bevy/crates/bevy_ui/src/node_bundles.rs

228 lines
9.6 KiB
Rust
Raw Normal View History

//! This module contains basic node bundles used to build UIs
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
#![expect(deprecated)]
use crate::{
widget::{Button, ImageNodeSize},
BackgroundColor, BorderColor, BorderRadius, ComputedNode, ContentSize, FocusPolicy, ImageNode,
Interaction, MaterialNode, Node, ScrollPosition, UiMaterial, ZIndex,
};
use bevy_ecs::bundle::Bundle;
Migrate from `LegacyColor` to `bevy_color::Color` (#12163) # Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-02-29 19:35:12 +00:00
use bevy_render::view::{InheritedVisibility, ViewVisibility, Visibility};
Add `core` and `alloc` over `std` Lints (#15281) # Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
use bevy_transform::prelude::{GlobalTransform, Transform};
/// The basic UI node.
///
/// Contains the [`Node`] component and other components required to make a container.
///
Text rework (#15591) **Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
/// See [`node_bundles`](crate::node_bundles) for more specialized bundles like [`ImageBundle`].
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
#[derive(Bundle, Clone, Debug, Default)]
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
#[deprecated(
since = "0.15.0",
note = "Use the `Node` component instead. Inserting `Node` will also insert the other components required automatically."
)]
pub struct NodeBundle {
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// Controls the layout (size and position) of the node and its children
/// This also affect how the node is drawn/painted.
2020-04-06 21:20:53 +00:00
pub node: Node,
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// Describes the logical size of the node
pub computed_node: ComputedNode,
/// The background color, which serves as a "fill" for this node
pub background_color: BackgroundColor,
/// The color of the Node's border
pub border_color: BorderColor,
/// The border radius of the node
pub border_radius: BorderRadius,
/// Whether this node should block interaction with lower nodes
pub focus_policy: FocusPolicy,
UI Scrolling (#15291) # Objective - Fixes #8074 - Adopts / Supersedes #8104 ## Solution Adapted from #8104 and affords the same benefits. **Additions** - [x] Update scrolling on relayout (height of node or contents may have changed) - [x] Make ScrollPosition component optional for ui nodes to avoid checking every node on scroll - [x] Nested scrollviews **Omissions** - Removed input handling for scrolling from `bevy_ui`. Users should update `ScrollPosition` directly. ### Implementation Adds a new `ScrollPosition` component. Updating this component on a `Node` with an overflow axis set to `OverflowAxis::Scroll` will reposition its children by that amount when calculating node transforms. As before, no impact on the underlying Taffy layout. Calculating this correctly is trickier than it was in #8104 due to `"Update scrolling on relayout"`. **Background** When `ScrollPosition` is updated directly by the user, it can be trivially handled in-engine by adding the parent's scroll position to the final location of each child node. However, _other layout actions_ may result in a situation where `ScrollPosition` needs to be updated. Consider a 1000 pixel tall vertically scrolling list of 100 elements, each 100 pixels tall. Scrolled to the bottom, the `ScrollPosition.offset_y` is 9000, just enough to display the last element in the list. When removing an element from that list, the new desired `ScrollPosition.offset_y` is 8900, but, critically, that is not known until after the sizes and positions of the children of the scrollable node are resolved. All user scrolling code today handles this by delaying the resolution by one frame. One notable disadvantage of this is the inability to support `WinitSettings::desktop_app()`, since there would need to be an input AFTER the layout change that caused the scroll position to update for the results of the scroll position update to render visually. I propose the alternative in this PR, which allows for same-frame resolution of scrolling layout. **Resolution** _Edit: Below resolution is outdated, and replaced with the simpler usage of taffy's `Layout::content_size`._ When recursively iterating the children of a node, each child now returns a `Vec2` representing the location of their own bottom right corner. Then, `[[0,0, [x,y]]` represents a bounding box containing the scrollable area filled by that child. Scrollable parents aggregate those areas into the bounding box of _all_ children, then consider that result against `ScrollPosition` to ensure its validity. In the event that resolution of the layout of the children invalidates the `ScrollPosition` (e.g. scrolled further than there were children to scroll to), _all_ children of that node must be recursively repositioned. The position of each child must change as a result of the change in scroll position. Therefore, this implementation takes care to only spend the cost of the "second layout pass" when a specific node actually had a `ScrollPosition` forcibly updated by the layout of its children. ## Testing Examples in `ui/scroll.rs`. There may be more complex node/style interactions that were unconsidered. --- ## Showcase ![scroll](https://github.com/user-attachments/assets/1331138f-93aa-4a8f-959c-6be18a04ff03) ## Alternatives - `bevy_ui` doesn't support scrolling. - `bevy_ui` implements scrolling with a one-frame delay on reactions to layout changes.
2024-09-23 17:17:58 +00:00
/// The scroll position of the node,
pub scroll_position: ScrollPosition,
/// The transform of the node
///
/// This component is automatically managed by the UI layout system.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `NodeBundle`, use the properties of the [`Node`] component.
pub transform: Transform,
/// The global transform of the node
///
/// This component is automatically updated by the [`TransformPropagate`](`bevy_transform::TransformSystem::TransformPropagate`) systems.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `NodeBundle`, use the properties of the [`Node`] component.
pub global_transform: GlobalTransform,
/// Describes the visibility properties of the node
pub visibility: Visibility,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
/// Inherited visibility of an entity.
pub inherited_visibility: InheritedVisibility,
Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310) # Objective Fixes #4907. Fixes #838. Fixes #5089. Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114 Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities. Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information. ## Solution Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function. Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate. This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views. Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice. Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite. ![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png) Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. ## Follow up work * Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?. * Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset. * Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc). --- ## Changelog * ComputedVisibility now takes hierarchy visibility into account. * 2D, UI and Light entities now use the ComputedVisibility component. ## Migration Guide If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead: ```rust // before (0.7) fn system(query: Query<&Visibility>) { for visibility in query.iter() { if visibility.is_visible { log!("found visible entity"); } } } // after (0.8) fn system(query: Query<&ComputedVisibility>) { for visibility in query.iter() { if visibility.is_visible() { log!("found visible entity"); } } } ``` Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-15 23:24:42 +00:00
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
pub view_visibility: ViewVisibility,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
/// Indicates the depth at which the node should appear in the UI
pub z_index: ZIndex,
2020-04-06 21:20:53 +00:00
}
2020-05-03 19:35:07 +00:00
/// A UI node that is an image
`MeasureFunc` improvements (#8402) # Objective fixes #8516 * Give `CalculatedSize` a more specific and intuitive name. * `MeasureFunc`s should only be updated when their `CalculatedSize` is modified by the systems managing their content. For example, suppose that you have a UI displaying an image using an `ImageNode`. When the window is resized, the node's `MeasureFunc` will be updated even though the dimensions of the texture contained by the node are unchanged. * Fix the `CalculatedSize` API so that it no longer requires the extra boxing and the `dyn_clone` method. ## Solution * Rename `CalculatedSize` to `ContentSize` * Only update `MeasureFunc`s on `CalculatedSize` changes. * Remove the `dyn_clone` method from `Measure` and move the `Measure` from the `ContentSize` component rather than cloning it. * Change the measure_func field of `ContentSize` to type `Option<taffy::node::MeasureFunc>`. Add a `set` method that wraps the given measure appropriately. --- ## Changelog * Renamed `CalculatedSize` to `ContentSize`. * Replaced `upsert_leaf` with a function `update_measure` that only updates the node's `MeasureFunc`. * `MeasureFunc`s are only updated when the `ContentSize` changes and not when the layout changes. * Scale factor is no longer applied to the size values passed to the `MeasureFunc`. * Remove the `ContentSize` scaling in `text_system`. * The `dyn_clone` method has been removed from the `Measure` trait. * `Measure`s are moved from the `ContentSize` component instead of cloning them. * Added `set` method to `ContentSize` that replaces the `new` function. ## Migration Guide * `CalculatedSize` has been renamed to `ContentSize`. * The `upsert_leaf` function has been removed from `UiSurface` and replaced with `update_measure` which updates the `MeasureFunc` without node insertion. * The `dyn_clone` method has been removed from the `Measure` trait. * The new function of `CalculatedSize` has been replaced with the method `set`.
2023-05-01 15:40:53 +00:00
#[derive(Bundle, Debug, Default)]
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
#[deprecated(
since = "0.15.0",
note = "Use the `ImageNode` component instead. Inserting `ImageNode` will also insert the other components required automatically."
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
)]
pub struct ImageBundle {
/// Describes the logical size of the node
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
pub computed_node: ComputedNode,
/// Controls the layout (size and position) of the node and its children
/// This also affects how the node is drawn/painted.
pub node: Node,
/// The calculated size based on the given image
`MeasureFunc` improvements (#8402) # Objective fixes #8516 * Give `CalculatedSize` a more specific and intuitive name. * `MeasureFunc`s should only be updated when their `CalculatedSize` is modified by the systems managing their content. For example, suppose that you have a UI displaying an image using an `ImageNode`. When the window is resized, the node's `MeasureFunc` will be updated even though the dimensions of the texture contained by the node are unchanged. * Fix the `CalculatedSize` API so that it no longer requires the extra boxing and the `dyn_clone` method. ## Solution * Rename `CalculatedSize` to `ContentSize` * Only update `MeasureFunc`s on `CalculatedSize` changes. * Remove the `dyn_clone` method from `Measure` and move the `Measure` from the `ContentSize` component rather than cloning it. * Change the measure_func field of `ContentSize` to type `Option<taffy::node::MeasureFunc>`. Add a `set` method that wraps the given measure appropriately. --- ## Changelog * Renamed `CalculatedSize` to `ContentSize`. * Replaced `upsert_leaf` with a function `update_measure` that only updates the node's `MeasureFunc`. * `MeasureFunc`s are only updated when the `ContentSize` changes and not when the layout changes. * Scale factor is no longer applied to the size values passed to the `MeasureFunc`. * Remove the `ContentSize` scaling in `text_system`. * The `dyn_clone` method has been removed from the `Measure` trait. * `Measure`s are moved from the `ContentSize` component instead of cloning them. * Added `set` method to `ContentSize` that replaces the `new` function. ## Migration Guide * `CalculatedSize` has been renamed to `ContentSize`. * The `upsert_leaf` function has been removed from `UiSurface` and replaced with `update_measure` which updates the `MeasureFunc` without node insertion. * The `dyn_clone` method has been removed from the `Measure` trait. * The new function of `CalculatedSize` has been replaced with the method `set`.
2023-05-01 15:40:53 +00:00
pub calculated_size: ContentSize,
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
/// The image of the node.
///
/// To tint the image, change the `color` field of this component.
pub image: ImageNode,
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
/// The color of the background that will fill the containing node.
pub background_color: BackgroundColor,
/// The border radius of the node
pub border_radius: BorderRadius,
`text_system` split (#7779) # Objective `text_system` runs before the UI layout is calculated and the size of the text node is determined, so it cannot correctly shape the text to fit the layout, and has no way of determining if the text needs to be wrapped. The function `text_constraint` attempts to determine the size of the node from the local size constraints in the `Style` component. It can't be made to work, you have to compute the whole layout to get the correct size. A simple example of where this fails completely is a text node set to stretch to fill the empty space adjacent to a node with size constraints set to `Val::Percent(50.)`. The text node will take up half the space, even though its size constraints are `Val::Auto` Also because the `text_system` queries for changes to the `Style` component, when a style value is changed that doesn't affect the node's geometry the text is recomputed unnecessarily. Querying on changes to `Node` is not much better. The UI layout is changed to fit the `CalculatedSize` of the text, so the size of the node is changed and so the text and UI layout get recalculated multiple times from a single change to a `Text`. Also, the `MeasureFunc` doesn't work at all, it doesn't have enough information to fit the text correctly and makes no attempt. Fixes #7663, #6717, #5834, #1490, ## Solution Split the `text_system` into two functions: * `measure_text_system` which calculates the size constraints for the text node and runs before `UiSystem::Flex` * `text_system` which runs after `UiSystem::Flex` and generates the actual text. * Fix the `MeasureFunc` calculations. --- Text wrapping in main: <img width="961" alt="Capturemain" src="https://user-images.githubusercontent.com/27962798/220425740-4fe4bf46-24fb-4685-a1cf-bc01e139e72d.PNG"> With this PR: <img width="961" alt="captured_wrap" src="https://user-images.githubusercontent.com/27962798/220425807-949996b0-f127-4637-9f33-56a6da944fb0.PNG"> ## Changelog * Removed the previous fields from `CalculatedSize`. `CalculatedSize` now contains a boxed `Measure`. * Added `measurement` module to `bevy_ui`. * Added the method `create_text_measure` to `TextPipeline`. * Added a new system `measure_text_system` that runs before `UiSystem::Flex` that creates a `MeasureFunc` for the text. * Rescheduled `text_system` to run after `UiSystem::Flex`. * Added a trait `Measure`. A `Measure` is used to compute the size of a UI node when the size of that node is based on its content. * Added `ImageMeasure` and `TextMeasure` which implement `Measure`. * Added a new component `UiImageSize` which is used by `update_image_calculated_size_system` to track image size changes. * Added a `UiImageSize` component to `ImageBundle`. ## Migration Guide `ImageBundle` has a new component `UiImageSize` which contains the size of the image bundle's texture and is updated automatically by `update_image_calculated_size_system` --------- Co-authored-by: François <mockersf@gmail.com>
2023-04-17 15:23:21 +00:00
/// The size of the image in pixels
///
/// This component is set automatically
pub image_size: ImageNodeSize,
/// Whether this node should block interaction with lower nodes
pub focus_policy: FocusPolicy,
/// The transform of the node
///
/// This component is automatically managed by the UI layout system.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `ImageBundle`, use the properties of the [`Node`] component.
pub transform: Transform,
/// The global transform of the node
///
/// This component is automatically updated by the [`TransformPropagate`](`bevy_transform::TransformSystem::TransformPropagate`) systems.
pub global_transform: GlobalTransform,
/// Describes the visibility properties of the node
pub visibility: Visibility,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
/// Inherited visibility of an entity.
pub inherited_visibility: InheritedVisibility,
Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310) # Objective Fixes #4907. Fixes #838. Fixes #5089. Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114 Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities. Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information. ## Solution Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function. Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate. This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views. Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice. Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite. ![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png) Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. ## Follow up work * Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?. * Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset. * Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc). --- ## Changelog * ComputedVisibility now takes hierarchy visibility into account. * 2D, UI and Light entities now use the ComputedVisibility component. ## Migration Guide If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead: ```rust // before (0.7) fn system(query: Query<&Visibility>) { for visibility in query.iter() { if visibility.is_visible { log!("found visible entity"); } } } // after (0.8) fn system(query: Query<&ComputedVisibility>) { for visibility in query.iter() { if visibility.is_visible() { log!("found visible entity"); } } } ``` Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-15 23:24:42 +00:00
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
pub view_visibility: ViewVisibility,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
/// Indicates the depth at which the node should appear in the UI
pub z_index: ZIndex,
}
/// A UI node that is a button
#[derive(Bundle, Clone, Debug)]
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
#[deprecated(
since = "0.15.0",
note = "Use the `Button` component instead. Inserting `Button` will also insert the other components required automatically."
)]
pub struct ButtonBundle {
/// Describes the logical size of the node
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
pub computed_node: ComputedNode,
/// Marker component that signals this node is a button
pub button: Button,
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// Controls the layout (size and position) of the node and its children
/// Also affect how the node is drawn/painted.
pub node: Node,
/// Describes whether and how the button has been interacted with by the input
pub interaction: Interaction,
/// Whether this node should block interaction with lower nodes
pub focus_policy: FocusPolicy,
/// The color of the Node's border
pub border_color: BorderColor,
/// The border radius of the node
pub border_radius: BorderRadius,
/// The image of the node
pub image: ImageNode,
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
/// The background color that will fill the containing node
pub background_color: BackgroundColor,
/// The transform of the node
///
/// This component is automatically managed by the UI layout system.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `ButtonBundle`, use the properties of the [`Node`] component.
pub transform: Transform,
/// The global transform of the node
///
/// This component is automatically updated by the [`TransformPropagate`](`bevy_transform::TransformSystem::TransformPropagate`) systems.
pub global_transform: GlobalTransform,
/// Describes the visibility properties of the node
pub visibility: Visibility,
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
/// Inherited visibility of an entity.
pub inherited_visibility: InheritedVisibility,
Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310) # Objective Fixes #4907. Fixes #838. Fixes #5089. Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114 Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities. Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information. ## Solution Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function. Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate. This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views. Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice. Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite. ![image](https://user-images.githubusercontent.com/2694663/178814868-2e9a2173-bf8c-4c79-8815-633899d492c3.png) Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. ## Follow up work * Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?. * Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset. * Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc). --- ## Changelog * ComputedVisibility now takes hierarchy visibility into account. * 2D, UI and Light entities now use the ComputedVisibility component. ## Migration Guide If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead: ```rust // before (0.7) fn system(query: Query<&Visibility>) { for visibility in query.iter() { if visibility.is_visible { log!("found visible entity"); } } } // after (0.8) fn system(query: Query<&ComputedVisibility>) { for visibility in query.iter() { if visibility.is_visible() { log!("found visible entity"); } } } ``` Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-07-15 23:24:42 +00:00
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
pub view_visibility: ViewVisibility,
Add z-index support with a predictable UI stack (#5877) # Objective Add consistent UI rendering and interaction where deep nodes inside two different hierarchies will never render on top of one-another by default and offer an escape hatch (z-index) for nodes to change their depth. ## The problem with current implementation The current implementation of UI rendering is broken in that regard, mainly because [it sets the Z value of the `Transform` component based on a "global Z" space](https://github.com/bevyengine/bevy/blob/main/crates/bevy_ui/src/update.rs#L43) shared by all nodes in the UI. This doesn't account for the fact that each node's final `GlobalTransform` value will be relative to its parent. This effectively makes the depth unpredictable when two deep trees are rendered on top of one-another. At the moment, it's also up to each part of the UI code to sort all of the UI nodes. The solution that's offered here does the full sorting of UI node entities once and offers the result through a resource so that all systems can use it. ## Solution ### New ZIndex component This adds a new optional `ZIndex` enum component for nodes which offers two mechanism: - `ZIndex::Local(i32)`: Overrides the depth of the node relative to its siblings. - `ZIndex::Global(i32)`: Overrides the depth of the node relative to the UI root. This basically allows any node in the tree to "escape" the parent and be ordered relative to the entire UI. Note that in the current implementation, omitting `ZIndex` on a node has the same result as adding `ZIndex::Local(0)`. Additionally, the "global" stacking context is essentially a way to add your node to the root stacking context, so using `ZIndex::Local(n)` on a root node (one without parent) will share that space with all nodes using `Index::Global(n)`. ### New UiStack resource This adds a new `UiStack` resource which is calculated from both hierarchy and `ZIndex` during UI update and contains a vector of all node entities in the UI, ordered by depth (from farthest from camera to closest). This is exposed publicly by the bevy_ui crate with the hope that it can be used for consistent ordering and to reduce the amount of sorting that needs to be done by UI systems (i.e. instead of sorting everything by `global_transform.z` in every system, this array can be iterated over). ### New z_index example This also adds a new z_index example that showcases the new `ZIndex` component. It's also a good general demo of the new UI stack system, because making this kind of UI was very broken with the old system (e.g. nodes would render on top of each other, not respecting hierarchy or insert order at all). ![image](https://user-images.githubusercontent.com/1060971/189015985-8ea8f989-0e9d-4601-a7e0-4a27a43a53f9.png) --- ## Changelog - Added the `ZIndex` component to bevy_ui. - Added the `UiStack` resource to bevy_ui, and added implementation in a new `stack.rs` module. - Removed the previous Z updating system from bevy_ui, because it was replaced with the above. - Changed bevy_ui rendering to use UiStack instead of z ordering. - Changed bevy_ui focus/interaction system to use UiStack instead of z ordering. - Added a new z_index example. ## ZIndex demo Here's a demo I wrote to test these features https://user-images.githubusercontent.com/1060971/188329295-d7beebd6-9aee-43ab-821e-d437df5dbe8a.mp4 Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-11-02 22:06:04 +00:00
/// Indicates the depth at which the node should appear in the UI
pub z_index: ZIndex,
}
impl Default for ButtonBundle {
fn default() -> Self {
Self {
node: Default::default(),
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
computed_node: Default::default(),
button: Default::default(),
interaction: Default::default(),
Decouple `BackgroundColor` from `UiImage` (#11165) # Objective Fixes https://github.com/bevyengine/bevy/issues/11157. ## Solution Stop using `BackgroundColor` as a color tint for `UiImage`. Add a `UiImage::color` field for color tint instead. Allow a UI node to simultaneously include a solid-color background and an image, with the image rendered on top of the background (this is already how it works for e.g. text). ![2024-02-29_1709239666_563x520](https://github.com/bevyengine/bevy/assets/12173779/ec50c9ef-4c7f-4ab8-a457-d086ce5b3425) --- ## Changelog - The `BackgroundColor` component now renders a solid-color background behind `UiImage` instead of tinting its color. - Removed `BackgroundColor` from `ImageBundle`, `AtlasImageBundle`, and `ButtonBundle`. - Added `UiImage::color`. - Expanded `RenderUiSystem` variants. - Renamed `bevy_ui::extract_text_uinodes` to `extract_uinodes_text` for consistency. ## Migration Guide - `BackgroundColor` no longer tints the color of UI images. Use `UiImage::color` for that instead. - For solid color buttons, replace `ButtonBundle { background_color: my_color.into(), ... }` with `ButtonBundle { image: UiImage::default().with_color(my_color), ... }`, and update button interaction systems to use `UiImage::color` instead of `BackgroundColor` as well. - `bevy_ui::RenderUiSystem::ExtractNode` has been split into `ExtractBackgrounds`, `ExtractImages`, `ExtractBorders`, and `ExtractText`. - `bevy_ui::extract_uinodes` has been split into `bevy_ui::extract_uinode_background_colors` and `bevy_ui::extract_uinode_images`. - `bevy_ui::extract_text_uinodes` has been renamed to `extract_uinode_text`.
2024-03-03 21:35:50 +00:00
focus_policy: FocusPolicy::Block,
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
border_color: Default::default(),
border_radius: Default::default(),
image: Default::default(),
Make default behavior for `BackgroundColor` and `BorderColor` more intuitive (#14017) # Objective In Bevy 0.13, `BackgroundColor` simply tinted the image of any `UiImage`. This was confusing: in every other case (e.g. Text), this added a solid square behind the element. #11165 changed this, but removed `BackgroundColor` from `ImageBundle` to avoid confusion, since the semantic meaning had changed. However, this resulted in a serious UX downgrade / inconsistency, as this behavior was no longer part of the bundle (unlike for `TextBundle` or `NodeBundle`), leaving users with a relatively frustrating upgrade path. Additionally, adding both `BackgroundColor` and `UiImage` resulted in a bizarre effect, where the background color was seemingly ignored as it was covered by a solid white placeholder image. Fixes #13969. ## Solution Per @viridia's design: > - if you don't specify a background color, it's transparent. > - if you don't specify an image color, it's white (because it's a multiplier). > - if you don't specify an image, no image is drawn. > - if you specify both a background color and an image color, they are independent. > - the background color is drawn behind the image (in whatever pixels are transparent) As laid out by @benfrankel, this involves: 1. Changing the default `UiImage` to use a transparent texture but a pure white tint. 2. Adding `UiImage::solid_color` to quickly set placeholder images. 3. Changing the default `BorderColor` and `BackgroundColor` to transparent. 4. Removing the default overrides for these values in the other assorted UI bundles. 5. Adding `BackgroundColor` back to `ImageBundle` and `ButtonBundle`. 6. Adding a 1x1 `Image::transparent`, which can be accessed from `Assets<Image>` via the `TRANSPARENT_IMAGE_HANDLE` constant. Huge thanks to everyone who helped out with the design in the linked issue and [the Discord thread](https://discord.com/channels/691052431525675048/1255209923890118697/1255209999278280844): this was very much a joint design. @cart helped me figure out how to set the UiImage's default texture to a transparent 1x1 image, which is a much nicer fix. ## Testing I've checked the examples modified by this PR, and the `ui` example as well just to be sure. ## Migration Guide - `BackgroundColor` no longer tints the color of images in `ImageBundle` or `ButtonBundle`. Set `UiImage::color` to tint images instead. - The default texture for `UiImage` is now a transparent white square. Use `UiImage::solid_color` to quickly draw debug images. - The default value for `BackgroundColor` and `BorderColor` is now transparent. Set the color to white manually to return to previous behavior.
2024-06-25 21:50:41 +00:00
background_color: Default::default(),
transform: Default::default(),
global_transform: Default::default(),
visibility: Default::default(),
Split `ComputedVisibility` into two components to allow for accurate change detection and speed up visibility propagation (#9497) # Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com>
2023-09-01 13:00:18 +00:00
inherited_visibility: Default::default(),
view_visibility: Default::default(),
z_index: Default::default(),
}
}
}
/// A UI node that is rendered using a [`UiMaterial`]
///
/// Adding a `BackgroundColor` component to an entity with this bundle will ignore the custom
/// material and use the background color instead.
#[derive(Bundle, Clone, Debug)]
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
#[deprecated(
since = "0.15.0",
note = "Use the `MaterialNode` component instead. Inserting `MaterialNode` will also insert the other components required automatically."
)]
pub struct MaterialNodeBundle<M: UiMaterial> {
/// Describes the logical size of the node
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
pub computed_node: ComputedNode,
/// Controls the layout (size and position) of the node and its children
/// Also affects how the node is drawn/painted.
pub node: Node,
/// The [`UiMaterial`] used to render the node.
Migrate UI bundles to required components (#15898) # Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-17 21:11:02 +00:00
pub material: MaterialNode<M>,
/// Whether this node should block interaction with lower nodes
pub focus_policy: FocusPolicy,
/// The transform of the node
///
/// This field is automatically managed by the UI layout system.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `NodeBundle`, use the properties of the [`Node`] component.
pub transform: Transform,
/// The global transform of the node
///
/// This field is automatically managed by the UI layout system.
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
/// To alter the position of the `NodeBundle`, use the properties of the [`Node`] component.
pub global_transform: GlobalTransform,
/// Describes the visibility properties of the node
pub visibility: Visibility,
/// Inherited visibility of an entity.
pub inherited_visibility: InheritedVisibility,
/// Algorithmically-computed indication of whether an entity is visible and should be extracted for rendering
pub view_visibility: ViewVisibility,
/// Indicates the depth at which the node should appear in the UI
pub z_index: ZIndex,
}
impl<M: UiMaterial> Default for MaterialNodeBundle<M> {
fn default() -> Self {
Self {
node: Default::default(),
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975) # Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ```
2024-10-18 22:25:33 +00:00
computed_node: Default::default(),
material: Default::default(),
focus_policy: Default::default(),
transform: Default::default(),
global_transform: Default::default(),
visibility: Default::default(),
inherited_visibility: Default::default(),
view_visibility: Default::default(),
z_index: Default::default(),
}
}
}