bevy/crates/bevy_ecs/src/event.rs

999 lines
31 KiB
Rust
Raw Normal View History

//! Event handling types.
use crate as bevy_ecs;
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
use crate::system::{Local, Res, ResMut, Resource, SystemParam};
use bevy_utils::tracing::trace;
use std::ops::{Deref, DerefMut};
use std::{fmt, hash::Hash, iter::Chain, marker::PhantomData, slice::Iter};
/// A type that can be stored in an [`Events<E>`] resource
/// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter.
///
/// Events must be thread-safe.
pub trait Event: Send + Sync + 'static {}
impl<T> Event for T where T: Send + Sync + 'static {}
/// An `EventId` uniquely identifies an event.
///
/// An `EventId` can among other things be used to trace the flow of an event from the point it was
/// sent to the point it was processed.
#[derive(Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct EventId<E: Event> {
pub id: usize,
_marker: PhantomData<E>,
}
impl<E: Event> Copy for EventId<E> {}
impl<E: Event> Clone for EventId<E> {
fn clone(&self) -> Self {
*self
}
}
impl<E: Event> fmt::Display for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
<Self as fmt::Debug>::fmt(self, f)
}
}
impl<E: Event> fmt::Debug for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"event<{}>#{}",
std::any::type_name::<E>().split("::").last().unwrap(),
self.id,
)
}
}
#[derive(Debug)]
struct EventInstance<E: Event> {
pub event_id: EventId<E>,
pub event: E,
}
/// An event collection that represents the events that occurred within the last two
/// [`Events::update`] calls.
/// Events can be written to using an [`EventWriter`]
/// and are typically cheaply read using an [`EventReader`].
///
/// Each event can be consumed by multiple systems, in parallel,
/// with consumption tracked by the [`EventReader`] on a per-system basis.
///
/// If no [ordering](https://github.com/bevyengine/bevy/blob/main/examples/ecs/ecs_guide.rs)
/// is applied between writing and reading systems, there is a risk of a race condition.
/// This means that whether the events arrive before or after the next [`Events::update`] is unpredictable.
///
/// This collection is meant to be paired with a system that calls
/// [`Events::update`] exactly once per update/frame.
///
/// [`Events::update_system`] is a system that does this, typically initialized automatically using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
/// [`EventReader`]s are expected to read events from this collection at least once per loop/frame.
/// Events will persist across a single frame boundary and so ordering of event producers and
/// consumers is not critical (although poorly-planned ordering may cause accumulating lag).
/// If events are not handled by the end of the frame after they are updated, they will be
/// dropped silently.
///
/// # Example
/// ```
/// use bevy_ecs::event::Events;
2020-04-04 19:43:16 +00:00
///
/// struct MyEvent {
/// value: usize
/// }
///
/// // setup
/// let mut events = Events::<MyEvent>::default();
/// let mut reader = events.get_reader();
///
/// // run this once per update/frame
/// events.update();
///
/// // somewhere else: send an event
/// events.send(MyEvent { value: 1 });
///
/// // somewhere else: read the events
/// for event in reader.iter(&events) {
/// assert_eq!(event.value, 1)
/// }
///
/// // events are only processed once per reader
/// assert_eq!(reader.iter(&events).count(), 0);
/// ```
///
/// # Details
///
/// [`Events`] is implemented using a variation of a double buffer strategy.
/// Each call to [`update`](Events::update) swaps buffers and clears out the oldest one.
/// - [`EventReader`]s will read events from both buffers.
/// - [`EventReader`]s that read at least once per update will never drop events.
/// - [`EventReader`]s that read once within two updates might still receive some events
/// - [`EventReader`]s that read after two updates are guaranteed to drop all events that occurred
/// before those updates.
///
/// The buffers in [`Events`] will grow indefinitely if [`update`](Events::update) is never called.
///
/// An alternative call pattern would be to call [`update`](Events::update)
/// manually across frames to control when events are cleared.
/// This complicates consumption and risks ever-expanding memory usage if not cleaned up,
/// but can be done by adding your event as a resource instead of using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
///
/// [Example usage.](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/event.rs)
/// [Example usage standalone.](https://github.com/bevyengine/bevy/blob/latest/crates/bevy_ecs/examples/events.rs)
///
Make `Resource` trait opt-in, requiring `#[derive(Resource)]` V2 (#5577) *This PR description is an edited copy of #5007, written by @alice-i-cecile.* # Objective Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds. While ergonomic, this results in several drawbacks: * it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource * it is challenging to discover if a type is intended to be used as a resource * we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component). * dependencies can use the same Rust type as a resource in invisibly conflicting ways * raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values * we cannot capture a definitive list of possible resources to display to users in an editor ## Notes to reviewers * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits. *ira: My commits are not as well organized :')* * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does. * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981. ## Changelog `Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro. ## Migration Guide Add `#[derive(Resource)]` to all types you are using as a resource. If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics. `ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing. Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead. Co-authored-by: Alice <alice.i.cecile@gmail.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: devil-ira <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00
#[derive(Debug, Resource)]
pub struct Events<E: Event> {
/// Holds the oldest still active events.
/// Note that a.start_event_count + a.len() should always === events_b.start_event_count.
events_a: EventSequence<E>,
/// Holds the newer events.
events_b: EventSequence<E>,
event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for Events<E> {
fn default() -> Self {
Self {
events_a: Default::default(),
events_b: Default::default(),
event_count: Default::default(),
}
}
}
impl<E: Event> Events<E> {
pub fn oldest_event_count(&self) -> usize {
self.events_a
.start_event_count
.min(self.events_b.start_event_count)
}
}
#[derive(Debug)]
struct EventSequence<E: Event> {
events: Vec<EventInstance<E>>,
start_event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for EventSequence<E> {
fn default() -> Self {
Self {
events: Default::default(),
start_event_count: Default::default(),
}
}
}
impl<E: Event> Deref for EventSequence<E> {
type Target = Vec<EventInstance<E>>;
fn deref(&self) -> &Self::Target {
&self.events
}
}
impl<E: Event> DerefMut for EventSequence<E> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.events
}
}
2020-08-16 03:27:41 +00:00
/// Reads events of type `T` in order and tracks which events have already been read.
#[derive(SystemParam, Debug)]
pub struct EventReader<'w, 's, E: Event> {
reader: Local<'s, ManualEventReader<E>>,
events: Res<'w, Events<E>>,
}
impl<'w, 's, E: Event> EventReader<'w, 's, E> {
/// Iterates over the events this [`EventReader`] has not seen yet. This updates the
/// [`EventReader`]'s event counter, which means subsequent event reads will not include events
/// that happened before now.
pub fn iter(&mut self) -> ManualEventIterator<'_, E> {
self.reader.iter(&self.events)
}
/// Like [`iter`](Self::iter), except also returning the [`EventId`] of the events.
pub fn iter_with_id(&mut self) -> ManualEventIteratorWithId<'_, E> {
self.reader.iter_with_id(&self.events)
}
/// Determines the number of events available to be read from this [`EventReader`] without consuming any.
pub fn len(&self) -> usize {
self.reader.len(&self.events)
}
/// Returns `true` if there are no events available to read.
///
/// # Example
///
/// The following example shows a useful pattern where some behaviour is triggered if new events are available.
/// [`EventReader::clear()`] is used so the same events don't re-trigger the behaviour the next time the system runs.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// struct CollisionEvent;
///
/// fn play_collision_sound(mut events: EventReader<CollisionEvent>) {
/// if !events.is_empty() {
/// events.clear();
/// // Play a sound
/// }
/// }
/// # bevy_ecs::system::assert_is_system(play_collision_sound);
/// ```
pub fn is_empty(&self) -> bool {
self.reader.is_empty(&self.events)
}
/// Consumes all available events.
///
/// This means these events will not appear in calls to [`EventReader::iter()`] or
/// [`EventReader::iter_with_id()`] and [`EventReader::is_empty()`] will return `true`.
///
/// For usage, see [`EventReader::is_empty()`].
pub fn clear(&mut self) {
self.reader.clear(&self.events);
}
}
/// Sends events of type `T`.
///
/// # Usage
///
/// `EventWriter`s are usually declared as a [`SystemParam`].
/// ```
/// # use bevy_ecs::prelude::*;
///
/// pub struct MyEvent; // Custom event type.
/// fn my_system(mut writer: EventWriter<MyEvent>) {
/// writer.send(MyEvent);
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// # Limitations
///
/// `EventWriter` can only send events of one specific type, which must be known at compile-time.
/// This is not a problem most of the time, but you may find a situation where you cannot know
/// ahead of time every kind of event you'll need to send. In this case, you can use the "type-erased event" pattern.
///
/// ```
/// # use bevy_ecs::{prelude::*, event::Events};
///
/// # pub struct MyEvent;
/// fn send_untyped(mut commands: Commands) {
/// // Send an event of a specific type without having to declare that
/// // type as a SystemParam.
/// //
/// // Effectively, we're just moving the type parameter from the /type/ to the /method/,
/// // which allows one to do all kinds of clever things with type erasure, such as sending
/// // custom events to unknown 3rd party plugins (modding API).
/// //
/// // NOTE: the event won't actually be sent until commands get flushed
/// // at the end of the current stage.
/// commands.add(|w: &mut World| {
/// w.send_event(MyEvent);
/// });
/// }
/// ```
/// Note that this is considered *non-idiomatic*, and should only be used when `EventWriter` will not work.
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
events: ResMut<'w, Events<E>>,
}
impl<'w, E: Event> EventWriter<'w, E> {
/// Sends an `event`. [`EventReader`]s can then read the event.
/// See [`Events`] for details.
pub fn send(&mut self, event: E) {
self.events.send(event);
}
pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) {
self.events.extend(events);
}
/// Sends the default value of the event. Useful when the event is an empty struct.
pub fn send_default(&mut self)
where
E: Default,
{
self.events.send_default();
}
}
#[derive(Debug)]
pub struct ManualEventReader<E: Event> {
last_event_count: usize,
_marker: PhantomData<E>,
}
impl<E: Event> Default for ManualEventReader<E> {
2020-06-04 06:53:00 +00:00
fn default() -> Self {
ManualEventReader {
2020-06-04 06:53:00 +00:00
last_event_count: 0,
_marker: Default::default(),
2020-06-04 06:53:00 +00:00
}
}
}
#[allow(clippy::len_without_is_empty)] // Check fails since the is_empty implementation has a signature other than `(&self) -> bool`
impl<E: Event> ManualEventReader<E> {
/// See [`EventReader::iter`]
pub fn iter<'a>(&'a mut self, events: &'a Events<E>) -> ManualEventIterator<'a, E> {
self.iter_with_id(events).without_id()
}
/// See [`EventReader::iter_with_id`]
pub fn iter_with_id<'a>(
&'a mut self,
events: &'a Events<E>,
) -> ManualEventIteratorWithId<'a, E> {
ManualEventIteratorWithId::new(self, events)
}
/// See [`EventReader::len`]
pub fn len(&self, events: &Events<E>) -> usize {
// The number of events in this reader is the difference between the most recent event
// and the last event seen by it. This will be at most the number of events contained
// with the events (any others have already been dropped)
// TODO: Warn when there are dropped events, or return e.g. a `Result<usize, (usize, usize)>`
events
.event_count
.saturating_sub(self.last_event_count)
.min(events.len())
}
/// Amount of events we missed.
pub fn missed_events(&self, events: &Events<E>) -> usize {
events
.oldest_event_count()
.saturating_sub(self.last_event_count)
}
/// See [`EventReader::is_empty()`]
pub fn is_empty(&self, events: &Events<E>) -> bool {
self.len(events) == 0
}
/// See [`EventReader::clear()`]
pub fn clear(&mut self, events: &Events<E>) {
self.last_event_count = events.event_count;
}
}
pub struct ManualEventIterator<'a, E: Event> {
iter: ManualEventIteratorWithId<'a, E>,
}
impl<'a, E: Event> Iterator for ManualEventIterator<'a, E> {
type Item = &'a E;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(event, _)| event)
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth(n).map(|(event, _)| event)
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
self.iter.last().map(|(event, _)| event)
}
fn count(self) -> usize {
self.iter.count()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, E: Event> ExactSizeIterator for ManualEventIterator<'a, E> {
fn len(&self) -> usize {
self.iter.len()
}
}
#[derive(Debug)]
pub struct ManualEventIteratorWithId<'a, E: Event> {
reader: &'a mut ManualEventReader<E>,
chain: Chain<Iter<'a, EventInstance<E>>, Iter<'a, EventInstance<E>>>,
unread: usize,
}
fn event_trace<E: Event>(id: EventId<E>) {
trace!("EventReader::iter() -> {}", id);
}
impl<'a, E: Event> ManualEventIteratorWithId<'a, E> {
pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
let a_index = (reader.last_event_count).saturating_sub(events.events_a.start_event_count);
let b_index = (reader.last_event_count).saturating_sub(events.events_b.start_event_count);
let a = events.events_a.get(a_index..).unwrap_or_default();
let b = events.events_b.get(b_index..).unwrap_or_default();
let unread_count = a.len() + b.len();
// Ensure `len` is implemented correctly
debug_assert_eq!(unread_count, reader.len(events));
reader.last_event_count = events.event_count - unread_count;
// Iterate the oldest first, then the newer events
let chain = a.iter().chain(b.iter());
Self {
reader,
chain,
unread: unread_count,
}
}
/// Iterate over only the events.
pub fn without_id(self) -> ManualEventIterator<'a, E> {
ManualEventIterator { iter: self }
}
}
impl<'a, E: Event> Iterator for ManualEventIteratorWithId<'a, E> {
type Item = (&'a E, EventId<E>);
fn next(&mut self) -> Option<Self::Item> {
match self
.chain
.next()
.map(|instance| (&instance.event, instance.event_id))
{
Some(item) => {
event_trace(item.1);
self.reader.last_event_count += 1;
self.unread -= 1;
Some(item)
}
None => None,
}
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
if let Some(EventInstance { event_id, event }) = self.chain.nth(n) {
self.reader.last_event_count += n + 1;
self.unread -= n + 1;
Some((event, *event_id))
} else {
self.reader.last_event_count += self.unread;
self.unread = 0;
None
}
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
let EventInstance { event_id, event } = self.chain.last()?;
self.reader.last_event_count += self.unread;
Some((event, *event_id))
}
fn count(self) -> usize {
self.reader.last_event_count += self.unread;
self.unread
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.chain.size_hint()
}
}
impl<'a, E: Event> ExactSizeIterator for ManualEventIteratorWithId<'a, E> {
fn len(&self) -> usize {
self.unread
}
}
impl<E: Event> Events<E> {
/// "Sends" an `event` by writing it to the current event buffer. [`EventReader`]s can then read
/// the event.
pub fn send(&mut self, event: E) {
let event_id = EventId {
id: self.event_count,
_marker: PhantomData,
};
trace!("Events::send() -> id: {}", event_id);
2021-03-25 20:48:18 +00:00
let event_instance = EventInstance { event_id, event };
self.events_b.push(event_instance);
self.event_count += 1;
}
/// Sends the default value of the event. Useful when the event is an empty struct.
pub fn send_default(&mut self)
where
E: Default,
{
self.send(Default::default());
}
/// Gets a new [`ManualEventReader`]. This will include all events already in the event buffers.
pub fn get_reader(&self) -> ManualEventReader<E> {
ManualEventReader::default()
}
/// Gets a new [`ManualEventReader`]. This will ignore all events already in the event buffers.
/// It will read all future events.
pub fn get_reader_current(&self) -> ManualEventReader<E> {
ManualEventReader {
last_event_count: self.event_count,
..Default::default()
}
}
/// Swaps the event buffers and clears the oldest event buffer. In general, this should be
/// called once per frame/update.
pub fn update(&mut self) {
std::mem::swap(&mut self.events_a, &mut self.events_b);
self.events_b.clear();
self.events_b.start_event_count = self.event_count;
debug_assert_eq!(
self.events_a.start_event_count + self.events_a.len(),
self.events_b.start_event_count
);
}
/// A system that calls [`Events::update`] once per frame.
2020-05-14 00:52:47 +00:00
pub fn update_system(mut events: ResMut<Self>) {
2020-04-30 23:19:28 +00:00
events.update();
}
2020-05-13 23:17:06 +00:00
#[inline]
fn reset_start_event_count(&mut self) {
self.events_a.start_event_count = self.event_count;
self.events_b.start_event_count = self.event_count;
}
2020-05-13 23:17:06 +00:00
/// Removes all events.
#[inline]
2020-05-13 23:17:06 +00:00
pub fn clear(&mut self) {
self.reset_start_event_count();
2020-05-13 23:17:06 +00:00
self.events_a.clear();
self.events_b.clear();
}
#[inline]
pub fn len(&self) -> usize {
self.events_a.len() + self.events_b.len()
}
/// Returns true if there are no events in this collection.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
2020-05-13 23:17:06 +00:00
/// Creates a draining iterator that removes all events.
pub fn drain(&mut self) -> impl Iterator<Item = E> + '_ {
self.reset_start_event_count();
// Drain the oldest events first, then the newest
self.events_a
.drain(..)
.chain(self.events_b.drain(..))
.map(|i| i.event)
2020-05-13 23:17:06 +00:00
}
2020-06-17 05:20:08 +00:00
/// Iterates over events that happened since the last "update" call.
/// WARNING: You probably don't want to use this call. In most cases you should use an
/// [`EventReader`]. You should only use this if you know you only need to consume events
/// between the last `update()` call and your call to `iter_current_update_events`.
/// If events happen outside that window, they will not be handled. For example, any events that
/// happen after this call and before the next `update()` call will be dropped.
pub fn iter_current_update_events(&self) -> impl ExactSizeIterator<Item = &E> {
self.events_b.iter().map(|i| &i.event)
2020-06-17 05:20:08 +00:00
}
/// Get a specific event by id if it still exists in the events buffer.
pub fn get_event(&self, id: usize) -> Option<(&E, EventId<E>)> {
if id < self.oldest_id() {
return None;
}
let sequence = self.sequence(id);
let index = id.saturating_sub(sequence.start_event_count);
sequence
.get(index)
.map(|instance| (&instance.event, instance.event_id))
}
/// Oldest id still in the events buffer.
pub fn oldest_id(&self) -> usize {
self.events_a.start_event_count
}
/// Which event buffer is this event id a part of.
fn sequence(&self, id: usize) -> &EventSequence<E> {
if id < self.events_b.start_event_count {
&self.events_a
} else {
&self.events_b
}
}
}
2020-03-30 21:53:32 +00:00
impl<E: Event> std::iter::Extend<E> for Events<E> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = E>,
{
let mut event_count = self.event_count;
let events = iter.into_iter().map(|event| {
let event_id = EventId {
id: event_count,
_marker: PhantomData,
};
event_count += 1;
EventInstance { event_id, event }
});
self.events_b.extend(events);
trace!(
"Events::extend() -> ids: ({}..{})",
self.event_count,
event_count
);
self.event_count = event_count;
}
}
#[cfg(test)]
mod tests {
use crate::{prelude::World, system::SystemState};
use super::*;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
struct TestEvent {
i: usize,
}
#[test]
fn test_events() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
// this reader will miss event_0 and event_1 because it wont read them over the course of
// two updates
let mut reader_missed = events.get_reader();
let mut reader_a = events.get_reader();
events.send(event_0);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_0],
"reader_a created before event receives event"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![],
"second iteration of reader_a created before event results in zero events"
);
let mut reader_b = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_0],
"reader_b created after event receives event"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![],
"second iteration of reader_b created after event results in zero events"
);
events.send(event_1);
let mut reader_c = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_c),
vec![event_0, event_1],
"reader_c created after two events receives both events"
);
assert_eq!(
get_events(&events, &mut reader_c),
vec![],
"second iteration of reader_c created after two event results in zero events"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_1],
"reader_a receives next unread event"
);
events.update();
let mut reader_d = events.get_reader();
events.send(event_2);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_2],
"reader_a receives event created after update"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_1, event_2],
"reader_b receives events created before and after update"
);
assert_eq!(
get_events(&events, &mut reader_d),
vec![event_0, event_1, event_2],
"reader_d receives all events created before and after update"
);
events.update();
assert_eq!(
get_events(&events, &mut reader_missed),
vec![event_2],
"reader_missed missed events unread after two update() calls"
);
}
fn get_events<E: Event + Clone>(
events: &Events<E>,
reader: &mut ManualEventReader<E>,
) -> Vec<E> {
reader.iter(events).cloned().collect::<Vec<E>>()
2020-03-30 21:53:32 +00:00
}
#[derive(PartialEq, Eq, Debug)]
struct E(usize);
fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events<E>)) {
let mut events = Events::<E>::default();
let mut reader = events.get_reader();
assert!(reader.iter(&events).next().is_none());
events.send(E(0));
assert_eq!(*reader.iter(&events).next().unwrap(), E(0));
assert_eq!(reader.iter(&events).next(), None);
events.send(E(1));
clear_func(&mut events);
assert!(reader.iter(&events).next().is_none());
events.send(E(2));
events.update();
events.send(E(3));
assert!(reader.iter(&events).eq([E(2), E(3)].iter()));
}
#[test]
fn test_events_clear_and_read() {
events_clear_and_read_impl(|events| events.clear());
}
#[test]
fn test_events_drain_and_read() {
events_clear_and_read_impl(|events| {
assert!(events.drain().eq(vec![E(0), E(1)].into_iter()));
});
}
#[test]
fn test_events_extend_impl() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_reader();
events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]);
assert!(reader
.iter(&events)
.eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter()));
}
#[test]
fn test_events_empty() {
let mut events = Events::<TestEvent>::default();
assert!(events.is_empty());
events.send(TestEvent { i: 0 });
assert!(!events.is_empty());
events.update();
assert!(!events.is_empty());
// events are only empty after the second call to update
// due to double buffering.
events.update();
assert!(events.is_empty());
}
#[test]
fn test_event_reader_len_empty() {
let events = Events::<TestEvent>::default();
assert_eq!(events.get_reader().len(&events), 0);
assert!(events.get_reader().is_empty(&events));
}
#[test]
fn test_event_reader_len_filled() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
assert_eq!(events.get_reader().len(&events), 1);
assert!(!events.get_reader().is_empty(&events));
}
#[test]
fn test_event_iter_len_updated() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
events.send(TestEvent { i: 2 });
let mut reader = events.get_reader();
let mut iter = reader.iter(&events);
assert_eq!(iter.len(), 3);
iter.next();
assert_eq!(iter.len(), 2);
iter.next();
assert_eq!(iter.len(), 1);
iter.next();
assert_eq!(iter.len(), 0);
}
#[test]
fn test_event_reader_len_current() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
let reader = events.get_reader_current();
dbg!(&reader);
dbg!(&events);
assert!(reader.is_empty(&events));
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 1);
assert!(!reader.is_empty(&events));
}
#[test]
fn test_event_reader_len_update() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 0 });
let reader = events.get_reader();
assert_eq!(reader.len(&events), 2);
events.update();
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 3);
events.update();
assert_eq!(reader.len(&events), 1);
events.update();
assert!(reader.is_empty(&events));
}
#[test]
fn test_event_reader_clear() {
use bevy_ecs::prelude::*;
let mut world = World::new();
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
world.insert_resource(events);
let mut reader = IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> bool {
if !events.is_empty() {
events.clear();
false
} else {
true
}
});
reader.initialize(&mut world);
let is_empty = reader.run((), &mut world);
assert!(!is_empty, "EventReader should not be empty");
let is_empty = reader.run((), &mut world);
assert!(is_empty, "EventReader should be empty");
}
#[allow(clippy::iter_nth_zero)]
#[test]
fn test_event_iter_nth() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
world.send_event(TestEvent { i: 0 });
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
world.send_event(TestEvent { i: 4 });
let mut schedule = Schedule::new();
schedule.add_system(|mut events: EventReader<TestEvent>| {
let mut iter = events.iter();
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
assert_eq!(iter.nth(1), None);
assert!(events.is_empty());
});
schedule.run(&mut world);
}
#[test]
fn test_event_iter_last() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
let mut reader =
IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> Option<TestEvent> {
events.iter().last().copied()
});
reader.initialize(&mut world);
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
world.send_event(TestEvent { i: 0 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 0 }));
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 3 }));
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
}
#[derive(Clone, PartialEq, Debug, Default)]
struct EmptyTestEvent;
#[test]
fn test_firing_empty_event() {
let mut events = Events::<EmptyTestEvent>::default();
events.send_default();
let mut reader = events.get_reader();
assert_eq!(
get_events(&events, &mut reader),
vec![EmptyTestEvent::default()]
);
}
#[test]
fn ensure_reader_readonly() {
fn read_for<E: Event>() {
let mut world = World::new();
world.init_resource::<Events<E>>();
let mut state = SystemState::<EventReader<E>>::new(&mut world);
// This can only work if EventReader only reads the world
let _reader = state.get(&world);
}
read_for::<EmptyTestEvent>();
}
2020-03-30 21:53:32 +00:00
}