2022-12-19 17:16:02 +00:00
|
|
|
/*
|
|
|
|
Unitemp - Universal temperature reader
|
2023-01-18 16:51:10 +00:00
|
|
|
Copyright (C) 2022-2023 Victor Nikitchuk (https://github.com/quen0n)
|
2022-12-19 17:16:02 +00:00
|
|
|
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
#include "BMx280.h"
|
|
|
|
|
|
|
|
const SensorType BMP280 = {
|
|
|
|
.typename = "BMP280",
|
|
|
|
.interface = &I2C,
|
|
|
|
.datatype = UT_TEMPERATURE | UT_PRESSURE,
|
|
|
|
.pollingInterval = 500,
|
|
|
|
.allocator = unitemp_BMx280_alloc,
|
|
|
|
.mem_releaser = unitemp_BMx280_free,
|
|
|
|
.initializer = unitemp_BMx280_init,
|
|
|
|
.deinitializer = unitemp_BMx280_deinit,
|
|
|
|
.updater = unitemp_BMx280_update};
|
|
|
|
const SensorType BME280 = {
|
|
|
|
.typename = "BME280",
|
|
|
|
.interface = &I2C,
|
|
|
|
.datatype = UT_TEMPERATURE | UT_HUMIDITY | UT_PRESSURE,
|
|
|
|
|
|
|
|
.pollingInterval = 500,
|
|
|
|
.allocator = unitemp_BMx280_alloc,
|
|
|
|
.mem_releaser = unitemp_BMx280_free,
|
|
|
|
.initializer = unitemp_BMx280_init,
|
|
|
|
.deinitializer = unitemp_BMx280_deinit,
|
|
|
|
.updater = unitemp_BMx280_update};
|
|
|
|
|
|
|
|
//Интервал обновления калибровочных значений
|
|
|
|
#define BOSCH_CAL_UPDATE_INTERVAL 60000
|
|
|
|
|
|
|
|
#define TEMP_CAL_START_ADDR 0x88
|
|
|
|
#define PRESS_CAL_START_ADDR 0x8E
|
|
|
|
#define HUM_CAL_H1_ADDR 0xA1
|
|
|
|
#define HUM_CAL_H2_ADDR 0xE1
|
|
|
|
|
|
|
|
#define BMP280_ID 0x58
|
|
|
|
#define BME280_ID 0x60
|
|
|
|
|
|
|
|
#define BMx280_I2C_ADDR_MIN (0x76 << 1)
|
|
|
|
#define BMx280_I2C_ADDR_MAX (0x77 << 1)
|
|
|
|
|
|
|
|
#define BMx280_REG_STATUS 0xF3
|
|
|
|
#define BMx280_REG_CTRL_MEAS 0xF4
|
|
|
|
#define BMx280_REG_CONFIG 0xF5
|
|
|
|
#define BME280_REG_CTRL_HUM 0xF2
|
|
|
|
//Преддескретизация температуры
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_SKIP 0b00000000
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_1 0b00100000
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_2 0b01000000
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_4 0b01100000
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_8 0b10000000
|
|
|
|
#define BMx280_TEMP_OVERSAMPLING_16 0b10100000
|
|
|
|
//Преддескретизация давления
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_SKIP 0b00000000
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_1 0b00000100
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_2 0b00001000
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_4 0b00001100
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_8 0b00010000
|
|
|
|
#define BMx280_PRESS_OVERSAMPLING_16 0b00010100
|
|
|
|
//Преддескретизация влажности
|
|
|
|
#define BME280_HUM_OVERSAMPLING_SKIP 0b00000000
|
|
|
|
#define BME280_HUM_OVERSAMPLING_1 0b00000001
|
|
|
|
#define BME280_HUM_OVERSAMPLING_2 0b00000010
|
|
|
|
#define BME280_HUM_OVERSAMPLING_4 0b00000011
|
|
|
|
#define BME280_HUM_OVERSAMPLING_8 0b00000100
|
|
|
|
#define BME280_HUM_OVERSAMPLING_16 0b00000101u
|
|
|
|
//Режимы работы датчика
|
|
|
|
#define BMx280_MODE_SLEEP 0b00000000 //Наелся и спит
|
|
|
|
#define BMx280_MODE_FORCED 0b00000001 //Обновляет значения 1 раз, после чего уходит в сон
|
|
|
|
#define BMx280_MODE_NORMAL 0b00000011 //Регулярно обновляет значения
|
|
|
|
//Период обновления в нормальном режиме
|
|
|
|
#define BMx280_STANDBY_TIME_0_5 0b00000000
|
|
|
|
#define BMx280_STANDBY_TIME_62_5 0b00100000
|
|
|
|
#define BMx280_STANDBY_TIME_125 0b01000000
|
|
|
|
#define BMx280_STANDBY_TIME_250 0b01100000
|
|
|
|
#define BMx280_STANDBY_TIME_500 0b10000000
|
|
|
|
#define BMx280_STANDBY_TIME_1000 0b10100000
|
|
|
|
#define BMx280_STANDBY_TIME_2000 0b11000000
|
|
|
|
#define BMx280_STANDBY_TIME_4000 0b11100000
|
|
|
|
//Коэффициент фильтрации значений
|
|
|
|
#define BMx280_FILTER_COEFF_1 0b00000000
|
|
|
|
#define BMx280_FILTER_COEFF_2 0b00000100
|
|
|
|
#define BMx280_FILTER_COEFF_4 0b00001000
|
|
|
|
#define BMx280_FILTER_COEFF_8 0b00001100
|
|
|
|
#define BMx280_FILTER_COEFF_16 0b00010000
|
|
|
|
//Разрешить работу по SPI
|
|
|
|
#define BMx280_SPI_3W_ENABLE 0b00000001
|
|
|
|
#define BMx280_SPI_3W_DISABLE 0b00000000
|
|
|
|
|
|
|
|
static float BMx280_compensate_temperature(I2CSensor* i2c_sensor, int32_t adc_T) {
|
|
|
|
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
|
|
|
|
int32_t var1, var2;
|
|
|
|
var1 = ((((adc_T >> 3) - ((int32_t)bmx280_instance->temp_cal.dig_T1 << 1))) *
|
|
|
|
((int32_t)bmx280_instance->temp_cal.dig_T2)) >>
|
|
|
|
11;
|
|
|
|
var2 = (((((adc_T >> 4) - ((int32_t)bmx280_instance->temp_cal.dig_T1)) *
|
|
|
|
((adc_T >> 4) - ((int32_t)bmx280_instance->temp_cal.dig_T1))) >>
|
|
|
|
12) *
|
|
|
|
((int32_t)bmx280_instance->temp_cal.dig_T3)) >>
|
|
|
|
14;
|
|
|
|
bmx280_instance->t_fine = var1 + var2;
|
|
|
|
return ((bmx280_instance->t_fine * 5 + 128) >> 8) / 100.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float BMx280_compensate_pressure(I2CSensor* i2c_sensor, int32_t adc_P) {
|
|
|
|
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
|
|
|
|
|
|
|
|
int32_t var1, var2;
|
|
|
|
uint32_t p;
|
|
|
|
var1 = (((int32_t)bmx280_instance->t_fine) >> 1) - (int32_t)64000;
|
|
|
|
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * ((int32_t)bmx280_instance->press_cal.dig_P6);
|
|
|
|
var2 = var2 + ((var1 * ((int32_t)bmx280_instance->press_cal.dig_P5)) << 1);
|
|
|
|
var2 = (var2 >> 2) + (((int32_t)bmx280_instance->press_cal.dig_P4) << 16);
|
|
|
|
var1 = (((bmx280_instance->press_cal.dig_P3 * (((var1 >> 2) * (var1 >> 2)) >> 13)) >> 3) +
|
|
|
|
((((int32_t)bmx280_instance->press_cal.dig_P2) * var1) >> 1)) >>
|
|
|
|
18;
|
|
|
|
var1 = ((((32768 + var1)) * ((int32_t)bmx280_instance->press_cal.dig_P1)) >> 15);
|
|
|
|
if(var1 == 0) {
|
|
|
|
return 0; // avoid exception caused by division by zero
|
|
|
|
}
|
|
|
|
p = (((uint32_t)(((int32_t)1048576) - adc_P) - (var2 >> 12))) * 3125;
|
|
|
|
if(p < 0x80000000) {
|
|
|
|
p = (p << 1) / ((uint32_t)var1);
|
|
|
|
} else {
|
|
|
|
p = (p / (uint32_t)var1) * 2;
|
|
|
|
}
|
|
|
|
var1 = (((int32_t)bmx280_instance->press_cal.dig_P9) *
|
|
|
|
((int32_t)(((p >> 3) * (p >> 3)) >> 13))) >>
|
|
|
|
12;
|
|
|
|
var2 = (((int32_t)(p >> 2)) * ((int32_t)bmx280_instance->press_cal.dig_P8)) >> 13;
|
|
|
|
p = (uint32_t)((int32_t)p + ((var1 + var2 + bmx280_instance->press_cal.dig_P7) >> 4));
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float BMx280_compensate_humidity(I2CSensor* i2c_sensor, int32_t adc_H) {
|
|
|
|
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
|
|
|
|
int32_t v_x1_u32r;
|
|
|
|
v_x1_u32r = (bmx280_instance->t_fine - ((int32_t)76800));
|
|
|
|
|
|
|
|
v_x1_u32r =
|
|
|
|
(((((adc_H << 14) - (((int32_t)bmx280_instance->hum_cal.dig_H4) << 20) -
|
|
|
|
(((int32_t)bmx280_instance->hum_cal.dig_H5) * v_x1_u32r)) +
|
|
|
|
((int32_t)16384)) >>
|
|
|
|
15) *
|
|
|
|
(((((((v_x1_u32r * ((int32_t)bmx280_instance->hum_cal.dig_H6)) >> 10) *
|
|
|
|
(((v_x1_u32r * ((int32_t)bmx280_instance->hum_cal.dig_H3)) >> 11) +
|
|
|
|
((int32_t)32768))) >>
|
|
|
|
10) +
|
|
|
|
((int32_t)2097152)) *
|
|
|
|
((int32_t)bmx280_instance->hum_cal.dig_H2) +
|
|
|
|
8192) >>
|
|
|
|
14));
|
|
|
|
|
|
|
|
v_x1_u32r =
|
|
|
|
(v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
|
|
|
|
((int32_t)bmx280_instance->hum_cal.dig_H1)) >>
|
|
|
|
4));
|
|
|
|
|
|
|
|
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
|
|
|
|
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);
|
|
|
|
return ((uint32_t)(v_x1_u32r >> 12)) / 1024.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool bmx280_readCalValues(I2CSensor* i2c_sensor) {
|
|
|
|
BMx280_instance* bmx280_instance = (BMx280_instance*)i2c_sensor->sensorInstance;
|
|
|
|
if(!unitemp_i2c_readRegArray(
|
|
|
|
i2c_sensor, TEMP_CAL_START_ADDR, 6, (uint8_t*)&bmx280_instance->temp_cal))
|
|
|
|
return false;
|
2023-01-07 15:42:38 +00:00
|
|
|
|
|
|
|
UNITEMP_DEBUG(
|
2022-12-19 17:16:02 +00:00
|
|
|
"Sensor BMx280 (0x%02X) T1-T3: %d, %d, %d",
|
|
|
|
i2c_sensor->currentI2CAdr,
|
|
|
|
bmx280_instance->temp_cal.dig_T1,
|
|
|
|
bmx280_instance->temp_cal.dig_T2,
|
|
|
|
bmx280_instance->temp_cal.dig_T3);
|
|
|
|
|
|
|
|
if(!unitemp_i2c_readRegArray(
|
|
|
|
i2c_sensor, PRESS_CAL_START_ADDR, 18, (uint8_t*)&bmx280_instance->press_cal))
|
|
|
|
return false;
|
2023-01-07 15:42:38 +00:00
|
|
|
|
|
|
|
UNITEMP_DEBUG(
|
2022-12-19 17:16:02 +00:00
|
|
|
"Sensor BMx280 (0x%02X): P1-P9: %d, %d, %d, %d, %d, %d, %d, %d, %d",
|
|
|
|
i2c_sensor->currentI2CAdr,
|
|
|
|
bmx280_instance->press_cal.dig_P1,
|
|
|
|
bmx280_instance->press_cal.dig_P2,
|
|
|
|
bmx280_instance->press_cal.dig_P3,
|
|
|
|
bmx280_instance->press_cal.dig_P4,
|
|
|
|
bmx280_instance->press_cal.dig_P5,
|
|
|
|
bmx280_instance->press_cal.dig_P6,
|
|
|
|
bmx280_instance->press_cal.dig_P7,
|
|
|
|
bmx280_instance->press_cal.dig_P8,
|
|
|
|
bmx280_instance->press_cal.dig_P9);
|
|
|
|
|
|
|
|
if(bmx280_instance->chip_id == BME280_ID) {
|
|
|
|
uint8_t buff[7] = {0};
|
|
|
|
if(!unitemp_i2c_readRegArray(i2c_sensor, HUM_CAL_H1_ADDR, 1, buff)) return false;
|
|
|
|
bmx280_instance->hum_cal.dig_H1 = buff[0];
|
|
|
|
|
|
|
|
if(!unitemp_i2c_readRegArray(i2c_sensor, HUM_CAL_H2_ADDR, 7, buff)) return false;
|
|
|
|
bmx280_instance->hum_cal.dig_H2 = (uint16_t)(buff[0] | ((uint16_t)buff[1] << 8));
|
|
|
|
bmx280_instance->hum_cal.dig_H3 = buff[2];
|
|
|
|
bmx280_instance->hum_cal.dig_H4 = ((int16_t)buff[3] << 4) | (buff[4] & 0x0F);
|
|
|
|
bmx280_instance->hum_cal.dig_H5 = (buff[4] & 0x0F) | ((int16_t)buff[5] << 4);
|
|
|
|
bmx280_instance->hum_cal.dig_H6 = buff[6];
|
|
|
|
|
2023-01-07 15:42:38 +00:00
|
|
|
UNITEMP_DEBUG(
|
2022-12-19 17:16:02 +00:00
|
|
|
"Sensor BMx280 (0x%02X): H1-H6: %d, %d, %d, %d, %d, %d",
|
|
|
|
i2c_sensor->currentI2CAdr,
|
|
|
|
bmx280_instance->hum_cal.dig_H1,
|
|
|
|
bmx280_instance->hum_cal.dig_H2,
|
|
|
|
bmx280_instance->hum_cal.dig_H3,
|
|
|
|
bmx280_instance->hum_cal.dig_H4,
|
|
|
|
bmx280_instance->hum_cal.dig_H5,
|
|
|
|
bmx280_instance->hum_cal.dig_H6);
|
|
|
|
}
|
|
|
|
|
|
|
|
bmx280_instance->last_cal_update_time = furi_get_tick();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
static bool bmp280_isMeasuring(Sensor* sensor) {
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
return (bool)((unitemp_i2c_readReg(i2c_sensor, BMx280_REG_STATUS) & 0x08) >> 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool unitemp_BMx280_alloc(Sensor* sensor, char* args) {
|
|
|
|
UNUSED(args);
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
BMx280_instance* bmx280_instance = malloc(sizeof(BMx280_instance));
|
|
|
|
if(bmx280_instance == NULL) {
|
|
|
|
FURI_LOG_E(APP_NAME, "Failed to allocation sensor %s instance", sensor->name);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(sensor->type == &BMP280) bmx280_instance->chip_id = BMP280_ID;
|
|
|
|
if(sensor->type == &BME280) bmx280_instance->chip_id = BME280_ID;
|
|
|
|
|
|
|
|
i2c_sensor->sensorInstance = bmx280_instance;
|
|
|
|
|
|
|
|
i2c_sensor->minI2CAdr = BMx280_I2C_ADDR_MIN;
|
|
|
|
i2c_sensor->maxI2CAdr = BMx280_I2C_ADDR_MAX;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool unitemp_BMx280_init(Sensor* sensor) {
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
//Перезагрузка
|
|
|
|
unitemp_i2c_writeReg(i2c_sensor, 0xE0, 0xB6);
|
|
|
|
//Чтение ID датчика
|
|
|
|
uint8_t id = unitemp_i2c_readReg(i2c_sensor, 0xD0);
|
|
|
|
if(id != BMP280_ID && id != BME280_ID) {
|
|
|
|
FURI_LOG_E(
|
|
|
|
APP_NAME,
|
|
|
|
"Sensor %s returned wrong ID 0x%02X, expected 0x%02X or 0x%02X",
|
|
|
|
sensor->name,
|
|
|
|
id,
|
|
|
|
BMP280_ID,
|
|
|
|
BME280_ID);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
//Настройка режимов работы
|
|
|
|
if(id == BME280_ID) {
|
|
|
|
unitemp_i2c_writeReg(i2c_sensor, BME280_REG_CTRL_HUM, BME280_HUM_OVERSAMPLING_1);
|
|
|
|
unitemp_i2c_writeReg(
|
|
|
|
i2c_sensor, BME280_REG_CTRL_HUM, unitemp_i2c_readReg(i2c_sensor, BME280_REG_CTRL_HUM));
|
|
|
|
}
|
|
|
|
unitemp_i2c_writeReg(
|
|
|
|
i2c_sensor,
|
|
|
|
BMx280_REG_CTRL_MEAS,
|
|
|
|
BMx280_TEMP_OVERSAMPLING_2 | BMx280_PRESS_OVERSAMPLING_4 | BMx280_MODE_NORMAL);
|
|
|
|
//Настройка периода опроса и фильтрации значений
|
|
|
|
unitemp_i2c_writeReg(
|
|
|
|
i2c_sensor,
|
|
|
|
BMx280_REG_CONFIG,
|
|
|
|
BMx280_STANDBY_TIME_500 | BMx280_FILTER_COEFF_16 | BMx280_SPI_3W_DISABLE);
|
|
|
|
//Чтение калибровочных значений
|
|
|
|
if(!bmx280_readCalValues(i2c_sensor)) {
|
|
|
|
FURI_LOG_E(APP_NAME, "Failed to read calibration values sensor %s", sensor->name);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool unitemp_BMx280_deinit(Sensor* sensor) {
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
//Перевод в сон
|
|
|
|
unitemp_i2c_writeReg(i2c_sensor, BMx280_REG_CTRL_MEAS, BMx280_MODE_SLEEP);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
UnitempStatus unitemp_BMx280_update(Sensor* sensor) {
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
BMx280_instance* instance = i2c_sensor->sensorInstance;
|
|
|
|
|
|
|
|
uint32_t t = furi_get_tick();
|
|
|
|
|
|
|
|
uint8_t buff[3];
|
|
|
|
//Проверка инициализированности датчика
|
|
|
|
unitemp_i2c_readRegArray(i2c_sensor, 0xF4, 2, buff);
|
|
|
|
if(buff[0] == 0) {
|
|
|
|
FURI_LOG_W(APP_NAME, "Sensor %s is not initialized!", sensor->name);
|
|
|
|
return UT_SENSORSTATUS_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
while(bmp280_isMeasuring(sensor)) {
|
|
|
|
if(furi_get_tick() - t > 100) {
|
|
|
|
return UT_SENSORSTATUS_TIMEOUT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(furi_get_tick() - instance->last_cal_update_time > BOSCH_CAL_UPDATE_INTERVAL) {
|
|
|
|
bmx280_readCalValues(i2c_sensor);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFA, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
|
|
|
|
int32_t adc_T = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
|
|
|
|
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xF7, 3, buff)) return UT_SENSORSTATUS_TIMEOUT;
|
|
|
|
int32_t adc_P = ((int32_t)buff[0] << 12) | ((int32_t)buff[1] << 4) | ((int32_t)buff[2] >> 4);
|
|
|
|
if(!unitemp_i2c_readRegArray(i2c_sensor, 0xFD, 2, buff)) return UT_SENSORSTATUS_TIMEOUT;
|
|
|
|
int32_t adc_H = ((uint16_t)buff[0] << 8) | buff[1];
|
|
|
|
sensor->temp = BMx280_compensate_temperature(i2c_sensor, adc_T);
|
|
|
|
sensor->pressure = BMx280_compensate_pressure(i2c_sensor, adc_P);
|
|
|
|
sensor->hum = BMx280_compensate_humidity(i2c_sensor, adc_H);
|
|
|
|
return UT_SENSORSTATUS_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool unitemp_BMx280_free(Sensor* sensor) {
|
|
|
|
I2CSensor* i2c_sensor = (I2CSensor*)sensor->instance;
|
|
|
|
free(i2c_sensor->sensorInstance);
|
|
|
|
return true;
|
|
|
|
}
|