unleashed-firmware/applications/sd-card-test/sd-card-test.cpp
あく 6d648da003
[FL-835] Factory reset. Cli refactoring. (#466)
* ApiHal: add boot flags. Internal storage: add factory reset.
* Bootloader: correct doxygen comment format.
* Cli: change cli callback signature. Applications: update API usage. Add factory_reset cli command.
2021-05-18 16:57:39 +03:00

897 lines
No EOL
27 KiB
C++

#include "app-template.h"
#include "stm32_adafruit_sd.h"
#include "fnv1a-hash.h"
#include "filesystem-api.h"
#include "cli/cli.h"
#include "callback-connector.h"
// event enumeration type
typedef uint8_t event_t;
class SdTestState {
public:
// state data
static const uint8_t lines_count = 6;
const char* line[lines_count];
// state initializer
SdTestState() {
for(uint8_t i = 0; i < lines_count; i++) {
line[i] = "";
}
}
};
// events class
class SdTestEvent {
public:
// events enum
static const event_t EventTypeTick = 0;
static const event_t EventTypeKey = 1;
// payload
union {
InputEvent input;
} value;
// event type
event_t type;
};
// our app derived from base AppTemplate class
// with template variables <state, events>
class SdTest : public AppTemplate<SdTestState, SdTestEvent> {
public:
// vars
const uint32_t benchmark_data_size = 4096;
uint8_t* benchmark_data;
FS_Api* fs_api;
// consts
static const uint32_t BENCHMARK_ERROR = UINT_MAX;
// funcs
void run();
void render(Canvas* canvas);
template <class T> void set_text(std::initializer_list<T> list);
template <class T> void set_error(std::initializer_list<T> list);
void wait_for_button(InputKey input_button);
bool ask(InputKey input_button_cancel, InputKey input_button_ok);
void blink_red();
void set_red();
void blink_green();
// "tests"
void detect_sd_card();
void show_warning();
void get_sd_card_info();
bool prepare_benchmark_data();
void free_benchmark_data();
void write_benchmark();
uint32_t
write_benchmark_internal(const uint32_t size, const uint32_t tcount, bool silent = false);
void read_benchmark();
uint32_t read_benchmark_internal(
const uint32_t size,
const uint32_t count,
File* file,
bool silent = false);
void hash_benchmark();
// cli tests
void cli_read_benchmark(Cli* cli, string_t args, void* _ctx);
void cli_write_benchmark(Cli* cli, string_t args, void* _ctx);
};
// start app
void SdTest::run() {
app_ready();
fs_api = static_cast<FS_Api*>(furi_record_open("sdcard"));
if(fs_api == NULL) {
set_error({"cannot get sdcard api"});
exit();
}
Cli* cli = static_cast<Cli*>(furi_record_open("cli"));
// read_benchmark and write_benchmark signatures are same. so we must use tags
auto cli_read_cb = cbc::obtain_connector<0>(this, &SdTest::cli_read_benchmark);
cli_add_command(cli, "sd_read_test", cli_read_cb, this);
auto cli_write_cb = cbc::obtain_connector<1>(this, &SdTest::cli_write_benchmark);
cli_add_command(cli, "sd_write_test", cli_write_cb, this);
detect_sd_card();
get_sd_card_info();
show_warning();
set_text({"preparing benchmark data"});
bool data_prepared = prepare_benchmark_data();
if(data_prepared) {
set_text({"benchmark data prepared"});
} else {
set_error({"cannot allocate buffer", "for benchmark data"});
}
write_benchmark();
read_benchmark();
hash_benchmark();
free_benchmark_data();
set_text({
"test complete",
"",
"",
"",
"",
"press BACK to exit",
});
wait_for_button(InputKeyBack);
exit();
}
// detect sd card insertion
void SdTest::detect_sd_card() {
const uint8_t str_buffer_size = 40;
const uint8_t dots_animation_size = 4;
char str_buffer[str_buffer_size];
const char dots[dots_animation_size][4] = {"", ".", "..", "..."};
uint8_t i = 0;
// detect sd card pin
while(fs_api->common.get_fs_info(NULL, NULL) == FSE_NOT_READY) {
delay(100);
snprintf(str_buffer, str_buffer_size, "Waiting%s", dots[i]);
set_text({static_cast<const char*>(str_buffer), "Please insert sd card"});
if(i < (dots_animation_size - 1)) {
i++;
} else {
i = 0;
}
}
blink_green();
}
// show warning about test
void SdTest::show_warning() {
set_text(
{"!!Warning!!",
"during the tests",
"files can be overwritten",
"or data on card may be lost",
"",
"press UP DOWN OK to continue"});
wait_for_button(InputKeyUp);
wait_for_button(InputKeyDown);
wait_for_button(InputKeyOk);
}
// get info about sd card, label, sn
// sector, cluster, total and free size
void SdTest::get_sd_card_info() {
const uint8_t str_buffer_size = 26;
char str_buffer[2][str_buffer_size];
FS_Error result;
uint64_t bytes_total, bytes_free;
int __attribute__((unused)) snprintf_count = 0;
result = fs_api->common.get_fs_info(&bytes_total, &bytes_free);
if(result != FSE_OK) set_error({"get_fs_info error", fs_api->error.get_desc(result)});
snprintf(
str_buffer[0], str_buffer_size, "%lu KB total", static_cast<uint32_t>(bytes_total / 1024));
snprintf(
str_buffer[1], str_buffer_size, "%lu KB free", static_cast<uint32_t>(bytes_free / 1024));
set_text(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
"press OK to continue"});
blink_green();
wait_for_button(InputKeyOk);
}
// prepare benchmark data (allocate data in ram)
bool SdTest::prepare_benchmark_data() {
bool result = true;
benchmark_data = static_cast<uint8_t*>(malloc(benchmark_data_size));
if(benchmark_data == NULL) {
result = false;
}
for(size_t i = 0; i < benchmark_data_size; i++) {
benchmark_data[i] = static_cast<uint8_t>(i);
}
return result;
}
void SdTest::free_benchmark_data() {
free(benchmark_data);
}
// write speed test
void SdTest::write_benchmark() {
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
const uint32_t benchmark_data_size = 16384 * 4;
uint32_t benchmark_bps = 0;
const uint8_t str_buffer_size = 32;
char str_buffer[6][str_buffer_size] = {"", "", "", "", "", ""};
auto string_list = {
static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
static_cast<const char*>(str_buffer[2]),
static_cast<const char*>(str_buffer[3]),
static_cast<const char*>(str_buffer[4]),
static_cast<const char*>(str_buffer[5])};
set_text({"write speed test", "procedure can be lengthy", "please wait"});
delay(100);
// 1b test
benchmark_bps = write_benchmark_internal(b1_size, benchmark_data_size / b1_size);
snprintf(str_buffer[0], str_buffer_size, "1-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 8b test
benchmark_bps = write_benchmark_internal(b8_size, benchmark_data_size / b8_size);
snprintf(str_buffer[1], str_buffer_size, "8-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 32b test
benchmark_bps = write_benchmark_internal(b32_size, benchmark_data_size / b32_size);
snprintf(str_buffer[2], str_buffer_size, "32-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 256b test
benchmark_bps = write_benchmark_internal(b256_size, benchmark_data_size / b256_size);
snprintf(str_buffer[3], str_buffer_size, "256-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 4096b test
benchmark_bps = write_benchmark_internal(b4096_size, benchmark_data_size / b4096_size);
snprintf(str_buffer[4], str_buffer_size, "4096-byte: %lu bps", benchmark_bps);
snprintf(str_buffer[5], str_buffer_size, "press OK to continue");
set_text(string_list);
blink_green();
wait_for_button(InputKeyOk);
}
uint32_t SdTest::write_benchmark_internal(const uint32_t size, const uint32_t count, bool silent) {
uint32_t start_tick, stop_tick, benchmark_bps = 0, benchmark_time, bytes_written;
File file;
const uint8_t str_buffer_size = 32;
char str_buffer[str_buffer_size];
if(!fs_api->file.open(&file, "write.test", FSAM_WRITE, FSOM_OPEN_ALWAYS)) {
if(!silent) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot open file ", static_cast<const char*>(str_buffer)});
} else {
benchmark_bps = BENCHMARK_ERROR;
}
}
start_tick = osKernelGetTickCount();
for(size_t i = 0; i < count; i++) {
bytes_written = fs_api->file.write(&file, benchmark_data, size);
if(bytes_written != size || file.error_id != FSE_OK) {
if(!silent) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot write to file ", static_cast<const char*>(str_buffer)});
} else {
benchmark_bps = BENCHMARK_ERROR;
break;
}
}
}
stop_tick = osKernelGetTickCount();
if(!fs_api->file.close(&file)) {
if(!silent) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte write test", size);
set_error({"cannot close file ", static_cast<const char*>(str_buffer)});
} else {
benchmark_bps = BENCHMARK_ERROR;
}
}
if(benchmark_bps != BENCHMARK_ERROR) {
benchmark_time = stop_tick - start_tick;
benchmark_bps = (count * size) * osKernelGetTickFreq() / benchmark_time;
}
return benchmark_bps;
}
// read speed test
void SdTest::read_benchmark() {
const uint32_t benchmark_data_size = 16384 * 8;
uint32_t bytes_written;
uint32_t benchmark_bps = 0;
const uint8_t str_buffer_size = 32;
char str_buffer[6][str_buffer_size] = {"", "", "", "", "", ""};
auto string_list = {
static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
static_cast<const char*>(str_buffer[2]),
static_cast<const char*>(str_buffer[3]),
static_cast<const char*>(str_buffer[4]),
static_cast<const char*>(str_buffer[5])};
File file;
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
// prepare data for read test
set_text({"prepare data", "for read speed test", "procedure can be lengthy", "please wait"});
delay(100);
if(!fs_api->file.open(&file, "read.test", FSAM_WRITE, FSOM_OPEN_ALWAYS)) {
set_error({"cannot open file ", "in prepare read"});
}
for(size_t i = 0; i < benchmark_data_size / b4096_size; i++) {
bytes_written = fs_api->file.write(&file, benchmark_data, b4096_size);
if(bytes_written != b4096_size || file.error_id != FSE_OK) {
set_error({"cannot write to file ", "in prepare read"});
}
}
if(!fs_api->file.close(&file)) {
set_error({"cannot close file ", "in prepare read"});
}
// test start
set_text({"read speed test", "procedure can be lengthy", "please wait"});
delay(100);
// open file
if(!fs_api->file.open(&file, "read.test", FSAM_READ, FSOM_OPEN_EXISTING)) {
set_error({"cannot open file ", "in read benchmark"});
}
// 1b test
benchmark_bps = read_benchmark_internal(b1_size, benchmark_data_size / b1_size, &file);
snprintf(str_buffer[0], str_buffer_size, "1-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 8b test
benchmark_bps = read_benchmark_internal(b8_size, benchmark_data_size / b8_size, &file);
snprintf(str_buffer[1], str_buffer_size, "8-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 32b test
benchmark_bps = read_benchmark_internal(b32_size, benchmark_data_size / b32_size, &file);
snprintf(str_buffer[2], str_buffer_size, "32-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 256b test
benchmark_bps = read_benchmark_internal(b256_size, benchmark_data_size / b256_size, &file);
snprintf(str_buffer[3], str_buffer_size, "256-byte: %lu bps", benchmark_bps);
set_text(string_list);
delay(100);
// 4096b test
benchmark_bps = read_benchmark_internal(b4096_size, benchmark_data_size / b4096_size, &file);
snprintf(str_buffer[4], str_buffer_size, "4096-byte: %lu bps", benchmark_bps);
snprintf(str_buffer[5], str_buffer_size, "press OK to continue");
set_text(string_list);
// close file
if(!fs_api->file.close(&file)) {
set_error({"cannot close file ", "in read test"});
}
blink_green();
wait_for_button(InputKeyOk);
}
uint32_t SdTest::read_benchmark_internal(
const uint32_t size,
const uint32_t count,
File* file,
bool silent) {
uint32_t start_tick, stop_tick, benchmark_bps = 0, benchmark_time, bytes_readed;
const uint8_t str_buffer_size = 32;
char str_buffer[str_buffer_size];
uint8_t* read_buffer;
read_buffer = static_cast<uint8_t*>(malloc(size));
if(read_buffer == NULL) {
if(!silent) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte read test", size);
set_error({"cannot allocate memory", static_cast<const char*>(str_buffer)});
} else {
benchmark_bps = BENCHMARK_ERROR;
}
}
fs_api->file.seek(file, 0, true);
start_tick = osKernelGetTickCount();
for(size_t i = 0; i < count; i++) {
bytes_readed = fs_api->file.read(file, read_buffer, size);
if(bytes_readed != size || file->error_id != FSE_OK) {
if(!silent) {
snprintf(str_buffer, str_buffer_size, "in %lu-byte read test", size);
set_error({"cannot read from file ", static_cast<const char*>(str_buffer)});
} else {
benchmark_bps = BENCHMARK_ERROR;
break;
}
}
}
stop_tick = osKernelGetTickCount();
free(read_buffer);
if(benchmark_bps != BENCHMARK_ERROR) {
benchmark_time = stop_tick - start_tick;
benchmark_bps = (count * size) * osKernelGetTickFreq() / benchmark_time;
}
return benchmark_bps;
}
// hash benchmark, store data to sd with known hash
// then read, calculate hash and compare both hashes
void SdTest::hash_benchmark() {
uint32_t mcu_data_hash = FNV_1A_INIT;
uint32_t sdcard_data_hash = FNV_1A_INIT;
uint8_t* read_buffer;
uint32_t bytes_readed;
uint32_t bytes_written;
const uint8_t str_buffer_size = 32;
char str_buffer[3][str_buffer_size] = {"", "", ""};
File file;
const uint32_t b4096_size = 4096;
const uint32_t benchmark_count = 20;
// prepare data for hash test
set_text({"prepare data", "for hash test"});
delay(100);
// write data to test file and calculate hash
if(!fs_api->file.open(&file, "hash.test", FSAM_WRITE, FSOM_OPEN_ALWAYS)) {
set_error({"cannot open file ", "in prepare hash"});
}
for(uint32_t i = 0; i < benchmark_count; i++) {
mcu_data_hash = fnv1a_buffer_hash(benchmark_data, b4096_size, mcu_data_hash);
bytes_written = fs_api->file.write(&file, benchmark_data, b4096_size);
if(bytes_written != b4096_size || file.error_id != FSE_OK) {
set_error({"cannot write to file ", "in prepare hash"});
}
snprintf(str_buffer[0], str_buffer_size, "writing %lu of %lu x 4k", i, benchmark_count);
set_text({"prepare data", "for hash test", static_cast<const char*>(str_buffer[0])});
delay(100);
}
if(!fs_api->file.close(&file)) {
set_error({"cannot close file ", "in prepare hash"});
}
// show hash of data located in mcu memory
snprintf(str_buffer[0], str_buffer_size, "hash in mcu 0x%lx", mcu_data_hash);
set_text({str_buffer[0]});
delay(100);
// read data from sd card and calculate hash
read_buffer = static_cast<uint8_t*>(malloc(b4096_size));
if(read_buffer == NULL) {
set_error({"cannot allocate memory", "in hash test"});
}
if(!fs_api->file.open(&file, "hash.test", FSAM_READ, FSOM_OPEN_EXISTING)) {
set_error({"cannot open file ", "in hash test"});
}
for(uint32_t i = 0; i < benchmark_count; i++) {
bytes_readed = fs_api->file.read(&file, read_buffer, b4096_size);
sdcard_data_hash = fnv1a_buffer_hash(read_buffer, b4096_size, sdcard_data_hash);
if(bytes_readed != b4096_size || file.error_id != FSE_OK) {
set_error({"cannot read from file ", "in hash test"});
}
snprintf(str_buffer[1], str_buffer_size, "reading %lu of %lu x 4k", i, benchmark_count);
set_text({str_buffer[0], str_buffer[1]});
delay(100);
}
if(!fs_api->file.close(&file)) {
set_error({"cannot close file ", "in hash test"});
}
free(read_buffer);
snprintf(str_buffer[1], str_buffer_size, "hash in sdcard 0x%lx", sdcard_data_hash);
if(mcu_data_hash == sdcard_data_hash) {
snprintf(str_buffer[2], str_buffer_size, "hashes are equal, press OK");
set_text(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
static_cast<const char*>(str_buffer[2])});
} else {
snprintf(str_buffer[2], str_buffer_size, "hash error, press BACK to exit");
set_error(
{static_cast<const char*>(str_buffer[0]),
static_cast<const char*>(str_buffer[1]),
"",
"",
"",
static_cast<const char*>(str_buffer[2])});
}
blink_green();
wait_for_button(InputKeyOk);
}
void SdTest::cli_read_benchmark(Cli* cli, string_t args, void* _ctx) {
SdTest* _this = static_cast<SdTest*>(_ctx);
const uint32_t benchmark_data_size = 16384 * 8;
uint32_t bytes_written;
uint32_t benchmark_bps = 0;
File file;
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
const uint8_t str_buffer_size = 64;
char str_buffer[str_buffer_size];
printf("preparing benchmark data\r\n");
bool data_prepared = _this->prepare_benchmark_data();
if(data_prepared) {
printf("benchmark data prepared\r\n");
} else {
printf("error: cannot allocate buffer for benchmark data\r\n");
}
// prepare data for read test
printf("prepare data for read speed test, procedure can be lengthy, please wait\r\n");
if(!_this->fs_api->file.open(&file, "read.test", FSAM_WRITE, FSOM_OPEN_ALWAYS)) {
printf("error: cannot open file in prepare read\r\n");
}
for(size_t i = 0; i < benchmark_data_size / b4096_size; i++) {
bytes_written = _this->fs_api->file.write(&file, benchmark_data, b4096_size);
if(bytes_written != b4096_size || file.error_id != FSE_OK) {
printf("error: cannot write to file in prepare read\r\n");
}
}
if(!_this->fs_api->file.close(&file)) {
printf("error: cannot close file in prepare read\r\n");
}
// test start
printf("read speed test, procedure can be lengthy, please wait\r\n");
// open file
if(!_this->fs_api->file.open(&file, "read.test", FSAM_READ, FSOM_OPEN_EXISTING)) {
printf("error: cannot open file in read benchmark\r\n");
}
// 1b test
benchmark_bps =
_this->read_benchmark_internal(b1_size, benchmark_data_size / b1_size, &file, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 1-byte read test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "1-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 8b test
benchmark_bps =
_this->read_benchmark_internal(b8_size, benchmark_data_size / b8_size, &file, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 8-byte read test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "8-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 32b test
benchmark_bps =
_this->read_benchmark_internal(b32_size, benchmark_data_size / b32_size, &file, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 32-byte read test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "32-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 256b test
benchmark_bps =
_this->read_benchmark_internal(b256_size, benchmark_data_size / b256_size, &file, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 256-byte read test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "256-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 4096b test
benchmark_bps =
_this->read_benchmark_internal(b4096_size, benchmark_data_size / b4096_size, &file, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 4096-byte read test\r\n");
} else {
snprintf(
str_buffer, str_buffer_size, "4096-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// close file
if(!_this->fs_api->file.close(&file)) {
printf("error: cannot close file\r\n");
}
_this->free_benchmark_data();
printf("test completed\r\n");
}
void SdTest::cli_write_benchmark(Cli* cli, string_t args, void* _ctx) {
SdTest* _this = static_cast<SdTest*>(_ctx);
const uint32_t b1_size = 1;
const uint32_t b8_size = 8;
const uint32_t b32_size = 32;
const uint32_t b256_size = 256;
const uint32_t b4096_size = 4096;
const uint32_t benchmark_data_size = 16384 * 4;
uint32_t benchmark_bps = 0;
const uint8_t str_buffer_size = 64;
char str_buffer[str_buffer_size];
printf("preparing benchmark data\r\n");
bool data_prepared = _this->prepare_benchmark_data();
if(data_prepared) {
printf("benchmark data prepared\r\n");
} else {
printf("error: cannot allocate buffer for benchmark data\r\n");
}
printf("write speed test, procedure can be lengthy, please wait\r\n");
// 1b test
benchmark_bps = _this->write_benchmark_internal(b1_size, benchmark_data_size / b1_size, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 1-byte write test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "1-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 8b test
benchmark_bps = _this->write_benchmark_internal(b8_size, benchmark_data_size / b8_size, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 8-byte write test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "8-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 32b test
benchmark_bps =
_this->write_benchmark_internal(b32_size, benchmark_data_size / b32_size, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 32-byte write test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "32-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 256b test
benchmark_bps =
_this->write_benchmark_internal(b256_size, benchmark_data_size / b256_size, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 256-byte write test\r\n");
} else {
snprintf(str_buffer, str_buffer_size, "256-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
// 4096b test
benchmark_bps =
_this->write_benchmark_internal(b4096_size, benchmark_data_size / b4096_size, true);
if(benchmark_bps == BENCHMARK_ERROR) {
printf("error: in 4096-byte write test\r\n");
} else {
snprintf(
str_buffer, str_buffer_size, "4096-byte: %lu bytes per second\r\n", benchmark_bps);
printf(str_buffer);
}
_this->free_benchmark_data();
printf("test completed\r\n");
}
// wait for button press
void SdTest::wait_for_button(InputKey input_button) {
SdTestEvent event;
osMessageQueueReset(event_queue);
while(1) {
osStatus_t result = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
if(result == osOK && event.type == SdTestEvent::EventTypeKey) {
if(event.value.input.type == InputTypeShort) {
if(event.value.input.key == InputKeyBack) {
exit();
} else {
if(event.value.input.key == input_button) {
blink_green();
break;
} else {
blink_red();
}
}
}
}
}
osMessageQueueReset(event_queue);
}
// ask user to proceed or cancel
bool SdTest::ask(InputKey input_button_cancel, InputKey input_button_ok) {
bool return_result;
SdTestEvent event;
osMessageQueueReset(event_queue);
while(1) {
osStatus_t result = osMessageQueueGet(event_queue, &event, NULL, osWaitForever);
if(result == osOK && event.type == SdTestEvent::EventTypeKey) {
if(event.value.input.type == InputTypeShort) {
if(event.value.input.key == InputKeyBack) {
exit();
} else {
if(event.value.input.key == input_button_ok) {
blink_green();
return_result = true;
break;
} else if(event.value.input.key == input_button_cancel) {
blink_green();
return_result = false;
break;
} else {
blink_red();
}
}
}
}
}
osMessageQueueReset(event_queue);
return return_result;
}
// blink red led
void SdTest::blink_red() {
api_hal_light_set(LightRed, 0xFF);
delay(50);
api_hal_light_set(LightRed, 0x00);
}
// light up red led
void SdTest::set_red() {
api_hal_light_set(LightRed, 0x00);
}
// blink green led
void SdTest::blink_green() {
api_hal_light_set(LightGreen, 0xFF);
delay(50);
api_hal_light_set(LightGreen, 0x00);
}
// set text, but with infinite loop
template <class T> void SdTest::set_error(std::initializer_list<T> list) {
set_text(list);
set_red();
wait_for_button(InputKeyBack);
exit();
}
// set text, sort of variadic function
template <class T> void SdTest::set_text(std::initializer_list<T> list) {
uint8_t line_position = 0;
acquire_state();
printf("------------------------\r\n");
// set line strings from args
for(auto element : list) {
state.line[line_position] = element;
printf("%s\n", element);
line_position++;
if(line_position == state.lines_count) break;
}
// set empty lines
for(; line_position < state.lines_count; line_position++) {
state.line[line_position] = "";
printf("\r\n");
}
printf("------------------------\r\n");
release_state();
update_gui();
}
// render app
void SdTest::render(Canvas* canvas) {
canvas_set_color(canvas, ColorBlack);
canvas_set_font(canvas, FontSecondary);
for(uint8_t i = 0; i < state.lines_count; i++) {
canvas_draw_str(canvas, 0, (i + 1) * 10, state.line[i]);
}
}
// app enter function
extern "C" int32_t sd_card_test(void* p) {
SdTest* app = new SdTest();
app->run();
return 0;
}