mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 22:20:45 +00:00
35b65dd8ef
Historically, the reset_cpu() function had an `addr` parameter which was meant to pass in an address of the reset vector location, where the CPU should reset to. This feature is no longer used anywhere in U-Boot as all reset_cpu() implementations now ignore the passed value. Generic code has been added which always calls reset_cpu() with `0` which means this feature can no longer be used easily anyway. Over time, many implementations seem to have "misunderstood" the existence of this parameter as a way to customize/parameterize the reset (e.g. COLD vs WARM resets). As this is not properly supported, the code will almost always not do what it is intended to (because all call-sites just call reset_cpu() with 0). To avoid confusion and to clean up the codebase from unused left-overs of the past, remove the `addr` parameter entirely. Code which intends to support different kinds of resets should be rewritten as a sysreset driver instead. This transformation was done with the following coccinelle patch: @@ expression argvalue; @@ - reset_cpu(argvalue) + reset_cpu() @@ identifier argname; type argtype; @@ - reset_cpu(argtype argname) + reset_cpu(void) { ... } Signed-off-by: Harald Seiler <hws@denx.de> Reviewed-by: Simon Glass <sjg@chromium.org>
451 lines
12 KiB
C
451 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Keystone2: DDR3 initialization
|
|
*
|
|
* (C) Copyright 2012-2014
|
|
* Texas Instruments Incorporated, <www.ti.com>
|
|
*/
|
|
|
|
#include <cpu_func.h>
|
|
#include <env.h>
|
|
#include <asm/io.h>
|
|
#include <common.h>
|
|
#include <asm/arch/msmc.h>
|
|
#include <asm/arch/ddr3.h>
|
|
#include <asm/arch/psc_defs.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/ti-common/ti-edma3.h>
|
|
|
|
#define DDR3_EDMA_BLK_SIZE_SHIFT 10
|
|
#define DDR3_EDMA_BLK_SIZE (1 << DDR3_EDMA_BLK_SIZE_SHIFT)
|
|
#define DDR3_EDMA_BCNT 0x8000
|
|
#define DDR3_EDMA_CCNT 1
|
|
#define DDR3_EDMA_XF_SIZE (DDR3_EDMA_BLK_SIZE * DDR3_EDMA_BCNT)
|
|
#define DDR3_EDMA_SLOT_NUM 1
|
|
|
|
void ddr3_init_ddrphy(u32 base, struct ddr3_phy_config *phy_cfg)
|
|
{
|
|
unsigned int tmp;
|
|
|
|
while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET)
|
|
& 0x00000001) != 0x00000001)
|
|
;
|
|
|
|
__raw_writel(phy_cfg->pllcr, base + KS2_DDRPHY_PLLCR_OFFSET);
|
|
|
|
tmp = __raw_readl(base + KS2_DDRPHY_PGCR1_OFFSET);
|
|
tmp &= ~(phy_cfg->pgcr1_mask);
|
|
tmp |= phy_cfg->pgcr1_val;
|
|
__raw_writel(tmp, base + KS2_DDRPHY_PGCR1_OFFSET);
|
|
|
|
__raw_writel(phy_cfg->ptr0, base + KS2_DDRPHY_PTR0_OFFSET);
|
|
__raw_writel(phy_cfg->ptr1, base + KS2_DDRPHY_PTR1_OFFSET);
|
|
__raw_writel(phy_cfg->ptr3, base + KS2_DDRPHY_PTR3_OFFSET);
|
|
__raw_writel(phy_cfg->ptr4, base + KS2_DDRPHY_PTR4_OFFSET);
|
|
|
|
tmp = __raw_readl(base + KS2_DDRPHY_DCR_OFFSET);
|
|
tmp &= ~(phy_cfg->dcr_mask);
|
|
tmp |= phy_cfg->dcr_val;
|
|
__raw_writel(tmp, base + KS2_DDRPHY_DCR_OFFSET);
|
|
|
|
__raw_writel(phy_cfg->dtpr0, base + KS2_DDRPHY_DTPR0_OFFSET);
|
|
__raw_writel(phy_cfg->dtpr1, base + KS2_DDRPHY_DTPR1_OFFSET);
|
|
__raw_writel(phy_cfg->dtpr2, base + KS2_DDRPHY_DTPR2_OFFSET);
|
|
__raw_writel(phy_cfg->mr0, base + KS2_DDRPHY_MR0_OFFSET);
|
|
__raw_writel(phy_cfg->mr1, base + KS2_DDRPHY_MR1_OFFSET);
|
|
__raw_writel(phy_cfg->mr2, base + KS2_DDRPHY_MR2_OFFSET);
|
|
__raw_writel(phy_cfg->dtcr, base + KS2_DDRPHY_DTCR_OFFSET);
|
|
__raw_writel(phy_cfg->pgcr2, base + KS2_DDRPHY_PGCR2_OFFSET);
|
|
|
|
__raw_writel(phy_cfg->zq0cr1, base + KS2_DDRPHY_ZQ0CR1_OFFSET);
|
|
__raw_writel(phy_cfg->zq1cr1, base + KS2_DDRPHY_ZQ1CR1_OFFSET);
|
|
__raw_writel(phy_cfg->zq2cr1, base + KS2_DDRPHY_ZQ2CR1_OFFSET);
|
|
|
|
__raw_writel(phy_cfg->pir_v1, base + KS2_DDRPHY_PIR_OFFSET);
|
|
while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
|
|
;
|
|
|
|
if (cpu_is_k2g()) {
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_2_OFFSET,
|
|
phy_cfg->datx8_2_mask,
|
|
phy_cfg->datx8_2_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_3_OFFSET,
|
|
phy_cfg->datx8_3_mask,
|
|
phy_cfg->datx8_3_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_4_OFFSET,
|
|
phy_cfg->datx8_4_mask,
|
|
phy_cfg->datx8_4_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_5_OFFSET,
|
|
phy_cfg->datx8_5_mask,
|
|
phy_cfg->datx8_5_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_6_OFFSET,
|
|
phy_cfg->datx8_6_mask,
|
|
phy_cfg->datx8_6_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_7_OFFSET,
|
|
phy_cfg->datx8_7_mask,
|
|
phy_cfg->datx8_7_val);
|
|
|
|
clrsetbits_le32(base + KS2_DDRPHY_DATX8_8_OFFSET,
|
|
phy_cfg->datx8_8_mask,
|
|
phy_cfg->datx8_8_val);
|
|
}
|
|
|
|
__raw_writel(phy_cfg->pir_v2, base + KS2_DDRPHY_PIR_OFFSET);
|
|
while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
|
|
;
|
|
}
|
|
|
|
void ddr3_init_ddremif(u32 base, struct ddr3_emif_config *emif_cfg)
|
|
{
|
|
__raw_writel(emif_cfg->sdcfg, base + KS2_DDR3_SDCFG_OFFSET);
|
|
__raw_writel(emif_cfg->sdtim1, base + KS2_DDR3_SDTIM1_OFFSET);
|
|
__raw_writel(emif_cfg->sdtim2, base + KS2_DDR3_SDTIM2_OFFSET);
|
|
__raw_writel(emif_cfg->sdtim3, base + KS2_DDR3_SDTIM3_OFFSET);
|
|
__raw_writel(emif_cfg->sdtim4, base + KS2_DDR3_SDTIM4_OFFSET);
|
|
__raw_writel(emif_cfg->zqcfg, base + KS2_DDR3_ZQCFG_OFFSET);
|
|
__raw_writel(emif_cfg->sdrfc, base + KS2_DDR3_SDRFC_OFFSET);
|
|
}
|
|
|
|
int ddr3_ecc_support_rmw(u32 base)
|
|
{
|
|
u32 value = __raw_readl(base + KS2_DDR3_MIDR_OFFSET);
|
|
|
|
/* Check the DDR3 controller ID reg if the controllers
|
|
supports ECC RMW or not */
|
|
if (value == 0x40461C02)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ddr3_ecc_config(u32 base, u32 value)
|
|
{
|
|
u32 data;
|
|
|
|
__raw_writel(value, base + KS2_DDR3_ECC_CTRL_OFFSET);
|
|
udelay(100000); /* delay required to synchronize across clock domains */
|
|
|
|
if (value & KS2_DDR3_ECC_EN) {
|
|
/* Clear the 1-bit error count */
|
|
data = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
|
|
__raw_writel(data, base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
|
|
|
|
/* enable the ECC interrupt */
|
|
__raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
|
|
KS2_DDR3_WR_ECC_ERR_SYS,
|
|
base + KS2_DDR3_ECC_INT_ENABLE_SET_SYS_OFFSET);
|
|
|
|
/* Clear the ECC error interrupt status */
|
|
__raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
|
|
KS2_DDR3_WR_ECC_ERR_SYS,
|
|
base + KS2_DDR3_ECC_INT_STATUS_OFFSET);
|
|
}
|
|
}
|
|
|
|
static void ddr3_reset_data(u32 base, u32 ddr3_size)
|
|
{
|
|
u32 mpax[2];
|
|
u32 seg_num;
|
|
u32 seg, blks, dst, edma_blks;
|
|
struct edma3_slot_config slot;
|
|
struct edma3_channel_config edma_channel;
|
|
u32 edma_src[DDR3_EDMA_BLK_SIZE/4] __aligned(16) = {0, };
|
|
|
|
/* Setup an edma to copy the 1k block to the entire DDR */
|
|
puts("\nClear entire DDR3 memory to enable ECC\n");
|
|
|
|
/* save the SES MPAX regs */
|
|
if (cpu_is_k2g())
|
|
msmc_get_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax);
|
|
else
|
|
msmc_get_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax);
|
|
|
|
/* setup edma slot 1 configuration */
|
|
slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB |
|
|
EDMA3_SLOPT_COMP_CODE(0) |
|
|
EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC;
|
|
slot.bcnt = DDR3_EDMA_BCNT;
|
|
slot.acnt = DDR3_EDMA_BLK_SIZE;
|
|
slot.ccnt = DDR3_EDMA_CCNT;
|
|
slot.src_bidx = 0;
|
|
slot.dst_bidx = DDR3_EDMA_BLK_SIZE;
|
|
slot.src_cidx = 0;
|
|
slot.dst_cidx = 0;
|
|
slot.link = EDMA3_PARSET_NULL_LINK;
|
|
slot.bcntrld = 0;
|
|
edma3_slot_configure(KS2_EDMA0_BASE, DDR3_EDMA_SLOT_NUM, &slot);
|
|
|
|
/* configure quik edma channel */
|
|
edma_channel.slot = DDR3_EDMA_SLOT_NUM;
|
|
edma_channel.chnum = 0;
|
|
edma_channel.complete_code = 0;
|
|
/* event trigger after dst update */
|
|
edma_channel.trigger_slot_word = EDMA3_TWORD(dst);
|
|
qedma3_start(KS2_EDMA0_BASE, &edma_channel);
|
|
|
|
/* DDR3 size in segments (4KB seg size) */
|
|
seg_num = ddr3_size << (30 - KS2_MSMC_SEG_SIZE_SHIFT);
|
|
|
|
for (seg = 0; seg < seg_num; seg += KS2_MSMC_MAP_SEG_NUM) {
|
|
/* map 2GB 36-bit DDR address to 32-bit DDR address in EMIF
|
|
access slave interface so that edma driver can access */
|
|
if (cpu_is_k2g()) {
|
|
msmc_map_ses_segment(K2G_MSMC_SEGMENT_ARM, 0,
|
|
base >> KS2_MSMC_SEG_SIZE_SHIFT,
|
|
KS2_MSMC_DST_SEG_BASE + seg,
|
|
MPAX_SEG_2G);
|
|
} else {
|
|
msmc_map_ses_segment(K2HKLE_MSMC_SEGMENT_ARM, 0,
|
|
base >> KS2_MSMC_SEG_SIZE_SHIFT,
|
|
KS2_MSMC_DST_SEG_BASE + seg,
|
|
MPAX_SEG_2G);
|
|
}
|
|
|
|
if ((seg_num - seg) > KS2_MSMC_MAP_SEG_NUM)
|
|
edma_blks = KS2_MSMC_MAP_SEG_NUM <<
|
|
(KS2_MSMC_SEG_SIZE_SHIFT
|
|
- DDR3_EDMA_BLK_SIZE_SHIFT);
|
|
else
|
|
edma_blks = (seg_num - seg) << (KS2_MSMC_SEG_SIZE_SHIFT
|
|
- DDR3_EDMA_BLK_SIZE_SHIFT);
|
|
|
|
/* Use edma driver to scrub 2GB DDR memory */
|
|
for (dst = base, blks = 0; blks < edma_blks;
|
|
blks += DDR3_EDMA_BCNT, dst += DDR3_EDMA_XF_SIZE) {
|
|
edma3_set_src_addr(KS2_EDMA0_BASE,
|
|
edma_channel.slot, (u32)edma_src);
|
|
edma3_set_dest_addr(KS2_EDMA0_BASE,
|
|
edma_channel.slot, (u32)dst);
|
|
|
|
while (edma3_check_for_transfer(KS2_EDMA0_BASE,
|
|
&edma_channel))
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
qedma3_stop(KS2_EDMA0_BASE, &edma_channel);
|
|
|
|
/* restore the SES MPAX regs */
|
|
if (cpu_is_k2g())
|
|
msmc_set_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax);
|
|
else
|
|
msmc_set_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax);
|
|
}
|
|
|
|
static void ddr3_ecc_init_range(u32 base)
|
|
{
|
|
u32 ecc_val = KS2_DDR3_ECC_EN;
|
|
u32 rmw = ddr3_ecc_support_rmw(base);
|
|
|
|
if (rmw)
|
|
ecc_val |= KS2_DDR3_ECC_RMW_EN;
|
|
|
|
__raw_writel(0, base + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET);
|
|
|
|
ddr3_ecc_config(base, ecc_val);
|
|
}
|
|
|
|
void ddr3_enable_ecc(u32 base, int test)
|
|
{
|
|
u32 ecc_val = KS2_DDR3_ECC_ENABLE;
|
|
u32 rmw = ddr3_ecc_support_rmw(base);
|
|
|
|
if (test)
|
|
ecc_val |= KS2_DDR3_ECC_ADDR_RNG_1_EN;
|
|
|
|
if (!rmw) {
|
|
if (!test)
|
|
/* by default, disable ecc when rmw = 0 and no
|
|
ecc test */
|
|
ecc_val = 0;
|
|
} else {
|
|
ecc_val |= KS2_DDR3_ECC_RMW_EN;
|
|
}
|
|
|
|
ddr3_ecc_config(base, ecc_val);
|
|
}
|
|
|
|
void ddr3_disable_ecc(u32 base)
|
|
{
|
|
ddr3_ecc_config(base, 0);
|
|
}
|
|
|
|
#if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
|
|
static void cic_init(u32 base)
|
|
{
|
|
/* Disable CIC global interrupts */
|
|
__raw_writel(0, base + KS2_CIC_GLOBAL_ENABLE);
|
|
|
|
/* Set to normal mode, no nesting, no priority hold */
|
|
__raw_writel(0, base + KS2_CIC_CTRL);
|
|
__raw_writel(0, base + KS2_CIC_HOST_CTRL);
|
|
|
|
/* Enable CIC global interrupts */
|
|
__raw_writel(1, base + KS2_CIC_GLOBAL_ENABLE);
|
|
}
|
|
|
|
static void cic_map_cic_to_gic(u32 base, u32 chan_num, u32 irq_num)
|
|
{
|
|
/* Map the system interrupt to a CIC channel */
|
|
__raw_writeb(chan_num, base + KS2_CIC_CHAN_MAP(0) + irq_num);
|
|
|
|
/* Enable CIC system interrupt */
|
|
__raw_writel(irq_num, base + KS2_CIC_SYS_ENABLE_IDX_SET);
|
|
|
|
/* Enable CIC Host interrupt */
|
|
__raw_writel(chan_num, base + KS2_CIC_HOST_ENABLE_IDX_SET);
|
|
}
|
|
|
|
static void ddr3_map_ecc_cic2_irq(u32 base)
|
|
{
|
|
cic_init(base);
|
|
cic_map_cic_to_gic(base, KS2_CIC2_DDR3_ECC_CHAN_NUM,
|
|
KS2_CIC2_DDR3_ECC_IRQ_NUM);
|
|
}
|
|
#endif
|
|
|
|
void ddr3_init_ecc(u32 base, u32 ddr3_size)
|
|
{
|
|
if (!ddr3_ecc_support_rmw(base)) {
|
|
ddr3_disable_ecc(base);
|
|
return;
|
|
}
|
|
|
|
ddr3_ecc_init_range(base);
|
|
ddr3_reset_data(CONFIG_SYS_SDRAM_BASE, ddr3_size);
|
|
|
|
/* mapping DDR3 ECC system interrupt from CIC2 to GIC */
|
|
#if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
|
|
ddr3_map_ecc_cic2_irq(KS2_CIC2_BASE);
|
|
#endif
|
|
ddr3_enable_ecc(base, 0);
|
|
}
|
|
|
|
void ddr3_check_ecc_int(u32 base)
|
|
{
|
|
char *env;
|
|
int ecc_test = 0;
|
|
u32 value = __raw_readl(base + KS2_DDR3_ECC_INT_STATUS_OFFSET);
|
|
|
|
env = env_get("ecc_test");
|
|
if (env)
|
|
ecc_test = simple_strtol(env, NULL, 0);
|
|
|
|
if (value & KS2_DDR3_WR_ECC_ERR_SYS)
|
|
puts("DDR3 ECC write error interrupted\n");
|
|
|
|
if (value & KS2_DDR3_2B_ECC_ERR_SYS) {
|
|
puts("DDR3 ECC 2-bit error interrupted\n");
|
|
|
|
if (!ecc_test) {
|
|
puts("Reseting the device ...\n");
|
|
reset_cpu();
|
|
}
|
|
}
|
|
|
|
value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
|
|
if (value) {
|
|
printf("1-bit ECC err count: 0x%x\n", value);
|
|
value = __raw_readl(base +
|
|
KS2_DDR3_ONE_BIT_ECC_ERR_ADDR_LOG_OFFSET);
|
|
printf("1-bit ECC err address log: 0x%x\n", value);
|
|
}
|
|
}
|
|
|
|
void ddr3_reset_ddrphy(void)
|
|
{
|
|
u32 tmp;
|
|
|
|
/* Assert DDR3A PHY reset */
|
|
tmp = readl(KS2_DDR3APLLCTL1);
|
|
tmp |= KS2_DDR3_PLLCTRL_PHY_RESET;
|
|
writel(tmp, KS2_DDR3APLLCTL1);
|
|
|
|
/* wait 10us to catch the reset */
|
|
udelay(10);
|
|
|
|
/* Release DDR3A PHY reset */
|
|
tmp = readl(KS2_DDR3APLLCTL1);
|
|
tmp &= ~KS2_DDR3_PLLCTRL_PHY_RESET;
|
|
__raw_writel(tmp, KS2_DDR3APLLCTL1);
|
|
}
|
|
|
|
#ifdef CONFIG_SOC_K2HK
|
|
/**
|
|
* ddr3_reset_workaround - reset workaround in case if leveling error
|
|
* detected for PG 1.0 and 1.1 k2hk SoCs
|
|
*/
|
|
void ddr3_err_reset_workaround(void)
|
|
{
|
|
unsigned int tmp;
|
|
unsigned int tmp_a;
|
|
unsigned int tmp_b;
|
|
|
|
/*
|
|
* Check for PGSR0 error bits of DDR3 PHY.
|
|
* Check for WLERR, QSGERR, WLAERR,
|
|
* RDERR, WDERR, REERR, WEERR error to see if they are set or not
|
|
*/
|
|
tmp_a = __raw_readl(KS2_DDR3A_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);
|
|
tmp_b = __raw_readl(KS2_DDR3B_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);
|
|
|
|
if (((tmp_a & 0x0FE00000) != 0) || ((tmp_b & 0x0FE00000) != 0)) {
|
|
printf("DDR Leveling Error Detected!\n");
|
|
printf("DDR3A PGSR0 = 0x%x\n", tmp_a);
|
|
printf("DDR3B PGSR0 = 0x%x\n", tmp_b);
|
|
|
|
/*
|
|
* Write Keys to KICK registers to enable writes to registers
|
|
* in boot config space
|
|
*/
|
|
__raw_writel(KS2_KICK0_MAGIC, KS2_KICK0);
|
|
__raw_writel(KS2_KICK1_MAGIC, KS2_KICK1);
|
|
|
|
/*
|
|
* Move DDR3A Module out of reset isolation by setting
|
|
* MDCTL23[12] = 0
|
|
*/
|
|
tmp_a = __raw_readl(KS2_PSC_BASE +
|
|
PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));
|
|
|
|
tmp_a = PSC_REG_MDCTL_SET_RESET_ISO(tmp_a, 0);
|
|
__raw_writel(tmp_a, KS2_PSC_BASE +
|
|
PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));
|
|
|
|
/*
|
|
* Move DDR3B Module out of reset isolation by setting
|
|
* MDCTL24[12] = 0
|
|
*/
|
|
tmp_b = __raw_readl(KS2_PSC_BASE +
|
|
PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));
|
|
tmp_b = PSC_REG_MDCTL_SET_RESET_ISO(tmp_b, 0);
|
|
__raw_writel(tmp_b, KS2_PSC_BASE +
|
|
PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));
|
|
|
|
/*
|
|
* Write 0x5A69 Key to RSTCTRL[15:0] to unlock writes
|
|
* to RSTCTRL and RSTCFG
|
|
*/
|
|
tmp = __raw_readl(KS2_RSTCTRL);
|
|
tmp &= KS2_RSTCTRL_MASK;
|
|
tmp |= KS2_RSTCTRL_KEY;
|
|
__raw_writel(tmp, KS2_RSTCTRL);
|
|
|
|
/*
|
|
* Set PLL Controller to drive hard reset on SW trigger by
|
|
* setting RSTCFG[13] = 0
|
|
*/
|
|
tmp = __raw_readl(KS2_RSTCTRL_RSCFG);
|
|
tmp &= ~KS2_RSTYPE_PLL_SOFT;
|
|
__raw_writel(tmp, KS2_RSTCTRL_RSCFG);
|
|
|
|
reset_cpu();
|
|
}
|
|
}
|
|
#endif
|