components, because all components need to be copied to the new archetype's "table" * **Sparse Set ECS**: * Stores components of the same type in densely packed arrays, which are sparsely indexed by densely packed unsigned integers (Entity ids) * Query iteration is slower than Archetypal ECS because each entity's component could be at any position in the sparse set. This "random access" pattern isn't cache friendly. Additionally, there is an extra layer of indirection because you must first map the entity id to an index in the component array. * Adding/removing components is a cheap, constant time operation Bevy ECS V1, hecs, legion, flec, and Unity DOTS are all "archetypal ecs-es". I personally think "archetypal" storage is a good default for game engines. An entity's archetype doesn't need to change frequently in general, and it creates "fast by default" query iteration (which is a much more common operation). It is also "self optimizing". Users don't need to think about optimizing component layouts for iteration performance. It "just works" without any extra boilerplate. Shipyard and EnTT are "sparse set ecs-es". They employ "packing" as a way to work around the "suboptimal by default" iteration performance for specific sets of components. This helps, but I didn't think this was a good choice for a general purpose engine like Bevy because: 1. "packs" conflict with each other. If bevy decides to internally pack the Transform and GlobalTransform components, users are then blocked if they want to pack some custom component with Transform. 2. users need to take manual action to optimize Developers selecting an ECS framework are stuck with a hard choice. Select an "archetypal" framework with "fast iteration everywhere" but without the ability to cheaply add/remove components, or select a "sparse set" framework to cheaply add/remove components but with slower iteration performance. ## Hybrid Component Storage (The Solution) In Bevy ECS V2, we get to have our cake and eat it too. It now has _both_ of the component storage types above (and more can be added later if needed): * **Tables** (aka "archetypal" storage) * The default storage. If you don't configure anything, this is what you get * Fast iteration by default * Slower add/remove operations * **Sparse Sets** * Opt-in * Slower iteration * Faster add/remove operations These storage types complement each other perfectly. By default Query iteration is fast. If developers know that they want to add/remove a component at high frequencies, they can set the storage to "sparse set": ```rust world.register_component( ComponentDescriptor::new::<MyComponent>(StorageType::SparseSet) ).unwrap(); ``` ## Archetypes Archetypes are now "just metadata" ... they no longer store components directly. They do store: * The `ComponentId`s of each of the Archetype's components (and that component's storage type) * Archetypes are uniquely defined by their component layouts * For example: entities with "table" components `[A, B, C]` _and_ "sparse set" components `[D, E]` will always be in the same archetype. * The `TableId` associated with the archetype * For now each archetype has exactly one table (which can have no components), * There is a 1->Many relationship from Tables->Archetypes. A given table could have any number of archetype components stored in it: * Ex: an entity with "table storage" components `[A, B, C]` and "sparse set" components `[D, E]` will share the same `[A, B, C]` table as an entity with `[A, B, C]` table component and `[F]` sparse set components. * This 1->Many relationship is how we preserve fast "cache friendly" iteration performance when possible (more on this later) * A list of entities that are in the archetype and the row id of the table they are in * ArchetypeComponentIds * unique densely packed identifiers for (ArchetypeId, ComponentId) pairs * used by the schedule executor for cheap system access control * "Archetype Graph Edges" (see the next section) ## The "Archetype Graph" Archetype changes in Bevy (and a number of other archetypal ecs-es) have historically been expensive to compute. First, you need to allocate a new vector of the entity's current component ids, add or remove components based on the operation performed, sort it (to ensure it is order-independent), then hash it to find the archetype (if it exists). And thats all before we get to the _already_ expensive full copy of all components to the new table storage. The solution is to build a "graph" of archetypes to cache these results. @SanderMertens first exposed me to the idea (and he got it from @gjroelofs, who came up with it). They propose adding directed edges between archetypes for add/remove component operations. If `ComponentId`s are densely packed, you can use sparse sets to cheaply jump between archetypes. Bevy takes this one step further by using add/remove `Bundle` edges instead of `Component` edges. Bevy encourages the use of `Bundles` to group add/remove operations. This is largely for "clearer game logic" reasons, but it also helps cut down on the number of archetype changes required. `Bundles` now also have densely-packed `BundleId`s. This allows us to use a _single_ edge for each bundle operation (rather than needing to traverse N edges ... one for each component). Single component operations are also bundles, so this is strictly an improvement over a "component only" graph. As a result, an operation that used to be _heavy_ (both for allocations and compute) is now two dirt-cheap array lookups and zero allocations. ## Stateful Queries World queries are now stateful. This allows us to: 1. Cache archetype (and table) matches * This resolves another issue with (naive) archetypal ECS: query performance getting worse as the number of archetypes goes up (and fragmentation occurs). 2. Cache Fetch and Filter state * The expensive parts of fetch/filter operations (such as hashing the TypeId to find the ComponentId) now only happen once when the Query is first constructed 3. Incrementally build up state * When new archetypes are added, we only process the new archetypes (no need to rebuild state for old archetypes) As a result, the direct `World` query api now looks like this: ```rust let mut query = world.query::<(&A, &mut B)>(); for (a, mut b) in query.iter_mut(&mut world) { } ``` Requiring `World` to generate stateful queries (rather than letting the `QueryState` type be constructed separately) allows us to ensure that _all_ queries are properly initialized (and the relevant world state, such as ComponentIds). This enables QueryState to remove branches from its operations that check for initialization status (and also enables query.iter() to take an immutable world reference because it doesn't need to initialize anything in world). However in systems, this is a non-breaking change. State management is done internally by the relevant SystemParam. ## Stateful SystemParams Like Queries, `SystemParams` now also cache state. For example, `Query` system params store the "stateful query" state mentioned above. Commands store their internal `CommandQueue`. This means you can now safely use as many separate `Commands` parameters in your system as you want. `Local<T>` system params store their `T` value in their state (instead of in Resources). SystemParam state also enabled a significant slim-down of SystemState. It is much nicer to look at now. Per-SystemParam state naturally insulates us from an "aliased mut" class of errors we have hit in the past (ex: using multiple `Commands` system params). (credit goes to @DJMcNab for the initial idea and draft pr here #1364) ## Configurable SystemParams @DJMcNab also had the great idea to make SystemParams configurable. This allows users to provide some initial configuration / values for system parameters (when possible). Most SystemParams have no config (the config type is `()`), but the `Local<T>` param now supports user-provided parameters: ```rust fn foo(value: Local<usize>) { } app.add_system(foo.system().config(|c| c.0 = Some(10))); ``` ## Uber Fast "for_each" Query Iterators Developers now have the choice to use a fast "for_each" iterator, which yields ~1.5-3x iteration speed improvements for "fragmented iteration", and minor ~1.2x iteration speed improvements for unfragmented iteration. ```rust fn system(query: Query<(&A, &mut B)>) { // you now have the option to do this for a speed boost query.for_each_mut(|(a, mut b)| { }); // however normal iterators are still available for (a, mut b) in query.iter_mut() { } } ``` I think in most cases we should continue to encourage "normal" iterators as they are more flexible and more "rust idiomatic". But when that extra "oomf" is needed, it makes sense to use `for_each`. We should also consider using `for_each` for internal bevy systems to give our users a nice speed boost (but that should be a separate pr). ## Component Metadata `World` now has a `Components` collection, which is accessible via `world.components()`. This stores mappings from `ComponentId` to `ComponentInfo`, as well as `TypeId` to `ComponentId` mappings (where relevant). `ComponentInfo` stores information about the component, such as ComponentId, TypeId, memory layout, send-ness (currently limited to resources), and storage type. ## Significantly Cheaper `Access<T>` We used to use `TypeAccess<TypeId>` to manage read/write component/archetype-component access. This was expensive because TypeIds must be hashed and compared individually. The parallel executor got around this by "condensing" type ids into bitset-backed access types. This worked, but it had to be re-generated from the `TypeAccess<TypeId>`sources every time archetypes changed. This pr removes TypeAccess in favor of faster bitset access everywhere. We can do this thanks to the move to densely packed `ComponentId`s and `ArchetypeComponentId`s. ## Merged Resources into World Resources had a lot of redundant functionality with Components. They stored typed data, they had access control, they had unique ids, they were queryable via SystemParams, etc. In fact the _only_ major difference between them was that they were unique (and didn't correlate to an entity). Separate resources also had the downside of requiring a separate set of access controls, which meant the parallel executor needed to compare more bitsets per system and manage more state. I initially got the "separate resources" idea from `legion`. I think that design was motivated by the fact that it made the direct world query/resource lifetime interactions more manageable. It certainly made our lives easier when using Resources alongside hecs/bevy_ecs. However we already have a construct for safely and ergonomically managing in-world lifetimes: systems (which use `Access<T>` internally). This pr merges Resources into World: ```rust world.insert_resource(1); world.insert_resource(2.0); let a = world.get_resource::<i32>().unwrap(); let mut b = world.get_resource_mut::<f64>().unwrap(); *b = 3.0; ``` Resources are now just a special kind of component. They have their own ComponentIds (and their own resource TypeId->ComponentId scope, so they don't conflict wit components of the same type). They are stored in a special "resource archetype", which stores components inside the archetype using a new `unique_components` sparse set (note that this sparse set could later be used to implement Tags). This allows us to keep the code size small by reusing existing datastructures (namely Column, Archetype, ComponentFlags, and ComponentInfo). This allows us the executor to use a single `Access<ArchetypeComponentId>` per system. It should also make scripting language integration easier. _But_ this merge did create problems for people directly interacting with `World`. What if you need mutable access to multiple resources at the same time? `world.get_resource_mut()` borrows World mutably! ## WorldCell WorldCell applies the `Access<ArchetypeComponentId>` concept to direct world access: ```rust let world_cell = world.cell(); let a = world_cell.get_resource_mut::<i32>().unwrap(); let b = world_cell.get_resource_mut::<f64>().unwrap(); ``` This adds cheap runtime checks (a sparse set lookup of `ArchetypeComponentId` and a counter) to ensure that world accesses do not conflict with each other. Each operation returns a `WorldBorrow<'w, T>` or `WorldBorrowMut<'w, T>` wrapper type, which will release the relevant ArchetypeComponentId resources when dropped. World caches the access sparse set (and only one cell can exist at a time), so `world.cell()` is a cheap operation. WorldCell does _not_ use atomic operations. It is non-send, does a mutable borrow of world to prevent other accesses, and uses a simple `Rc<RefCell<ArchetypeComponentAccess>>` wrapper in each WorldBorrow pointer. The api is currently limited to resource access, but it can and should be extended to queries / entity component access. ## Resource Scopes WorldCell does not yet support component queries, and even when it does there are sometimes legitimate reasons to want a mutable world ref _and_ a mutable resource ref (ex: bevy_render and bevy_scene both need this). In these cases we could always drop down to the unsafe `world.get_resource_unchecked_mut()`, but that is not ideal! Instead developers can use a "resource scope" ```rust world.resource_scope(|world: &mut World, a: &mut A| { }) ``` This temporarily removes the `A` resource from `World`, provides mutable pointers to both, and re-adds A to World when finished. Thanks to the move to ComponentIds/sparse sets, this is a cheap operation. If multiple resources are required, scopes can be nested. We could also consider adding a "resource tuple" to the api if this pattern becomes common and the boilerplate gets nasty. ## Query Conflicts Use ComponentId Instead of ArchetypeComponentId For safety reasons, systems cannot contain queries that conflict with each other without wrapping them in a QuerySet. On bevy `main`, we use ArchetypeComponentIds to determine conflicts. This is nice because it can take into account filters: ```rust // these queries will never conflict due to their filters fn filter_system(a: Query<&mut A, With<B>>, b: Query<&mut B, Without<B>>) { } ``` But it also has a significant downside: ```rust // these queries will not conflict _until_ an entity with A, B, and C is spawned fn maybe_conflicts_system(a: Query<(&mut A, &C)>, b: Query<(&mut A, &B)>) { } ``` The system above will panic at runtime if an entity with A, B, and C is spawned. This makes it hard to trust that your game logic will run without crashing. In this pr, I switched to using `ComponentId` instead. This _is_ more constraining. `maybe_conflicts_system` will now always fail, but it will do it consistently at startup. Naively, it would also _disallow_ `filter_system`, which would be a significant downgrade in usability. Bevy has a number of internal systems that rely on disjoint queries and I expect it to be a common pattern in userspace. To resolve this, I added a new `FilteredAccess<T>` type, which wraps `Access<T>` and adds with/without filters. If two `FilteredAccess` have with/without values that prove they are disjoint, they will no longer conflict. ## EntityRef / EntityMut World entity operations on `main` require that the user passes in an `entity` id to each operation: ```rust let entity = world.spawn((A, )); // create a new entity with A world.get::<A>(entity); world.insert(entity, (B, C)); world.insert_one(entity, D); ``` This means that each operation needs to look up the entity location / verify its validity. The initial spawn operation also requires a Bundle as input. This can be awkward when no components are required (or one component is required). These operations have been replaced by `EntityRef` and `EntityMut`, which are "builder-style" wrappers around world that provide read and read/write operations on a single, pre-validated entity: ```rust // spawn now takes no inputs and returns an EntityMut let entity = world.spawn() .insert(A) // insert a single component into the entity .insert_bundle((B, C)) // insert a bundle of components into the entity .id() // id returns the Entity id // Returns EntityMut (or panics if the entity does not exist) world.entity_mut(entity) .insert(D) .insert_bundle(SomeBundle::default()); { // returns EntityRef (or panics if the entity does not exist) let d = world.entity(entity) .get::<D>() // gets the D component .unwrap(); // world.get still exists for ergonomics let d = world.get::<D>(entity).unwrap(); } // These variants return Options if you want to check existence instead of panicing world.get_entity_mut(entity) .unwrap() .insert(E); if let Some(entity_ref) = world.get_entity(entity) { let d = entity_ref.get::<D>().unwrap(); } ``` This _does not_ affect the current Commands api or terminology. I think that should be a separate conversation as that is a much larger breaking change. ## Safety Improvements * Entity reservation in Commands uses a normal world borrow instead of an unsafe transmute * QuerySets no longer transmutes lifetimes * Made traits "unsafe" when implementing a trait incorrectly could cause unsafety * More thorough safety docs ## RemovedComponents SystemParam The old approach to querying removed components: `query.removed:<T>()` was confusing because it had no connection to the query itself. I replaced it with the following, which is both clearer and allows us to cache the ComponentId mapping in the SystemParamState: ```rust fn system(removed: RemovedComponents<T>) { for entity in removed.iter() { } } ``` ## Simpler Bundle implementation Bundles are no longer responsible for sorting (or deduping) TypeInfo. They are just a simple ordered list of component types / data. This makes the implementation smaller and opens the door to an easy "nested bundle" implementation in the future (which i might even add in this pr). Duplicate detection is now done once per bundle type by World the first time a bundle is used. ## Unified WorldQuery and QueryFilter types (don't worry they are still separate type _parameters_ in Queries .. this is a non-breaking change) WorldQuery and QueryFilter were already basically identical apis. With the addition of `FetchState` and more storage-specific fetch methods, the overlap was even clearer (and the redundancy more painful). QueryFilters are now just `F: WorldQuery where F::Fetch: FilterFetch`. FilterFetch requires `Fetch<Item = bool>` and adds new "short circuit" variants of fetch methods. This enables a filter tuple like `(With<A>, Without<B>, Changed<C>)` to stop evaluating the filter after the first mismatch is encountered. FilterFetch is automatically implemented for `Fetch` implementations that return bool. This forces fetch implementations that return things like `(bool, bool, bool)` (such as the filter above) to manually implement FilterFetch and decide whether or not to short-circuit. ## More Granular Modules World no longer globs all of the internal modules together. It now exports `core`, `system`, and `schedule` separately. I'm also considering exporting `core` submodules directly as that is still pretty "glob-ey" and unorganized (feedback welcome here). ## Remaining Draft Work (to be done in this pr) * ~~panic on conflicting WorldQuery fetches (&A, &mut A)~~ * ~~bevy `main` and hecs both currently allow this, but we should protect against it if possible~~ * ~~batch_iter / par_iter (currently stubbed out)~~ * ~~ChangedRes~~ * ~~I skipped this while we sort out #1313. This pr should be adapted to account for whatever we land on there~~. * ~~The `Archetypes` and `Tables` collections use hashes of sorted lists of component ids to uniquely identify each archetype/table. This hash is then used as the key in a HashMap to look up the relevant ArchetypeId or TableId. (which doesn't handle hash collisions properly)~~ * ~~It is currently unsafe to generate a Query from "World A", then use it on "World B" (despite the api claiming it is safe). We should probably close this gap. This could be done by adding a randomly generated WorldId to each world, then storing that id in each Query. They could then be compared to each other on each `query.do_thing(&world)` operation. This _does_ add an extra branch to each query operation, so I'm open to other suggestions if people have them.~~ * ~~Nested Bundles (if i find time)~~ ## Potential Future Work * Expand WorldCell to support queries. * Consider not allocating in the empty archetype on `world.spawn()` * ex: return something like EntityMutUninit, which turns into EntityMut after an `insert` or `insert_bundle` op * this actually regressed performance last time i tried it, but in theory it should be faster * Optimize SparseSet::insert (see `PERF` comment on insert) * Replace SparseArray `Option<T>` with T::MAX to cut down on branching * would enable cheaper get_unchecked() operations * upstream fixedbitset optimizations * fixedbitset could be allocation free for small block counts (store blocks in a SmallVec) * fixedbitset could have a const constructor * Consider implementing Tags (archetype-specific by-value data that affects archetype identity) * ex: ArchetypeA could have `[A, B, C]` table components and `[D(1)]` "tag" component. ArchetypeB could have `[A, B, C]` table components and a `[D(2)]` tag component. The archetypes are different, despite both having D tags because the value inside D is different. * this could potentially build on top of the `archetype.unique_components` added in this pr for resource storage. * Consider reverting `all_tuples` proc macro in favor of the old `macro_rules` implementation * all_tuples is more flexible and produces cleaner documentation (the macro_rules version produces weird type parameter orders due to parser constraints) * but unfortunately all_tuples also appears to make Rust Analyzer sad/slow when working inside of `bevy_ecs` (does not affect user code) * Consider "resource queries" and/or "mixed resource and entity component queries" as an alternative to WorldCell * this is basically just "systems" so maybe it's not worth it * Add more world ops * `world.clear()` * `world.reserve<T: Bundle>(count: usize)` * Try using the old archetype allocation strategy (allocate new memory on resize and copy everything over). I expect this to improve batch insertion performance at the cost of unbatched performance. But thats just a guess. I'm not an allocation perf pro :) * Adapt Commands apis for consistency with new World apis ## Benchmarks key: * `bevy_old`: bevy `main` branch * `bevy`: this branch * `_foreach`: uses an optimized for_each iterator * ` _sparse`: uses sparse set storage (if unspecified assume table storage) * `_system`: runs inside a system (if unspecified assume test happens via direct world ops) ### Simple Insert (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245573-9c3ce100-7795-11eb-9003-bfd41cd5c51f.png) ### Simpler Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245795-ffc70e80-7795-11eb-92fb-3ffad09aabf7.png) ### Fragment Iter (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109245849-0fdeee00-7796-11eb-8d25-eb6b7a682c48.png) ### Sparse Fragmented Iter Iterate a query that matches 5 entities from a single matching archetype, but there are 100 unmatching archetypes ![image](https://user-images.githubusercontent.com/2694663/109245916-2b49f900-7796-11eb-9a8f-ed89c203f940.png) ### Schedule (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246428-1fab0200-7797-11eb-8841-1b2161e90fa4.png) ### Add Remove Component (from ecs_bench_suite) ![image](https://user-images.githubusercontent.com/2694663/109246492-39e4e000-7797-11eb-8985-2706bd0495ab.png) ### Add Remove Component Big Same as the test above, but each entity has 5 "large" matrix components and 1 "large" matrix component is added and removed ![image](https://user-images.githubusercontent.com/2694663/109246517-449f7500-7797-11eb-835e-28b6790daeaa.png) ### Get Component Looks up a single component value a large number of times ![image](https://user-images.githubusercontent.com/2694663/109246129-87ad1880-7796-11eb-9fcb-c38012aa7c70.png)
2021-03-05 07:54:35 +00:00
self.schedule.run(&mut self.world);
for sub_app in self.sub_apps.values_mut() {
2021-04-11 20:13:07 +00:00
(sub_app.runner)(&mut self.world, &mut sub_app.app);
}
}
/// Starts the application by calling the app's [runner function](Self::set_runner).
///
/// Finalizes the [`App`] configuration. For general usage, see the example on the item
/// level documentation.
pub fn run(&mut self) {
#[cfg(feature = "trace")]
2020-12-13 02:04:42 +00:00
let bevy_app_run_span = info_span!("bevy_app");
#[cfg(feature = "trace")]
let _bevy_app_run_guard = bevy_app_run_span.enter();
let mut app = std::mem::replace(self, App::empty());
let runner = std::mem::replace(&mut app.runner, Box::new(run_once));
(runner)(app);
}
/// Adds a [`Stage`] with the given `label` to the last position of the app's
/// [`Schedule`].
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_stage("my_stage", SystemStage::parallel());
/// ```
pub fn add_stage<S: Stage>(&mut self, label: impl StageLabel, stage: S) -> &mut Self {
self.schedule.add_stage(label, stage);
self
}
/// Adds a [`Stage`] with the given `label` to the app's [`Schedule`], located
/// immediately after the stage labeled by `target`.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_stage_after(CoreStage::Update, "my_stage", SystemStage::parallel());
/// ```
pub fn add_stage_after<S: Stage>(
&mut self,
target: impl StageLabel,
label: impl StageLabel,
stage: S,
) -> &mut Self {
self.schedule.add_stage_after(target, label, stage);
self
}
/// Adds a [`Stage`] with the given `label` to the app's [`Schedule`], located
/// immediately before the stage labeled by `target`.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_stage_before(CoreStage::Update, "my_stage", SystemStage::parallel());
/// ```
pub fn add_stage_before<S: Stage>(
&mut self,
target: impl StageLabel,
label: impl StageLabel,
stage: S,
) -> &mut Self {
self.schedule.add_stage_before(target, label, stage);
self
}
/// Adds a [`Stage`] with the given `label` to the last position of the
/// [startup schedule](Self::add_default_stages).
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_startup_stage("my_startup_stage", SystemStage::parallel());
/// ```
pub fn add_startup_stage<S: Stage>(&mut self, label: impl StageLabel, stage: S) -> &mut Self {
self.schedule
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
.stage(StartupSchedule, |schedule: &mut Schedule| {
schedule.add_stage(label, stage)
});
self
}
/// Adds a [startup stage](Self::add_default_stages) with the given `label`, immediately
/// after the stage labeled by `target`.
///
/// The `target` label must refer to a stage inside the startup schedule.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_startup_stage_after(
/// StartupStage::Startup,
/// "my_startup_stage",
/// SystemStage::parallel()
/// );
/// ```
pub fn add_startup_stage_after<S: Stage>(
&mut self,
target: impl StageLabel,
label: impl StageLabel,
stage: S,
) -> &mut Self {
self.schedule
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
.stage(StartupSchedule, |schedule: &mut Schedule| {
schedule.add_stage_after(target, label, stage)
});
self
}
/// Adds a [startup stage](Self::add_default_stages) with the given `label`, immediately
/// before the stage labeled by `target`.
///
/// The `target` label must refer to a stage inside the startup schedule.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// # let mut app = App::new();
/// #
/// app.add_startup_stage_before(
/// StartupStage::Startup,
/// "my_startup_stage",
/// SystemStage::parallel()
/// );
/// ```
pub fn add_startup_stage_before<S: Stage>(
&mut self,
target: impl StageLabel,
label: impl StageLabel,
stage: S,
) -> &mut Self {
self.schedule
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
.stage(StartupSchedule, |schedule: &mut Schedule| {
schedule.add_stage_before(target, label, stage)
});
self
}
/// Fetches the [`Stage`] of type `T` marked with `label` from the [`Schedule`], then
/// executes the provided `func` passing the fetched stage to it as an argument.
///
/// The `func` argument should be a function or a closure that accepts a mutable reference
/// to a struct implementing `Stage` and returns the same type. That means that it should
/// also assume that the stage has already been fetched successfully.
///
/// See [`Schedule::stage`] for more details.
///
/// # Example
///
/// Here the closure is used to add a system to the update stage:
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn my_system() {}
/// #
/// app.stage(CoreStage::Update, |stage: &mut SystemStage| {
/// stage.add_system(my_system)
/// });
/// ```
pub fn stage<T: Stage, F: FnOnce(&mut T) -> &mut T>(
&mut self,
label: impl StageLabel,
func: F,
) -> &mut Self {
self.schedule.stage(label, func);
self
}
/// Adds a system to the [update stage](Self::add_default_stages) of the app's [`Schedule`].
///
/// Refer to the [system module documentation](bevy_ecs::system) to see how a system
/// can be defined.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # fn my_system() {}
/// # let mut app = App::new();
/// #
/// app.add_system(my_system);
/// ```
pub fn add_system<Params>(&mut self, system: impl IntoSystemDescriptor<Params>) -> &mut Self {
self.add_system_to_stage(CoreStage::Update, system)
}
/// Adds a [`SystemSet`] to the [update stage](Self::add_default_stages).
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn system_a() {}
/// # fn system_b() {}
/// # fn system_c() {}
/// #
/// app.add_system_set(
/// SystemSet::new()
/// .with_system(system_a)
/// .with_system(system_b)
/// .with_system(system_c),
/// );
/// ```
pub fn add_system_set(&mut self, system_set: SystemSet) -> &mut Self {
self.add_system_set_to_stage(CoreStage::Update, system_set)
}
/// Adds a system to the [`Stage`] identified by `stage_label`.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn my_system() {}
/// #
/// app.add_system_to_stage(CoreStage::PostUpdate, my_system);
/// ```
pub fn add_system_to_stage<Params>(
&mut self,
stage_label: impl StageLabel,
system: impl IntoSystemDescriptor<Params>,
) -> &mut Self {
use std::any::TypeId;
if stage_label.type_id() == TypeId::of::<StartupStage>() {
panic!("add systems to a startup stage using App::add_startup_system_to_stage");
}
self.schedule.add_system_to_stage(stage_label, system);
self
}
/// Adds a [`SystemSet`] to the [`Stage`] identified by `stage_label`.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn system_a() {}
/// # fn system_b() {}
/// # fn system_c() {}
/// #
/// app.add_system_set_to_stage(
/// CoreStage::PostUpdate,
/// SystemSet::new()
/// .with_system(system_a)
/// .with_system(system_b)
/// .with_system(system_c),
/// );
/// ```
pub fn add_system_set_to_stage(
&mut self,
stage_label: impl StageLabel,
system_set: SystemSet,
) -> &mut Self {
use std::any::TypeId;
if stage_label.type_id() == TypeId::of::<StartupStage>() {
panic!("add system sets to a startup stage using App::add_startup_system_set_to_stage");
}
self.schedule
.add_system_set_to_stage(stage_label, system_set);
self
}
/// Adds a system to the [startup stage](Self::add_default_stages) of the app's [`Schedule`].
///
/// * For adding a system that runs for every frame, see [`add_system`](Self::add_system).
/// * For adding a system to specific stage, see [`add_system_to_stage`](Self::add_system_to_stage).
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// fn my_startup_system(_commands: Commands) {
/// println!("My startup system");
/// }
///
/// App::new()
/// .add_startup_system(my_startup_system);
/// ```
pub fn add_startup_system<Params>(
&mut self,
system: impl IntoSystemDescriptor<Params>,
) -> &mut Self {
self.add_startup_system_to_stage(StartupStage::Startup, system)
}
/// Adds a [`SystemSet`] to the [startup stage](Self::add_default_stages)
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn startup_system_a() {}
/// # fn startup_system_b() {}
/// # fn startup_system_c() {}
/// #
/// app.add_startup_system_set(
/// SystemSet::new()
/// .with_system(startup_system_a)
/// .with_system(startup_system_b)
/// .with_system(startup_system_c),
/// );
/// ```
pub fn add_startup_system_set(&mut self, system_set: SystemSet) -> &mut Self {
self.add_startup_system_set_to_stage(StartupStage::Startup, system_set)
}
/// Adds a system to the [startup schedule](Self::add_default_stages), in the stage
/// identified by `stage_label`.
///
/// `stage_label` must refer to a stage inside the startup schedule.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn my_startup_system() {}
/// #
/// app.add_startup_system_to_stage(StartupStage::PreStartup, my_startup_system);
/// ```
pub fn add_startup_system_to_stage<Params>(
&mut self,
stage_label: impl StageLabel,
system: impl IntoSystemDescriptor<Params>,
) -> &mut Self {
self.schedule
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
.stage(StartupSchedule, |schedule: &mut Schedule| {
schedule.add_system_to_stage(stage_label, system)
});
self
}
/// Adds a [`SystemSet`] to the [startup schedule](Self::add_default_stages), in the stage
/// identified by `stage_label`.
///
/// `stage_label` must refer to a stage inside the startup schedule.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # let mut app = App::new();
/// # fn startup_system_a() {}
/// # fn startup_system_b() {}
/// # fn startup_system_c() {}
/// #
/// app.add_startup_system_set_to_stage(
/// StartupStage::PreStartup,
/// SystemSet::new()
/// .with_system(startup_system_a)
/// .with_system(startup_system_b)
/// .with_system(startup_system_c),
/// );
/// ```
pub fn add_startup_system_set_to_stage(
&mut self,
stage_label: impl StageLabel,
system_set: SystemSet,
) -> &mut Self {
self.schedule
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
.stage(StartupSchedule, |schedule: &mut Schedule| {
schedule.add_system_set_to_stage(stage_label, system_set)
});
self
}
/// Adds a new [`State`] with the given `initial` value.
/// This inserts a new `State<T>` resource and adds a new "driver" to [`CoreStage::Update`].
/// Each stage that uses `State<T>` for system run criteria needs a driver. If you need to use
/// your state in a different stage, consider using [`Self::add_state_to_stage`] or manually
/// adding [`State::get_driver`] to additional stages you need it in.
pub fn add_state<T>(&mut self, initial: T) -> &mut Self
where
T: StateData,
{
self.add_state_to_stage(CoreStage::Update, initial)
}
/// Adds a new [`State`] with the given `initial` value.
/// This inserts a new `State<T>` resource and adds a new "driver" to the given stage.
/// Each stage that uses `State<T>` for system run criteria needs a driver. If you need to use
/// your state in more than one stage, consider manually adding [`State::get_driver`] to the
/// stages you need it in.
pub fn add_state_to_stage<T>(&mut self, stage: impl StageLabel, initial: T) -> &mut Self
where
T: StateData,
{
self.insert_resource(State::new(initial))
.add_system_set_to_stage(stage, State::<T>::get_driver())
}
/// Adds utility stages to the [`Schedule`], giving it a standardized structure.
///
/// Adding those stages is necessary to make some core engine features work, like
/// adding systems without specifying a stage, or registering events. This is however
/// done by default by calling `App::default`, which is in turn called by
/// [`App::new`].
///
/// # The stages
///
/// All the added stages, with the exception of the startup stage, run every time the
/// schedule is invoked. The stages are the following, in order of execution:
/// - **First:** Runs at the very start of the schedule execution cycle, even before the
/// startup stage.
/// - **Startup:** This is actually a schedule containing sub-stages. Runs only once
/// when the app starts.
/// - **Pre-startup:** Intended for systems that need to run before other startup systems.
/// - **Startup:** The main startup stage. Startup systems are added here by default.
/// - **Post-startup:** Intended for systems that need to run after other startup systems.
/// - **Pre-update:** Often used by plugins to prepare their internal state before the
/// update stage begins.
/// - **Update:** Intended for user defined logic. Systems are added here by default.
/// - **Post-update:** Often used by plugins to finalize their internal state after the
/// world changes that happened during the update stage.
/// - **Last:** Runs right before the end of the schedule execution cycle.
///
/// The labels for those stages are defined in the [`CoreStage`] and [`StartupStage`]
/// `enum`s.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// #
/// let app = App::empty().add_default_stages();
/// ```
pub fn add_default_stages(&mut self) -> &mut Self {
self.add_stage(CoreStage::First, SystemStage::parallel())
.add_stage(
Move the CoreStage::Startup to a seperate StartupSchedule label (#2434) # Objective - `CoreStage::Startup` is unique in the `CoreStage` enum, in that it represents a `Schedule` and not a `SystemStage`. - This can lead to confusion about how `CoreStage::Startup` and the `StartupStage` enum are related. - Beginners sometimes try `.add_system_to_stage(CoreStage::Startup, setup.system())` instead of `.add_startup_system(setup.system())`, which causes a Panic: ``` thread 'main' panicked at 'Stage 'Startup' does not exist or is not a SystemStage', crates\bevy_ecs\src\schedule\mod.rs:153:13 stack backtrace: 0: std::panicking::begin_panic_handler at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:493 1: std::panicking::begin_panic_fmt at /rustc/53cb7b09b00cbea8754ffb78e7e3cb521cb8af4b\/library\std\src\panicking.rs:435 2: bevy_ecs::schedule::{{impl}}::add_system_to_stage::stage_not_found at .\crates\bevy_ecs\src\schedule\mod.rs:153 3: bevy_ecs::schedule::{{impl}}::add_system_to_stage::{{closure}}<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Me at .\crates\bevy_ecs\src\schedule\mod.rs:161 4: core::option::Option<mut bevy_ecs::schedule::stage::SystemStage*>::unwrap_or_else<mut bevy_ecs::schedule::stage::SystemStage*,closure-0> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\option.rs:427 5: bevy_ecs::schedule::Schedule::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, bevy_ec at .\crates\bevy_ecs\src\schedule\mod.rs:159 6: bevy_app::app_builder::AppBuilder::add_system_to_stage<tuple<bevy_ecs::system::function_system::IsFunctionSystem, tuple<bevy_ecs::system::commands::Commands, bevy_ecs::change_detection::ResMut<bevy_asset::assets::Assets<bevy_render::mesh::mesh::Mesh>>, be at .\crates\bevy_app\src\app_builder.rs:196 7: 3d_scene::main at .\examples\3d\3d_scene.rs:4 8: core::ops::function::FnOnce::call_once<fn(),tuple<>> at C:\Users\scher\.rustup\toolchains\stable-x86_64-pc-windows-msvc\lib\rustlib\src\rust\library\core\src\ops\function.rs:227 ``` ## Solution - Replace the `CoreStage::Startup` Label with the new `StartupSchedule` unit type. Resolves #2229
2022-02-08 00:03:50 +00:00
StartupSchedule,
Schedule::default()
.with_run_criteria(RunOnce::default())
.with_stage(StartupStage::PreStartup, SystemStage::parallel())
.with_stage(StartupStage::Startup, SystemStage::parallel())
.with_stage(StartupStage::PostStartup, SystemStage::parallel()),
)
.add_stage(CoreStage::PreUpdate, SystemStage::parallel())
.add_stage(CoreStage::Update, SystemStage::parallel())
.add_stage(CoreStage::PostUpdate, SystemStage::parallel())
.add_stage(CoreStage::Last, SystemStage::parallel())
}
/// Setup the application to manage events of type `T`.
///
/// This is done by adding a `Resource` of type `Events::<T>`,
/// and inserting a `Events::<T>::update_system` system into `CoreStage::First`.
///
/// See [`Events`](bevy_ecs::event::Events) for defining events.
///
/// # Example
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_ecs::prelude::*;
/// #
/// # struct MyEvent;
/// # let mut app = App::new();
/// #
/// app.add_event::<MyEvent>();
/// ```
pub fn add_event<T>(&mut self) -> &mut Self
where
T: Resource,
{
self.init_resource::<Events<T>>()
.add_system_to_stage(CoreStage::First, Events::<T>::update_system)
}
/// Inserts a resource to the current [App] and overwrites any resource previously added of the same type.
///
/// A resource in Bevy represents globally unique data. Resources must be added to Bevy Apps
/// before using them. This happens with [`insert_resource`](Self::insert_resource).
///
/// See also `init_resource` for resources that implement `Default` or [`FromWorld`].
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// #
/// struct MyCounter {
/// counter: usize,
/// }
///
/// App::new()
/// .insert_resource(MyCounter { counter: 0 });
/// ```
pub fn insert_resource<T>(&mut self, resource: T) -> &mut Self
where
T: Resource,
{
self.world.insert_resource(resource);
self
}
/// Inserts a non-send resource to the app
///
/// You usually want to use `insert_resource`, but there are some special cases when a resource must
/// be non-send.
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// #
/// struct MyCounter {
/// counter: usize,
/// }
///
/// App::new()
/// .insert_non_send_resource(MyCounter { counter: 0 });
/// ```
pub fn insert_non_send_resource<T>(&mut self, resource: T) -> &mut Self
where
T: 'static,
{
self.world.insert_non_send(resource);
self
}
/// Initialize a resource in the current [`App`], if it does not exist yet
///
/// If the resource already exists, nothing happens.
///
/// Adds a resource that implements `Default` or [`FromWorld`] trait.
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// #
/// struct MyCounter {
/// counter: usize,
/// }
///
/// impl Default for MyCounter {
/// fn default() -> MyCounter {
/// MyCounter {
/// counter: 100
/// }
/// }
/// }
///
/// App::new()
/// .init_resource::<MyCounter>();
/// ```
pub fn init_resource<R>(&mut self) -> &mut Self
where
R: FromWorld + Send + Sync + 'static,
{
// PERF: We could avoid double hashing here, since the `from_resources` call is guaranteed
// not to modify the map. However, we would need to be borrowing resources both
// mutably and immutably, so we would need to be extremely certain this is correct
if !self.world.contains_resource::<R>() {
let resource = R::from_world(&mut self.world);
self.insert_resource(resource);
}
self
}
/// Initialize a non-send resource in the current [`App`], if it does not exist yet.
///
/// Adds a resource that implements `Default` or [`FromWorld`] trait.
pub fn init_non_send_resource<R>(&mut self) -> &mut Self
where
R: FromWorld + 'static,
{
// See perf comment in init_resource
if self.world.get_non_send_resource::<R>().is_none() {
let resource = R::from_world(&mut self.world);
self.world.insert_non_send(resource);
}
self
}
/// Sets the function that will be called when the app is run.
///
/// The runner function (`run_fn`) is called only once by [`App::run`]. If the
/// presence of a main loop in the app is desired, it is responsibility of the runner
/// function to provide it.
///
/// The runner function is usually not set manually, but by Bevy integrated plugins
/// (e.g. winit plugin).
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// #
/// fn my_runner(mut app: App) {
/// loop {
/// println!("In main loop");
/// app.update();
/// }
/// }
///
/// App::new()
/// .set_runner(my_runner);
/// ```
pub fn set_runner(&mut self, run_fn: impl Fn(App) + 'static) -> &mut Self {
self.runner = Box::new(run_fn);
self
2020-04-06 03:19:02 +00:00
}
/// Adds a single plugin
///
/// One of Bevy's core principles is modularity. All Bevy engine features are implemented
/// as plugins. This includes internal features like the renderer.
///
/// Bevy also provides a few sets of default plugins. See [`add_plugins`](Self::add_plugins).
///
/// ## Example
/// ```
/// # use bevy_app::prelude::*;
/// #
/// App::new().add_plugin(bevy_log::LogPlugin::default());
/// ```
pub fn add_plugin<T>(&mut self, plugin: T) -> &mut Self
where
T: Plugin,
{
debug!("added plugin: {}", plugin.name());
plugin.build(self);
self
}
/// Adds a group of plugins
///
/// Bevy plugins can be grouped into a set of plugins. Bevy provides
/// built-in `PluginGroups` that provide core engine functionality.
///
/// The plugin groups available by default are `DefaultPlugins` and `MinimalPlugins`.
///
/// ## Example
/// ```
/// # use bevy_app::{prelude::*, PluginGroupBuilder};
/// #
/// # // Dummy created to avoid using bevy_internal, which pulls in to many dependencies.
/// # struct MinimalPlugins;
/// # impl PluginGroup for MinimalPlugins {
/// # fn build(&mut self, group: &mut PluginGroupBuilder){;}
/// # }
/// #
/// App::new()
/// .add_plugins(MinimalPlugins);
/// ```
pub fn add_plugins<T: PluginGroup>(&mut self, mut group: T) -> &mut Self {
let mut plugin_group_builder = PluginGroupBuilder::default();
group.build(&mut plugin_group_builder);
plugin_group_builder.finish(self);
self
}
/// Adds a group of plugins with an initializer method
///
/// Can be used to add a group of plugins, where the group is modified
/// before insertion into Bevy application. For example, you can add
/// extra plugins at a specific place in the plugin group, or deactivate
/// specific plugins while keeping the rest.
///
/// ## Example
/// ```
/// # use bevy_app::{prelude::*, PluginGroupBuilder};
/// #
/// # // Dummies created to avoid using bevy_internal which pulls in to many dependencies.
/// # struct DefaultPlugins;
/// # impl PluginGroup for DefaultPlugins {
/// # fn build(&mut self, group: &mut PluginGroupBuilder){
/// # group.add(bevy_log::LogPlugin::default());
/// # }
/// # }
/// #
/// # struct MyOwnPlugin;
/// # impl Plugin for MyOwnPlugin {
/// # fn build(&self, app: &mut App){;}
/// # }
/// #
/// App::new()
/// .add_plugins_with(DefaultPlugins, |group| {
/// group.add_before::<bevy_log::LogPlugin, _>(MyOwnPlugin)
/// });
/// ```
pub fn add_plugins_with<T, F>(&mut self, mut group: T, func: F) -> &mut Self
where
T: PluginGroup,
F: FnOnce(&mut PluginGroupBuilder) -> &mut PluginGroupBuilder,
{
let mut plugin_group_builder = PluginGroupBuilder::default();
group.build(&mut plugin_group_builder);
func(&mut plugin_group_builder);
plugin_group_builder.finish(self);
self
}
/// Adds the type `T` to the type registry resource.
#[cfg(feature = "bevy_reflect")]
pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self {
{
let registry = self
.world
.get_resource_mut::<bevy_reflect::TypeRegistryArc>()
.unwrap();
registry.write().register::<T>();
}
self
}
2021-04-11 20:13:07 +00:00
/// Adds an `App` as a child of the current one.
///
/// The provided function `f` is called by the [`update`](Self::update) method. The `World`
/// parameter represents the main app world, while the `App` parameter is just a mutable
/// reference to the sub app itself.
2021-04-11 20:13:07 +00:00
pub fn add_sub_app(
&mut self,
label: impl AppLabel,
2021-04-11 20:13:07 +00:00
app: App,
sub_app_runner: impl Fn(&mut World, &mut App) + 'static,
2021-04-11 20:13:07 +00:00
) -> &mut Self {
self.sub_apps.insert(
Box::new(label),
SubApp {
app,
runner: Box::new(sub_app_runner),
},
);
2021-04-11 20:13:07 +00:00
self
}
/// Retrieves a "sub app" stored inside this [App]. This will panic if the sub app does not exist.
pub fn sub_app_mut(&mut self, label: impl AppLabel) -> &mut App {
match self.get_sub_app_mut(label) {
Ok(app) => app,
Err(label) => panic!("Sub-App with label '{:?}' does not exist", label),
}
}
/// Retrieves a "sub app" inside this [App] with the given label, if it exists. Otherwise returns
/// an [Err] containing the given label.
pub fn get_sub_app_mut(&mut self, label: impl AppLabel) -> Result<&mut App, impl AppLabel> {
self.sub_apps
.get_mut((&label) as &dyn AppLabel)
.map(|sub_app| &mut sub_app.app)
.ok_or(label)
2021-04-11 20:13:07 +00:00
}
/// Retrieves a "sub app" stored inside this [App]. This will panic if the sub app does not exist.
pub fn sub_app(&self, label: impl AppLabel) -> &App {
match self.get_sub_app(label) {
Ok(app) => app,
Err(label) => panic!("Sub-App with label '{:?}' does not exist", label),
}
}
/// Retrieves a "sub app" inside this [App] with the given label, if it exists. Otherwise returns
/// an [Err] containing the given label.
pub fn get_sub_app(&self, label: impl AppLabel) -> Result<&App, impl AppLabel> {
self.sub_apps
.get((&label) as &dyn AppLabel)
.map(|sub_app| &sub_app.app)
.ok_or(label)
}
}
fn run_once(mut app: App) {
app.update();
2020-04-06 03:19:02 +00:00
}
2020-07-10 04:18:35 +00:00
/// An event that indicates the app should exit. This will fully exit the app process.
#[derive(Debug, Clone, Default)]
2020-07-10 04:18:35 +00:00
pub struct AppExit;