SanAndreasUnity/Assets/Scripts/Networking/TransformSyncer.cs
2022-09-30 14:39:50 +02:00

477 lines
16 KiB
C#

using UnityEngine;
using Mirror;
using UGameCore.Utilities;
using System.Collections.Generic;
namespace SanAndreasUnity.Net
{
public class TransformSyncer
{
public enum ClientUpdateType
{
ConstantVelocity,
Lerp,
Slerp,
SnapshotInterpolation,
}
[System.Serializable]
public struct Parameters
{
public bool useSmoothDeltaTime;
public ClientUpdateType clientUpdateType;
public float constantVelocityMultiplier;
public float lerpFactor;
public bool useRigidBody;
public bool visualize;
public ushort maxNumVisualizations;
public float visualizationScale;
public float snapshotLatency;
public static Parameters Default => new Parameters
{
useSmoothDeltaTime = true,
clientUpdateType = ClientUpdateType.ConstantVelocity,
constantVelocityMultiplier = 1f,
lerpFactor = 30f,
useRigidBody = true,
visualize = false,
maxNumVisualizations = 10,
visualizationScale = 0.2f,
snapshotLatency = 0.1f,
};
}
private Parameters m_parameters = Parameters.Default;
public Parameters Params => m_parameters;
private SyncData m_currentSyncData = new SyncData { Rotation = Quaternion.identity };
public SyncData CurrentSyncData => m_currentSyncData;
// we will switch to this sync data when we reach the current sync data
private SyncData? m_nextSyncData = null;
private readonly Transform m_transform;
public Transform Transform => m_transform;
private readonly Rigidbody m_rigidbody;
public struct SyncData
{
// sync data (as reported by server) toward which we move the transform
public Vector3 Position;
public Quaternion Rotation;
// these are the velocities used to move the object, calculated when new server data arrives
public float CalculatedVelocityMagnitude;
public float CalculatedAngularVelocityMagnitude;
// timestamp of server when this data was sent (batch timestamp)
public double RemoteTimeStamp;
public void Apply(Transform tr)
{
tr.localPosition = this.Position;
tr.localRotation = this.Rotation;
}
}
private readonly bool m_hasTransform = false;
private readonly bool m_hasRigidBody = false;
private readonly NetworkBehaviour m_networkBehaviour;
private Queue<GameObject> m_visualizationQueue = null; // null to save memory
// Buffer which holds received snapshots, ordered by remote timestamp. Queue seems to be better
// choice than List, because
// we often remove multiple elements from it, so the comparison boils down to: Dequeue() multiple
// times vs RemoveRange().
private Queue<SyncData> m_snapshotBuffer = null; // null to save memory server-side
public int SnapshotBufferCount => m_snapshotBuffer?.Count ?? 0;
// cached for fast access, otherwise we would have to iterate through Queue
private SyncData m_lastAddedSnapshot;
public TransformSyncer(Transform tr, Parameters parameters, NetworkBehaviour networkBehaviour)
{
m_transform = tr;
m_rigidbody = tr != null ? tr.GetComponent<Rigidbody>() : null;
m_parameters = parameters;
m_networkBehaviour = networkBehaviour;
m_hasTransform = tr != null;
m_hasRigidBody = m_rigidbody != null;
}
public bool OnSerialize(NetworkWriter writer, bool initialState)
{
byte flags = 0;
writer.Write(flags);
writer.Write(this.GetPosition());
writer.Write(this.GetRotation().eulerAngles);
return true;
}
public void OnDeserialize(NetworkReader reader, bool initialState)
{
byte flags = reader.ReadByte();
var syncData = new SyncData();
syncData.RemoteTimeStamp = NetworkClient.connection.remoteTimeStamp;
syncData.Position = reader.ReadVector3();// + syncData.velocity * this.syncInterval;
syncData.Rotation = Quaternion.Euler(reader.ReadVector3());
if (initialState)
{
syncData.CalculatedVelocityMagnitude = float.PositiveInfinity;
syncData.CalculatedAngularVelocityMagnitude = float.PositiveInfinity;
m_currentSyncData = syncData;
this.WarpToLatestSyncData();
}
else
{
syncData.CalculatedVelocityMagnitude = (syncData.Position - m_currentSyncData.Position).magnitude / m_networkBehaviour.syncInterval;
syncData.CalculatedAngularVelocityMagnitude = Quaternion.Angle(syncData.Rotation, m_currentSyncData.Rotation) / m_networkBehaviour.syncInterval;
m_nextSyncData = syncData;
this.AddToVisualization(syncData);
}
this.AddToSnapshotBuffer(syncData);
}
void AddToVisualization(SyncData syncData)
{
if (!m_parameters.visualize || m_parameters.maxNumVisualizations <= 0)
{
if (m_visualizationQueue != null)
{
while (m_visualizationQueue.Count > 0)
Object.Destroy(m_visualizationQueue.Dequeue());
m_visualizationQueue = null;
}
return;
}
m_visualizationQueue ??= new Queue<GameObject>();
while (m_visualizationQueue.Count >= m_parameters.maxNumVisualizations)
Object.Destroy(m_visualizationQueue.Dequeue());
var newGo = GameObject.CreatePrimitive(PrimitiveType.Cube);
newGo.transform.SetPositionAndRotation(syncData.Position, syncData.Rotation);
newGo.transform.localScale = Vector3.one * m_parameters.visualizationScale;
Object.DestroyImmediate(newGo.GetComponent<Collider>());
m_visualizationQueue.Enqueue(newGo);
int i = 0;
foreach (var go in m_visualizationQueue)
{
go.name = $"{m_networkBehaviour.name} - sync visualization {i}";
go.GetComponent<Renderer>().material.color = Color.Lerp(Color.white, Color.black, i / (float)m_visualizationQueue.Count);
i++;
}
}
private void AddToSnapshotBuffer(SyncData syncData)
{
if (m_parameters.clientUpdateType != ClientUpdateType.SnapshotInterpolation)
{
m_snapshotBuffer = null;
return;
}
m_snapshotBuffer ??= new Queue<SyncData>();
if (m_snapshotBuffer.Count == 0)
{
m_snapshotBuffer.Enqueue(syncData);
m_lastAddedSnapshot = syncData;
return;
}
if (m_lastAddedSnapshot.RemoteTimeStamp >= syncData.RemoteTimeStamp)
{
// can happen if packets arrive out of order (eg. on UDP transport)
return;
}
m_snapshotBuffer.Enqueue(syncData);
m_lastAddedSnapshot = syncData;
}
public void Update()
{
if (!m_hasTransform)
return;
if (NetUtils.IsServer)
{
m_networkBehaviour.SetSyncVarDirtyBit(1);
}
else
{
this.CheckIfArrivedToNextSyncData();
switch (m_parameters.clientUpdateType)
{
case ClientUpdateType.ConstantVelocity:
this.UpdateClientUsingConstantVelocity();
break;
case ClientUpdateType.Lerp:
this.UpdateClientUsingLerp();
break;
case ClientUpdateType.Slerp:
this.UpdateClientUsingSphericalLerp();
break;
case ClientUpdateType.SnapshotInterpolation:
this.UpdateClientUsingSnapshotInterpolation();
break;
default:
break;
}
this.CheckIfArrivedToNextSyncData();
}
}
private void UpdateClientUsingSnapshotInterpolation()
{
if (null == m_snapshotBuffer || m_snapshotBuffer.Count == 0)
return;
double currentNetworkTime = NetworkTime.time - m_parameters.snapshotLatency;
// find higher and lower snapshots - those are snapshots that surround the 'currentNetworkTime'
SyncData syncDataOfHigher = default;
SyncData syncDataOfLower = default;
// note: using foreach with Queue<T> will not allocate memory
bool isFirst = true;
bool foundFirstHigher = false;
foreach (SyncData snapshot in m_snapshotBuffer)
{
if (snapshot.RemoteTimeStamp >= currentNetworkTime)
{
syncDataOfHigher = snapshot;
if (isFirst)
syncDataOfLower = snapshot;
foundFirstHigher = true;
break;
}
isFirst = false;
syncDataOfLower = snapshot;
}
if (!foundFirstHigher)
{
// we are ahead of all snapshots
// use the last snapshot for both higher and lower snapshot
syncDataOfHigher = syncDataOfLower;
}
// interpolate between lower and higher syncdata
double ratio = (currentNetworkTime - syncDataOfLower.RemoteTimeStamp) / (syncDataOfHigher.RemoteTimeStamp - syncDataOfLower.RemoteTimeStamp);
if (double.IsNaN(ratio))
ratio = 1;
ratio = Mathd.Clamp01(ratio);
SyncData interpolated = DoSnapshotInterpolation(syncDataOfLower, syncDataOfHigher, ratio);
this.Apply(interpolated);
// remove old snapshots, but be careful not to remove the current lower snapshot
this.RemoveOldSnapshots(System.Math.Min(currentNetworkTime, syncDataOfLower.RemoteTimeStamp));
}
private void RemoveOldSnapshots(double currentNetworkTime)
{
while (true)
{
if (m_snapshotBuffer.Count == 0)
break;
SyncData syncData = m_snapshotBuffer.Peek();
if (syncData.RemoteTimeStamp >= currentNetworkTime)
break;
m_snapshotBuffer.Dequeue();
}
}
private static SyncData DoSnapshotInterpolation(SyncData from, SyncData to, double t)
{
return new SyncData
{
Position = Vector3.LerpUnclamped(from.Position, to.Position, (float)t),
Rotation = Quaternion.SlerpUnclamped(from.Rotation, to.Rotation, (float)t),
};
}
private void UpdateClientUsingConstantVelocity()
{
this.SetPosition(Vector3.MoveTowards(
this.GetPosition(),
m_currentSyncData.Position,
m_currentSyncData.CalculatedVelocityMagnitude * this.GetDeltaTime() * m_parameters.constantVelocityMultiplier));
this.SetRotation(Quaternion.RotateTowards(
this.GetRotation(),
m_currentSyncData.Rotation,
m_currentSyncData.CalculatedAngularVelocityMagnitude * this.GetDeltaTime() * m_parameters.constantVelocityMultiplier));
}
private void UpdateClientUsingLerp()
{
this.SetPosition(Vector3.Lerp(
this.GetPosition(),
m_currentSyncData.Position,
1 - Mathf.Exp(-m_parameters.lerpFactor * this.GetDeltaTime())));
this.SetRotation(Quaternion.Lerp(
this.GetRotation(),
m_currentSyncData.Rotation,
1 - Mathf.Exp(-m_parameters.lerpFactor * this.GetDeltaTime())));
}
private void UpdateClientUsingSphericalLerp()
{
this.SetPosition(Vector3.Slerp(
this.GetPosition(),
m_currentSyncData.Position,
1 - Mathf.Exp(-m_parameters.lerpFactor * this.GetDeltaTime())));
this.SetRotation(Quaternion.Slerp(
this.GetRotation(),
m_currentSyncData.Rotation,
1 - Mathf.Exp(-m_parameters.lerpFactor * this.GetDeltaTime())));
}
private float GetDeltaTime()
{
return m_parameters.useSmoothDeltaTime ? Time.smoothDeltaTime : Time.deltaTime;
}
public void OnValidate(Parameters parameters)
{
m_parameters = parameters;
}
public void ResetSyncDataToTransform()
{
if (m_hasTransform)
{
m_currentSyncData.Position = this.GetPosition();
m_currentSyncData.Rotation = this.GetRotation();
}
m_currentSyncData.CalculatedVelocityMagnitude = float.PositiveInfinity;
m_currentSyncData.CalculatedAngularVelocityMagnitude = float.PositiveInfinity;
m_nextSyncData = null;
m_snapshotBuffer?.Clear();
}
public void WarpToLatestSyncData()
{
var syncData = this.GetLatestSyncData();
// assign position/rotation directly to transform, because rigid body may not warp ?
if (m_hasTransform)
{
syncData.Apply(m_transform);
}
m_currentSyncData = syncData;
m_nextSyncData = null;
m_snapshotBuffer?.Clear();
}
public SyncData GetLatestSyncData()
{
return m_nextSyncData ?? m_currentSyncData;
}
private void Apply(SyncData syncData)
{
this.SetPosition(syncData.Position);
this.SetRotation(syncData.Rotation);
}
private void SetPosition(Vector3 pos)
{
if (m_parameters.useRigidBody && m_hasRigidBody)
m_rigidbody.MovePosition(pos);
else if (m_hasTransform)
m_transform.localPosition = pos;
}
private void SetRotation(Quaternion rot)
{
if (m_parameters.useRigidBody && m_hasRigidBody)
m_rigidbody.MoveRotation(rot);
else if (m_hasTransform)
m_transform.localRotation = rot;
}
private Vector3 GetPosition()
{
if (m_parameters.useRigidBody && m_hasRigidBody)
return m_rigidbody.position;
if (m_hasTransform)
return m_transform.localPosition;
return m_currentSyncData.Position;
}
private Quaternion GetRotation()
{
if (m_parameters.useRigidBody && m_hasRigidBody)
return m_rigidbody.rotation;
if (m_hasTransform)
return m_transform.localRotation;
return m_currentSyncData.Rotation;
}
private bool ArrivedToCurrentSyncData()
{
return Vector3.Distance(m_currentSyncData.Position, this.GetPosition()) < 0.01f
&& Quaternion.Angle(m_currentSyncData.Rotation, this.GetRotation()) < 1f;
}
private void CheckIfArrivedToNextSyncData()
{
if (m_parameters.clientUpdateType == ClientUpdateType.SnapshotInterpolation)
return;
if (m_nextSyncData.HasValue && this.ArrivedToCurrentSyncData())
{
this.Apply(m_currentSyncData);
m_currentSyncData = m_nextSyncData.Value;
m_nextSyncData = null;
}
}
}
}