#include "cc1101_ext.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define TAG "SubGhzDeviceCc1101Ext" #define SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO (&gpio_ext_pb2) /* DMA Channels definition */ #define SUBGHZ_DEVICE_CC1101_EXT_DMA (DMA2) #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL (LL_DMA_CHANNEL_3) #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL (LL_DMA_CHANNEL_4) #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL (LL_DMA_CHANNEL_5) #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ (FuriHalInterruptIdDma2Ch3) #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF \ SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF \ SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL #define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF \ SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL /** Low level buffer dimensions and guard times */ #define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL (256u) #define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF \ (SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL / 2) #define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME (999u >> 1) /** SubGhz state */ typedef enum { SubGhzDeviceCC1101ExtStateInit, /**< Init pending */ SubGhzDeviceCC1101ExtStateIdle, /**< Idle, energy save mode */ SubGhzDeviceCC1101ExtStateAsyncRx, /**< Async RX started */ SubGhzDeviceCC1101ExtStateAsyncTx, /**< Async TX started, DMA and timer is on */ SubGhzDeviceCC1101ExtStateAsyncTxEnd, /**< Async TX complete, cleanup needed */ } SubGhzDeviceCC1101ExtState; /** SubGhz regulation, receive transmission on the current frequency for the * region */ typedef enum { SubGhzDeviceCC1101ExtRegulationOnlyRx, /**only Rx*/ SubGhzDeviceCC1101ExtRegulationTxRx, /**TxRx*/ } SubGhzDeviceCC1101ExtRegulation; typedef enum { SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle, SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset, SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun, } SubGhzDeviceCC1101ExtAsyncTxMiddlewareState; typedef struct { SubGhzDeviceCC1101ExtAsyncTxMiddlewareState state; bool is_odd_level; uint32_t adder_duration; } SubGhzDeviceCC1101ExtAsyncTxMiddleware; typedef struct { uint32_t* buffer; SubGhzDeviceCC1101ExtCallback callback; void* callback_context; uint32_t gpio_tx_buff[2]; uint32_t debug_gpio_buff[2]; SubGhzDeviceCC1101ExtAsyncTxMiddleware middleware; } SubGhzDeviceCC1101ExtAsyncTx; typedef struct { uint32_t capture_delta_duration; SubGhzDeviceCC1101ExtCaptureCallback capture_callback; void* capture_callback_context; } SubGhzDeviceCC1101ExtAsyncRx; typedef struct { volatile SubGhzDeviceCC1101ExtState state; volatile SubGhzDeviceCC1101ExtRegulation regulation; const GpioPin* async_mirror_pin; FuriHalSpiBusHandle* spi_bus_handle; const GpioPin* g0_pin; SubGhzDeviceCC1101ExtAsyncTx async_tx; SubGhzDeviceCC1101ExtAsyncRx async_rx; } SubGhzDeviceCC1101Ext; static SubGhzDeviceCC1101Ext* subghz_device_cc1101_ext = NULL; static bool subghz_device_cc1101_ext_check_init() { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateInit); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle; bool ret = false; CC1101Status cc1101_status = {0}; furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); FuriHalCortexTimer timer = furi_hal_cortex_timer_get(100 * 1000); do { // Reset furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); furi_hal_gpio_init( subghz_device_cc1101_ext->spi_bus_handle->miso, GpioModeInput, GpioPullUp, GpioSpeedLow); cc1101_status = cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } cc1101_status = cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } // Prepare GD0 for power on self test furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeInput, GpioPullUp, GpioSpeedLow); // GD0 low cc1101_status = cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } while(furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin) != false) { if(furi_hal_cortex_timer_is_expired(timer)) { //timeout break; } } if(furi_hal_cortex_timer_is_expired(timer)) { //timeout break; } // GD0 high furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeInput, GpioPullDown, GpioSpeedLow); cc1101_status = cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } while(furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin) != true) { if(furi_hal_cortex_timer_is_expired(timer)) { //timeout break; } } if(furi_hal_cortex_timer_is_expired(timer)) { //timeout break; } // Reset GD0 to floating state cc1101_status = cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // Go to sleep cc1101_status = cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle); if(cc1101_status.CHIP_RDYn != 0) { //timeout or error break; } ret = true; } while(false); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); if(ret) { FURI_LOG_I(TAG, "Init OK"); } else { FURI_LOG_E(TAG, "Init failed"); furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); } return ret; } bool subghz_device_cc1101_ext_alloc() { furi_assert(subghz_device_cc1101_ext == NULL); subghz_device_cc1101_ext = malloc(sizeof(SubGhzDeviceCC1101Ext)); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateInit; subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationTxRx; subghz_device_cc1101_ext->async_mirror_pin = NULL; subghz_device_cc1101_ext->spi_bus_handle = &furi_hal_spi_bus_handle_external; subghz_device_cc1101_ext->g0_pin = SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO; subghz_device_cc1101_ext->async_rx.capture_delta_duration = 0; furi_hal_spi_bus_handle_init(subghz_device_cc1101_ext->spi_bus_handle); return subghz_device_cc1101_ext_check_init(); } void subghz_device_cc1101_ext_free() { furi_assert(subghz_device_cc1101_ext != NULL); furi_hal_spi_bus_handle_deinit(subghz_device_cc1101_ext->spi_bus_handle); free(subghz_device_cc1101_ext); subghz_device_cc1101_ext = NULL; } void subghz_device_cc1101_ext_set_async_mirror_pin(const GpioPin* pin) { subghz_device_cc1101_ext->async_mirror_pin = pin; } const GpioPin* subghz_device_cc1101_ext_get_data_gpio() { return subghz_device_cc1101_ext->g0_pin; } bool subghz_device_cc1101_ext_is_connect() { bool ret = false; if(subghz_device_cc1101_ext == NULL) { // not initialized ret = subghz_device_cc1101_ext_alloc(); subghz_device_cc1101_ext_free(); } else { // initialized furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint8_t partnumber = cc1101_get_partnumber(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); ret = (partnumber != 0) && (partnumber != 0xFF); } return ret; } void subghz_device_cc1101_ext_sleep() { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle); furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle); cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_dump_state() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); printf( "[subghz_device_cc1101_ext] cc1101 chip %d, version %d\r\n", cc1101_get_partnumber(subghz_device_cc1101_ext->spi_bus_handle), cc1101_get_version(subghz_device_cc1101_ext->spi_bus_handle)); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_load_custom_preset(const uint8_t* preset_data) { //load config subghz_device_cc1101_ext_reset(); furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint32_t i = 0; uint8_t pa[8] = {0}; while(preset_data[i]) { cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, preset_data[i], preset_data[i + 1]); i += 2; } furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); //load pa table memcpy(&pa[0], &preset_data[i + 2], 8); subghz_device_cc1101_ext_load_patable(pa); //show debug if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) { i = 0; FURI_LOG_D(TAG, "Loading custom preset"); while(preset_data[i]) { FURI_LOG_D(TAG, "Reg[%lu]: %02X=%02X", i, preset_data[i], preset_data[i + 1]); i += 2; } for(uint8_t y = i; y < i + 10; y++) { FURI_LOG_D(TAG, "PA[%u]: %02X", y, preset_data[y]); } } } void subghz_device_cc1101_ext_load_registers(const uint8_t* data) { subghz_device_cc1101_ext_reset(); furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint32_t i = 0; while(data[i]) { cc1101_write_reg(subghz_device_cc1101_ext->spi_bus_handle, data[i], data[i + 1]); i += 2; } furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_load_patable(const uint8_t data[8]) { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_set_pa_table(subghz_device_cc1101_ext->spi_bus_handle, data); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_write_packet(const uint8_t* data, uint8_t size) { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_flush_tx(subghz_device_cc1101_ext->spi_bus_handle); cc1101_write_reg(subghz_device_cc1101_ext->spi_bus_handle, CC1101_FIFO, size); cc1101_write_fifo(subghz_device_cc1101_ext->spi_bus_handle, data, size); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_flush_rx() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_flush_rx(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_flush_tx() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_flush_tx(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } bool subghz_device_cc1101_ext_rx_pipe_not_empty() { CC1101RxBytes status[1]; furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_read_reg( subghz_device_cc1101_ext->spi_bus_handle, (CC1101_STATUS_RXBYTES) | CC1101_BURST, (uint8_t*)status); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); if(status->NUM_RXBYTES > 0) { return true; } else { return false; } } bool subghz_device_cc1101_ext_is_rx_data_crc_valid() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint8_t data[1]; cc1101_read_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); if(((data[0] >> 7) & 0x01)) { return true; } else { return false; } } void subghz_device_cc1101_ext_read_packet(uint8_t* data, uint8_t* size) { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_read_fifo(subghz_device_cc1101_ext->spi_bus_handle, data, size); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_shutdown() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); // Reset and shutdown cc1101_shutdown(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_reset() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle); cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle); // Warning: push pull cc1101 clock output on GD0 cc1101_write_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_idle() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } void subghz_device_cc1101_ext_rx() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_switch_to_rx(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); } bool subghz_device_cc1101_ext_tx() { if(subghz_device_cc1101_ext->regulation != SubGhzDeviceCC1101ExtRegulationTxRx) return false; furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); cc1101_switch_to_tx(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); return true; } float subghz_device_cc1101_ext_get_rssi() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); int32_t rssi_dec = cc1101_get_rssi(subghz_device_cc1101_ext->spi_bus_handle); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); float rssi = rssi_dec; if(rssi_dec >= 128) { rssi = ((rssi - 256.0f) / 2.0f) - 74.0f; } else { rssi = (rssi / 2.0f) - 74.0f; } return rssi; } uint8_t subghz_device_cc1101_ext_get_lqi() { furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint8_t data[1]; cc1101_read_reg( subghz_device_cc1101_ext->spi_bus_handle, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); return data[0] & 0x7F; } bool subghz_device_cc1101_ext_is_frequency_valid(uint32_t value) { if(!(value >= 299999755 && value <= 348000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000)) { return false; } return true; } uint32_t subghz_device_cc1101_ext_set_frequency(uint32_t value) { if(furi_hal_region_is_frequency_allowed(value)) { subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationTxRx; } else { subghz_device_cc1101_ext->regulation = SubGhzDeviceCC1101ExtRegulationOnlyRx; } furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle); uint32_t real_frequency = cc1101_set_frequency(subghz_device_cc1101_ext->spi_bus_handle, value); cc1101_calibrate(subghz_device_cc1101_ext->spi_bus_handle); while(true) { CC1101Status status = cc1101_get_status(subghz_device_cc1101_ext->spi_bus_handle); if(status.STATE == CC1101StateIDLE) break; } furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle); return real_frequency; } static bool subghz_device_cc1101_ext_start_debug() { bool ret = false; if(subghz_device_cc1101_ext->async_mirror_pin != NULL) { furi_hal_gpio_init( subghz_device_cc1101_ext->async_mirror_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh); ret = true; } return ret; } static bool subghz_device_cc1101_ext_stop_debug() { bool ret = false; if(subghz_device_cc1101_ext->async_mirror_pin != NULL) { furi_hal_gpio_init( subghz_device_cc1101_ext->async_mirror_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); ret = true; } return ret; } static void subghz_device_cc1101_ext_capture_ISR() { if(!furi_hal_gpio_read(subghz_device_cc1101_ext->g0_pin)) { if(subghz_device_cc1101_ext->async_rx.capture_callback) { if(subghz_device_cc1101_ext->async_mirror_pin != NULL) furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false); subghz_device_cc1101_ext->async_rx.capture_callback( true, LL_TIM_GetCounter(TIM17) << 1, (void*)subghz_device_cc1101_ext->async_rx.capture_callback_context); } } else { if(subghz_device_cc1101_ext->async_rx.capture_callback) { if(subghz_device_cc1101_ext->async_mirror_pin != NULL) furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, true); subghz_device_cc1101_ext->async_rx.capture_callback( false, LL_TIM_GetCounter(TIM17) << 1, (void*)subghz_device_cc1101_ext->async_rx.capture_callback_context); } } LL_TIM_SetCounter(TIM17, 4); //8>>1 } void subghz_device_cc1101_ext_start_async_rx( SubGhzDeviceCC1101ExtCaptureCallback callback, void* context) { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncRx; subghz_device_cc1101_ext->async_rx.capture_callback = callback; subghz_device_cc1101_ext->async_rx.capture_callback_context = context; furi_hal_bus_enable(FuriHalBusTIM17); // Configure TIM //Set the timer resolution to 2 us LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1); LL_TIM_SetCounterMode(TIM17, LL_TIM_COUNTERMODE_UP); LL_TIM_SetAutoReload(TIM17, 0xFFFF); LL_TIM_SetClockDivision(TIM17, LL_TIM_CLOCKDIVISION_DIV1); // Timer: advanced LL_TIM_SetClockSource(TIM17, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_DisableARRPreload(TIM17); LL_TIM_DisableDMAReq_TRIG(TIM17); LL_TIM_DisableIT_TRIG(TIM17); furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeInterruptRiseFall, GpioPullUp, GpioSpeedVeryHigh); furi_hal_gpio_remove_int_callback(subghz_device_cc1101_ext->g0_pin); furi_hal_gpio_add_int_callback( subghz_device_cc1101_ext->g0_pin, subghz_device_cc1101_ext_capture_ISR, subghz_device_cc1101_ext->async_rx.capture_callback); // Start timer LL_TIM_SetCounter(TIM17, 0); LL_TIM_EnableCounter(TIM17); // Start debug subghz_device_cc1101_ext_start_debug(); // Switch to RX subghz_device_cc1101_ext_rx(); //Clear the variable after the end of the session subghz_device_cc1101_ext->async_rx.capture_delta_duration = 0; } void subghz_device_cc1101_ext_stop_async_rx() { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncRx); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle; // Shutdown radio subghz_device_cc1101_ext_idle(); FURI_CRITICAL_ENTER(); furi_hal_bus_disable(FuriHalBusTIM17); // Stop debug subghz_device_cc1101_ext_stop_debug(); FURI_CRITICAL_EXIT(); furi_hal_gpio_remove_int_callback(subghz_device_cc1101_ext->g0_pin); furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow); } void subghz_device_cc1101_ext_async_tx_middleware_idle( SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware) { middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle; middleware->is_odd_level = false; middleware->adder_duration = SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME; } static inline uint32_t subghz_device_cc1101_ext_async_tx_middleware_get_duration( SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware, SubGhzDeviceCC1101ExtCallback callback) { uint32_t ret = 0; bool is_level = false; if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset) return 0; while(1) { LevelDuration ld = callback(subghz_device_cc1101_ext->async_tx.callback_context); if(level_duration_is_reset(ld)) { middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset; if(!middleware->is_odd_level) { return 0; } else { return middleware->adder_duration; } } else if(level_duration_is_wait(ld)) { middleware->is_odd_level = !middleware->is_odd_level; ret = middleware->adder_duration + SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME; middleware->adder_duration = 0; return ret; } is_level = level_duration_get_level(ld); if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle) { if(is_level != middleware->is_odd_level) { middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun; middleware->is_odd_level = is_level; middleware->adder_duration = level_duration_get_duration(ld); return SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME; } else { continue; } } if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun) { if(is_level == middleware->is_odd_level) { middleware->adder_duration += level_duration_get_duration(ld); continue; } else { middleware->is_odd_level = is_level; ret = middleware->adder_duration; middleware->adder_duration = level_duration_get_duration(ld); return ret; } } } } static void subghz_device_cc1101_ext_async_tx_refill(uint32_t* buffer, size_t samples) { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx); while(samples > 0) { volatile uint32_t duration = subghz_device_cc1101_ext_async_tx_middleware_get_duration( &subghz_device_cc1101_ext->async_tx.middleware, subghz_device_cc1101_ext->async_tx.callback); if(duration == 0) { *buffer = 0; buffer++; samples--; LL_DMA_DisableIT_HT(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); LL_DMA_DisableIT_TC(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); if(LL_DMA_IsActiveFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) { LL_DMA_ClearFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA); } if(LL_DMA_IsActiveFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) { LL_DMA_ClearFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA); } LL_TIM_EnableIT_UPDATE(TIM17); break; } else { // Lowest possible value is 4us if(duration < 4) duration = 4; // Divide by 2 since timer resolution is 2us // Subtract 1 since we counting from 0 *buffer = (duration >> 1) - 1; buffer++; samples--; } } } static void subghz_device_cc1101_ext_async_tx_dma_isr() { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx); #if SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL == LL_DMA_CHANNEL_3 if(LL_DMA_IsActiveFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) { LL_DMA_ClearFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA); subghz_device_cc1101_ext_async_tx_refill( subghz_device_cc1101_ext->async_tx.buffer, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF); } if(LL_DMA_IsActiveFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) { LL_DMA_ClearFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA); subghz_device_cc1101_ext_async_tx_refill( subghz_device_cc1101_ext->async_tx.buffer + SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF); } #else #error Update this code. Would you kindly? #endif } static void subghz_device_cc1101_ext_async_tx_timer_isr() { if(LL_TIM_IsActiveFlag_UPDATE(TIM17)) { if(LL_TIM_GetAutoReload(TIM17) == 0) { if(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx) { LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTxEnd; furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false); if(subghz_device_cc1101_ext->async_mirror_pin != NULL) furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false); LL_TIM_DisableCounter(TIM17); } } LL_TIM_ClearFlag_UPDATE(TIM17); } } bool subghz_device_cc1101_ext_start_async_tx(SubGhzDeviceCC1101ExtCallback callback, void* context) { furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateIdle); furi_assert(callback); //If transmission is prohibited by regional settings if(subghz_device_cc1101_ext->regulation != SubGhzDeviceCC1101ExtRegulationTxRx) return false; subghz_device_cc1101_ext->async_tx.callback = callback; subghz_device_cc1101_ext->async_tx.callback_context = context; subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTx; subghz_device_cc1101_ext->async_tx.buffer = malloc(SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t)); //Signal generation with mem-to-mem DMA furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false); furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeOutputPushPull, GpioPullNo, GpioSpeedVeryHigh); // Configure DMA update timer LL_DMA_SetMemoryAddress( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, (uint32_t)subghz_device_cc1101_ext->async_tx.buffer); LL_DMA_SetPeriphAddress(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, (uint32_t) & (TIM17->ARR)); LL_DMA_ConfigTransfer( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD | LL_DMA_MODE_NORMAL); LL_DMA_SetDataLength( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL); LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF, LL_DMAMUX_REQ_TIM17_UP); LL_DMA_EnableIT_TC(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); LL_DMA_EnableIT_HT(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); furi_hal_interrupt_set_isr( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ, subghz_device_cc1101_ext_async_tx_dma_isr, NULL); furi_hal_bus_enable(FuriHalBusTIM17); // Configure TIM // Set the timer resolution to 2 us LL_TIM_SetCounterMode(TIM17, LL_TIM_COUNTERMODE_UP); LL_TIM_SetClockDivision(TIM17, LL_TIM_CLOCKDIVISION_DIV1); LL_TIM_SetAutoReload(TIM17, 500); LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1); LL_TIM_SetClockSource(TIM17, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_DisableARRPreload(TIM17); furi_hal_interrupt_set_isr( FuriHalInterruptIdTim1TrgComTim17, subghz_device_cc1101_ext_async_tx_timer_isr, NULL); subghz_device_cc1101_ext_async_tx_middleware_idle( &subghz_device_cc1101_ext->async_tx.middleware); subghz_device_cc1101_ext_async_tx_refill( subghz_device_cc1101_ext->async_tx.buffer, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL); // Configure tx gpio dma const GpioPin* gpio = subghz_device_cc1101_ext->g0_pin; subghz_device_cc1101_ext->async_tx.gpio_tx_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER; subghz_device_cc1101_ext->async_tx.gpio_tx_buff[1] = gpio->pin; LL_DMA_SetMemoryAddress( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, (uint32_t)subghz_device_cc1101_ext->async_tx.gpio_tx_buff); LL_DMA_SetPeriphAddress(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, (uint32_t) & (gpio->port->BSRR)); LL_DMA_ConfigTransfer( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD | LL_DMA_PRIORITY_HIGH); LL_DMA_SetDataLength(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, 2); LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF, LL_DMAMUX_REQ_TIM17_UP); LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF); // Start debug if(subghz_device_cc1101_ext_start_debug()) { gpio = subghz_device_cc1101_ext->async_mirror_pin; subghz_device_cc1101_ext->async_tx.debug_gpio_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER; subghz_device_cc1101_ext->async_tx.debug_gpio_buff[1] = gpio->pin; LL_DMA_SetMemoryAddress( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, (uint32_t)subghz_device_cc1101_ext->async_tx.debug_gpio_buff); LL_DMA_SetPeriphAddress( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, (uint32_t) & (gpio->port->BSRR)); LL_DMA_ConfigTransfer( SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, LL_DMA_DIRECTION_MEMORY_TO_PERIPH | LL_DMA_MODE_CIRCULAR | LL_DMA_PERIPH_NOINCREMENT | LL_DMA_MEMORY_INCREMENT | LL_DMA_PDATAALIGN_WORD | LL_DMA_MDATAALIGN_WORD | LL_DMA_PRIORITY_LOW); LL_DMA_SetDataLength(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, 2); LL_DMA_SetPeriphRequest(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF, LL_DMAMUX_REQ_TIM17_UP); LL_DMA_EnableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF); } // Start counter LL_TIM_EnableDMAReq_UPDATE(TIM17); subghz_device_cc1101_ext_tx(); LL_TIM_SetCounter(TIM17, 0); LL_TIM_EnableCounter(TIM17); return true; } bool subghz_device_cc1101_ext_is_async_tx_complete() { return subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTxEnd; } void subghz_device_cc1101_ext_stop_async_tx() { furi_assert( subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx || subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTxEnd); // Deinitialize GPIO furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false); furi_hal_gpio_init( subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullDown, GpioSpeedLow); // Shutdown radio subghz_device_cc1101_ext_idle(); // Deinitialize Timer furi_hal_bus_disable(FuriHalBusTIM17); furi_hal_interrupt_set_isr(FuriHalInterruptIdTim1TrgComTim17, NULL, NULL); // Deinitialize DMA LL_DMA_DeInit(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF); LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF); furi_hal_interrupt_set_isr(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ, NULL, NULL); // Stop debug if(subghz_device_cc1101_ext_stop_debug()) { LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF); } free(subghz_device_cc1101_ext->async_tx.buffer); subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle; }