unleashed-firmware/applications/drivers/subghz/cc1101_ext/cc1101_ext.c
Skorpionm 34539cda17
FuriHal: fix start duration furi_hal_subghz_async_tx (#3230)
* FuriHal: fix start duration furi_hal_subghz_async_tx
* FuriHal: add check min duration arr for the first level
* FuriHal: fix conflict dev
* SubGhz: fix unit_test
* FuriHal: subghz internal fix start/stop transmit duration
* Drivers: subghz external fix start/stop transmit duration
* FuriHal: subghz optimization
* SubGhz: fix unit_test subghz
* FuriHal: subghz fix end duration if size == size dma buf
* FuriHal: revert enum values order, remove garbage
* FuriHal: revert one more small bit in subghz
* FuriHal: handle various corner cases in subghz transmission
* FuriHal: cleanup subghz code
* FuriHal: add parenthesis around value in subghz defines
* FuriHal: add packer subghz_async_tx
* FuriHal: more reliable subghz transmission end handling, fixes stuck transmission
* FuriHal: add subghz crutch docs, and rename some defines to conform naming standards
* FuriHal: subghz,  the logic of timers has been changed. disabling the shadow register ARR
* FuriHal: fix subghz off dma irq
* SubGhzExt: fun rename
* FuriHal,SubGhz: fix g0 state on reset, fix incorrect async_tx stop sequence, remove dead code.

Co-authored-by: あく <alleteam@gmail.com>
2024-01-11 16:56:14 +09:00

852 lines
32 KiB
C

#include "cc1101_ext.h"
#include <lib/subghz/devices/cc1101_configs.h>
#include <furi_hal_region.h>
#include <furi_hal_version.h>
#include <furi_hal_rtc.h>
#include <furi_hal_spi.h>
#include <furi_hal_interrupt.h>
#include <furi_hal_resources.h>
#include <furi_hal_bus.h>
#include <stm32wbxx_ll_dma.h>
#include <furi_hal_cortex.h>
#include <furi.h>
#include <cc1101.h>
#include <stdio.h>
#define TAG "SubGhzDeviceCc1101Ext"
#define SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO (&gpio_ext_pb2)
/* DMA Channels definition */
#define SUBGHZ_DEVICE_CC1101_EXT_DMA (DMA2)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL (LL_DMA_CHANNEL_3)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL (LL_DMA_CHANNEL_4)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL (LL_DMA_CHANNEL_5)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ (FuriHalInterruptIdDma2Ch3)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF \
SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF \
SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF \
SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL
/** Low level buffer dimensions and guard times */
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL (256u)
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF \
(SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL / 2)
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME (999u >> 1)
/** SubGhz state */
typedef enum {
SubGhzDeviceCC1101ExtStateInit, /**< Init pending */
SubGhzDeviceCC1101ExtStateIdle, /**< Idle, energy save mode */
SubGhzDeviceCC1101ExtStateAsyncRx, /**< Async RX started */
SubGhzDeviceCC1101ExtStateAsyncTx, /**< Async TX started, DMA and timer is on */
SubGhzDeviceCC1101ExtStateAsyncTxEnd, /**< Async TX complete, cleanup needed */
} SubGhzDeviceCC1101ExtState;
/** SubGhz regulation, receive transmission on the current frequency for the
* region */
typedef enum {
SubGhzDeviceCC1101ExtRegulationOnlyRx, /**only Rx*/
SubGhzDeviceCC1101ExtRegulationTxRx, /**TxRx*/
} SubGhzDeviceCC1101ExtRegulation;
typedef enum {
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle,
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset,
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun,
} SubGhzDeviceCC1101ExtAsyncTxMiddlewareState;
typedef struct {
SubGhzDeviceCC1101ExtAsyncTxMiddlewareState state;
bool is_odd_level;
uint32_t adder_duration;
} SubGhzDeviceCC1101ExtAsyncTxMiddleware;
typedef struct {
uint32_t* buffer;
SubGhzDeviceCC1101ExtCallback callback;
void* callback_context;
uint32_t gpio_tx_buff[2];
uint32_t debug_gpio_buff[2];
SubGhzDeviceCC1101ExtAsyncTxMiddleware middleware;
} SubGhzDeviceCC1101ExtAsyncTx;
typedef struct {
uint32_t capture_delta_duration;
SubGhzDeviceCC1101ExtCaptureCallback capture_callback;
void* capture_callback_context;
} SubGhzDeviceCC1101ExtAsyncRx;
typedef struct {
volatile SubGhzDeviceCC1101ExtState state;
volatile SubGhzDeviceCC1101ExtRegulation regulation;
const GpioPin* async_mirror_pin;
FuriHalSpiBusHandle* spi_bus_handle;
const GpioPin* g0_pin;
SubGhzDeviceCC1101ExtAsyncTx async_tx;
SubGhzDeviceCC1101ExtAsyncRx async_rx;
} SubGhzDeviceCC1101Ext;
static SubGhzDeviceCC1101Ext* subghz_device_cc1101_ext = NULL;
static bool subghz_device_cc1101_ext_check_init() {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateInit);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle;
bool ret = false;
CC1101Status cc1101_status = {0};
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
FuriHalCortexTimer timer = furi_hal_cortex_timer_get(100 * 1000);
do {
// Reset
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
furi_hal_gpio_init(
subghz_device_cc1101_ext->spi_bus_handle->miso,
GpioModeInput,
GpioPullUp,
GpioSpeedLow);
cc1101_status = cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
cc1101_status = cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
// Prepare GD0 for power on self test
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeInput, GpioPullUp, GpioSpeedLow);
// GD0 low
cc1101_status = cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
while(furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin) != false) {
if(furi_hal_cortex_timer_is_expired(timer)) {
//timeout
break;
}
}
if(furi_hal_cortex_timer_is_expired(timer)) {
//timeout
break;
}
// GD0 high
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeInput, GpioPullDown, GpioSpeedLow);
cc1101_status = cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle,
CC1101_IOCFG0,
CC1101IocfgHW | CC1101_IOCFG_INV);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
while(furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin) != true) {
if(furi_hal_cortex_timer_is_expired(timer)) {
//timeout
break;
}
}
if(furi_hal_cortex_timer_is_expired(timer)) {
//timeout
break;
}
// Reset GD0 to floating state
cc1101_status = cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// Go to sleep
cc1101_status = cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle);
if(cc1101_status.CHIP_RDYn != 0) {
//timeout or error
break;
}
ret = true;
} while(false);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
if(ret) {
FURI_LOG_I(TAG, "Init OK");
} else {
FURI_LOG_E(TAG, "Init failed");
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
return ret;
}
bool subghz_device_cc1101_ext_alloc() {
furi_assert(subghz_device_cc1101_ext == NULL);
subghz_device_cc1101_ext = malloc(sizeof(SubGhzDeviceCC1101Ext));
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateInit;
subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationTxRx;
subghz_device_cc1101_ext->async_mirror_pin = NULL;
subghz_device_cc1101_ext->spi_bus_handle = &furi_hal_spi_bus_handle_external;
subghz_device_cc1101_ext->g0_pin = SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO;
subghz_device_cc1101_ext->async_rx.capture_delta_duration = 0;
furi_hal_spi_bus_handle_init(subghz_device_cc1101_ext->spi_bus_handle);
return subghz_device_cc1101_ext_check_init();
}
void subghz_device_cc1101_ext_free() {
furi_assert(subghz_device_cc1101_ext != NULL);
furi_hal_spi_bus_handle_deinit(subghz_device_cc1101_ext->spi_bus_handle);
free(subghz_device_cc1101_ext);
subghz_device_cc1101_ext = NULL;
}
void subghz_device_cc1101_ext_set_async_mirror_pin(const GpioPin* pin) {
subghz_device_cc1101_ext->async_mirror_pin = pin;
}
const GpioPin* subghz_device_cc1101_ext_get_data_gpio() {
return subghz_device_cc1101_ext->g0_pin;
}
bool subghz_device_cc1101_ext_is_connect() {
bool ret = false;
if(subghz_device_cc1101_ext == NULL) { // not initialized
ret = subghz_device_cc1101_ext_alloc();
subghz_device_cc1101_ext_free();
} else { // initialized
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint8_t partnumber = cc1101_get_partnumber(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
ret = (partnumber != 0) && (partnumber != 0xFF);
}
return ret;
}
void subghz_device_cc1101_ext_sleep() {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle);
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_dump_state() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
printf(
"[subghz_device_cc1101_ext] cc1101 chip %d, version %d\r\n",
cc1101_get_partnumber(subghz_device_cc1101_ext->spi_bus_handle),
cc1101_get_version(subghz_device_cc1101_ext->spi_bus_handle));
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_load_custom_preset(const uint8_t* preset_data) {
//load config
subghz_device_cc1101_ext_reset();
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint32_t i = 0;
uint8_t pa[8] = {0};
while(preset_data[i]) {
cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, preset_data[i], preset_data[i + 1]);
i += 2;
}
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
//load pa table
memcpy(&pa[0], &preset_data[i + 2], 8);
subghz_device_cc1101_ext_load_patable(pa);
//show debug
if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) {
i = 0;
FURI_LOG_D(TAG, "Loading custom preset");
while(preset_data[i]) {
FURI_LOG_D(TAG, "Reg[%lu]: %02X=%02X", i, preset_data[i], preset_data[i + 1]);
i += 2;
}
for(uint8_t y = i; y < i + 10; y++) {
FURI_LOG_D(TAG, "PA[%u]: %02X", y, preset_data[y]);
}
}
}
void subghz_device_cc1101_ext_load_registers(const uint8_t* data) {
subghz_device_cc1101_ext_reset();
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint32_t i = 0;
while(data[i]) {
cc1101_write_reg(subghz_device_cc1101_ext->spi_bus_handle, data[i], data[i + 1]);
i += 2;
}
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_load_patable(const uint8_t data[8]) {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_set_pa_table(subghz_device_cc1101_ext->spi_bus_handle, data);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_write_packet(const uint8_t* data, uint8_t size) {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_flush_tx(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_write_reg(subghz_device_cc1101_ext->spi_bus_handle, CC1101_FIFO, size);
cc1101_write_fifo(subghz_device_cc1101_ext->spi_bus_handle, data, size);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_flush_rx() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_flush_rx(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_flush_tx() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_flush_tx(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
bool subghz_device_cc1101_ext_rx_pipe_not_empty() {
CC1101RxBytes status[1];
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_read_reg(
subghz_device_cc1101_ext->spi_bus_handle,
(CC1101_STATUS_RXBYTES) | CC1101_BURST,
(uint8_t*)status);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
if(status->NUM_RXBYTES > 0) {
return true;
} else {
return false;
}
}
bool subghz_device_cc1101_ext_is_rx_data_crc_valid() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint8_t data[1];
cc1101_read_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
if(((data[0] >> 7) & 0x01)) {
return true;
} else {
return false;
}
}
void subghz_device_cc1101_ext_read_packet(uint8_t* data, uint8_t* size) {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_read_fifo(subghz_device_cc1101_ext->spi_bus_handle, data, size);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_shutdown() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
// Reset and shutdown
cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_reset() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle);
// Warning: push pull cc1101 clock output on GD0
cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_idle() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
void subghz_device_cc1101_ext_rx() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_switch_to_rx(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
}
bool subghz_device_cc1101_ext_tx() {
if(subghz_device_cc1101_ext->regulation != SubGhzDeviceCC1101ExtRegulationTxRx) return false;
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_switch_to_tx(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
return true;
}
float subghz_device_cc1101_ext_get_rssi() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
int32_t rssi_dec = cc1101_get_rssi(subghz_device_cc1101_ext->spi_bus_handle);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
float rssi = rssi_dec;
if(rssi_dec >= 128) {
rssi = ((rssi - 256.0f) / 2.0f) - 74.0f;
} else {
rssi = (rssi / 2.0f) - 74.0f;
}
return rssi;
}
uint8_t subghz_device_cc1101_ext_get_lqi() {
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint8_t data[1];
cc1101_read_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
return data[0] & 0x7F;
}
bool subghz_device_cc1101_ext_is_frequency_valid(uint32_t value) {
if(!(value >= 299999755 && value <= 348000335) &&
!(value >= 386999938 && value <= 464000000) &&
!(value >= 778999847 && value <= 928000000)) {
return false;
}
return true;
}
uint32_t subghz_device_cc1101_ext_set_frequency(uint32_t value) {
if(furi_hal_region_is_frequency_allowed(value)) {
subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationTxRx;
} else {
subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationOnlyRx;
}
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
uint32_t real_frequency =
cc1101_set_frequency(subghz_device_cc1101_ext->spi_bus_handle, value);
cc1101_calibrate(subghz_device_cc1101_ext->spi_bus_handle);
while(true) {
CC1101Status status = cc1101_get_status(subghz_device_cc1101_ext->spi_bus_handle);
if(status.STATE == CC1101StateIDLE) break;
}
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
return real_frequency;
}
static bool subghz_device_cc1101_ext_start_debug() {
bool ret = false;
if(subghz_device_cc1101_ext->async_mirror_pin != NULL) {
furi_hal_gpio_init(
subghz_device_cc1101_ext->async_mirror_pin,
GpioModeOutputPushPull,
GpioPullNo,
GpioSpeedVeryHigh);
ret = true;
}
return ret;
}
static bool subghz_device_cc1101_ext_stop_debug() {
bool ret = false;
if(subghz_device_cc1101_ext->async_mirror_pin != NULL) {
furi_hal_gpio_init(
subghz_device_cc1101_ext->async_mirror_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
ret = true;
}
return ret;
}
static void subghz_device_cc1101_ext_capture_ISR() {
if(!furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin)) {
if(subghz_device_cc1101_ext->async_rx.capture_callback) {
if(subghz_device_cc1101_ext->async_mirror_pin != NULL)
furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false);
subghz_device_cc1101_ext->async_rx.capture_callback(
true,
LL_TIM_GetCounter(TIM17) << 1,
(void*)subghz_device_cc1101_ext->async_rx.capture_callback_context);
}
} else {
if(subghz_device_cc1101_ext->async_rx.capture_callback) {
if(subghz_device_cc1101_ext->async_mirror_pin != NULL)
furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, true);
subghz_device_cc1101_ext->async_rx.capture_callback(
false,
LL_TIM_GetCounter(TIM17) << 1,
(void*)subghz_device_cc1101_ext->async_rx.capture_callback_context);
}
}
LL_TIM_SetCounter(TIM17, 4); //8>>1
}
void subghz_device_cc1101_ext_start_async_rx(
SubGhzDeviceCC1101ExtCaptureCallback callback,
void* context) {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncRx;
subghz_device_cc1101_ext->async_rx.capture_callback = callback;
subghz_device_cc1101_ext->async_rx.capture_callback_context = context;
furi_hal_bus_enable(FuriHalBusTIM17);
// Configure TIM
//Set the timer resolution to 2 us
LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1);
LL_TIM_SetCounterMode(TIM17, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetAutoReload(TIM17, 0xFFFF);
LL_TIM_SetClockDivision(TIM17, LL_TIM_CLOCKDIVISION_DIV1);
// Timer: advanced
LL_TIM_SetClockSource(TIM17, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM17);
LL_TIM_DisableDMAReq_TRIG(TIM17);
LL_TIM_DisableIT_TRIG(TIM17);
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeInterruptRiseFall, GpioPullUp, GpioSpeedVeryHigh);
furi_hal_gpio_remove_int_callback(subghz_device_cc1101_ext->g0_pin);
furi_hal_gpio_add_int_callback(
subghz_device_cc1101_ext->g0_pin,
subghz_device_cc1101_ext_capture_ISR,
subghz_device_cc1101_ext->async_rx.capture_callback);
// Start timer
LL_TIM_SetCounter(TIM17, 0);
LL_TIM_EnableCounter(TIM17);
// Start debug
subghz_device_cc1101_ext_start_debug();
// Switch to RX
subghz_device_cc1101_ext_rx();
//Clear the variable after the end of the session
subghz_device_cc1101_ext->async_rx.capture_delta_duration = 0;
}
void subghz_device_cc1101_ext_stop_async_rx() {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncRx);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle;
// Shutdown radio
subghz_device_cc1101_ext_idle();
FURI_CRITICAL_ENTER();
furi_hal_bus_disable(FuriHalBusTIM17);
// Stop debug
subghz_device_cc1101_ext_stop_debug();
FURI_CRITICAL_EXIT();
furi_hal_gpio_remove_int_callback(subghz_device_cc1101_ext->g0_pin);
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
void subghz_device_cc1101_ext_async_tx_middleware_idle(
SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle;
middleware->is_odd_level = false;
middleware->adder_duration = SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
}
static inline uint32_t subghz_device_cc1101_ext_async_tx_middleware_get_duration(
SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware,
SubGhzDeviceCC1101ExtCallback callback) {
uint32_t ret = 0;
bool is_level = false;
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset) return 0;
while(1) {
LevelDuration ld = callback(subghz_device_cc1101_ext->async_tx.callback_context);
if(level_duration_is_reset(ld)) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset;
if(!middleware->is_odd_level) {
return 0;
} else {
return middleware->adder_duration;
}
} else if(level_duration_is_wait(ld)) {
middleware->is_odd_level = !middleware->is_odd_level;
ret = middleware->adder_duration + SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
middleware->adder_duration = 0;
return ret;
}
is_level = level_duration_get_level(ld);
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle) {
if(is_level != middleware->is_odd_level) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun;
middleware->is_odd_level = is_level;
middleware->adder_duration = level_duration_get_duration(ld);
return SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
} else {
continue;
}
}
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun) {
if(is_level == middleware->is_odd_level) {
middleware->adder_duration += level_duration_get_duration(ld);
continue;
} else {
middleware->is_odd_level = is_level;
ret = middleware->adder_duration;
middleware->adder_duration = level_duration_get_duration(ld);
return ret;
}
}
}
}
static void subghz_device_cc1101_ext_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx);
while(samples > 0) {
volatile uint32_t duration = subghz_device_cc1101_ext_async_tx_middleware_get_duration(
&subghz_device_cc1101_ext->async_tx.middleware,
subghz_device_cc1101_ext->async_tx.callback);
if(duration == 0) {
*buffer = 0;
buffer++;
samples--;
LL_DMA_DisableIT_HT(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
LL_DMA_DisableIT_TC(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
if(LL_DMA_IsActiveFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
}
if(LL_DMA_IsActiveFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
}
LL_TIM_EnableIT_UPDATE(TIM17);
break;
} else {
// Lowest possible value is 4us
if(duration < 4) duration = 4;
// Divide by 2 since timer resolution is 2us
// Subtract 1 since we counting from 0
*buffer = (duration >> 1) - 1;
buffer++;
samples--;
}
}
}
static void subghz_device_cc1101_ext_async_tx_dma_isr() {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx);
#if SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL == LL_DMA_CHANNEL_3
if(LL_DMA_IsActiveFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
subghz_device_cc1101_ext_async_tx_refill(
subghz_device_cc1101_ext->async_tx.buffer,
SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF);
}
if(LL_DMA_IsActiveFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
subghz_device_cc1101_ext_async_tx_refill(
subghz_device_cc1101_ext->async_tx.buffer +
SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF,
SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF);
}
#else
#error Update this code. Would you kindly?
#endif
}
static void subghz_device_cc1101_ext_async_tx_timer_isr() {
if(LL_TIM_IsActiveFlag_UPDATE(TIM17)) {
if(LL_TIM_GetAutoReload(TIM17) == 0) {
if(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx) {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTxEnd;
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
if(subghz_device_cc1101_ext->async_mirror_pin != NULL)
furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false);
LL_TIM_DisableCounter(TIM17);
}
}
LL_TIM_ClearFlag_UPDATE(TIM17);
}
}
bool subghz_device_cc1101_ext_start_async_tx(SubGhzDeviceCC1101ExtCallback callback, void* context) {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle);
furi_assert(callback);
//If transmission is prohibited by regional settings
if(subghz_device_cc1101_ext->regulation != SubGhzDeviceCC1101ExtRegulationTxRx) return false;
subghz_device_cc1101_ext->async_tx.callback = callback;
subghz_device_cc1101_ext->async_tx.callback_context = context;
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTx;
subghz_device_cc1101_ext->async_tx.buffer =
malloc(SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
//Signal generation with mem-to-mem DMA
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh);
// Configure DMA update timer
LL_DMA_SetMemoryAddress(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, (uint32_t)subghz_device_cc1101_ext->async_tx.buffer);
LL_DMA_SetPeriphAddress(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, (uint32_t) & (TIM17->ARR));
LL_DMA_ConfigTransfer(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF,
LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT |
LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD |
LL_DMA_MODE_NORMAL);
LL_DMA_SetDataLength(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL);
LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, LL_DMAMUX_REQ_TIM17_UP);
LL_DMA_EnableIT_TC(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
LL_DMA_EnableIT_HT(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
furi_hal_interrupt_set_isr(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ, subghz_device_cc1101_ext_async_tx_dma_isr, NULL);
furi_hal_bus_enable(FuriHalBusTIM17);
// Configure TIM
// Set the timer resolution to 2 us
LL_TIM_SetCounterMode(TIM17, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM17, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetAutoReload(TIM17, 500);
LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1);
LL_TIM_SetClockSource(TIM17, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM17);
furi_hal_interrupt_set_isr(
FuriHalInterruptIdTim1TrgComTim17, subghz_device_cc1101_ext_async_tx_timer_isr, NULL);
subghz_device_cc1101_ext_async_tx_middleware_idle(
&subghz_device_cc1101_ext->async_tx.middleware);
subghz_device_cc1101_ext_async_tx_refill(
subghz_device_cc1101_ext->async_tx.buffer, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL);
// Configure tx gpio dma
const GpioPin* gpio = subghz_device_cc1101_ext->g0_pin;
subghz_device_cc1101_ext->async_tx.gpio_tx_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER;
subghz_device_cc1101_ext->async_tx.gpio_tx_buff[1] = gpio->pin;
LL_DMA_SetMemoryAddress(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF,
(uint32_t)subghz_device_cc1101_ext->async_tx.gpio_tx_buff);
LL_DMA_SetPeriphAddress(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, (uint32_t) & (gpio->port->BSRR));
LL_DMA_ConfigTransfer(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF,
LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT |
LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD |
LL_DMA_PRIORITY_HIGH);
LL_DMA_SetDataLength(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, 2);
LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, LL_DMAMUX_REQ_TIM17_UP);
LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF);
// Start debug
if(subghz_device_cc1101_ext_start_debug()) {
gpio = subghz_device_cc1101_ext->async_mirror_pin;
subghz_device_cc1101_ext->async_tx.debug_gpio_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER;
subghz_device_cc1101_ext->async_tx.debug_gpio_buff[1] = gpio->pin;
LL_DMA_SetMemoryAddress(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF,
(uint32_t)subghz_device_cc1101_ext->async_tx.debug_gpio_buff);
LL_DMA_SetPeriphAddress(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, (uint32_t) & (gpio->port->BSRR));
LL_DMA_ConfigTransfer(
SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF,
LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT |
LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD |
LL_DMA_PRIORITY_LOW);
LL_DMA_SetDataLength(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, 2);
LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, LL_DMAMUX_REQ_TIM17_UP);
LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF);
}
// Start counter
LL_TIM_EnableDMAReq_UPDATE(TIM17);
subghz_device_cc1101_ext_tx();
LL_TIM_SetCounter(TIM17, 0);
LL_TIM_EnableCounter(TIM17);
return true;
}
bool subghz_device_cc1101_ext_is_async_tx_complete() {
return subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTxEnd;
}
void subghz_device_cc1101_ext_stop_async_tx() {
furi_assert(
subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx ||
subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTxEnd);
// Deinitialize GPIO
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullDown, GpioSpeedLow);
// Shutdown radio
subghz_device_cc1101_ext_idle();
// Deinitialize Timer
furi_hal_bus_disable(FuriHalBusTIM17);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTim1TrgComTim17, NULL, NULL);
// Deinitialize DMA
LL_DMA_DeInit(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF);
furi_hal_interrupt_set_isr(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ, NULL, NULL);
// Stop debug
if(subghz_device_cc1101_ext_stop_debug()) {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF);
}
free(subghz_device_cc1101_ext->async_tx.buffer);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle;
}