mirror of
https://github.com/AsahiLinux/u-boot
synced 2025-01-07 10:48:54 +00:00
4e5909450e
The rest of the unmigrated CONFIG symbols in the CONFIG_SYS_NAND namespace do not easily transition to Kconfig. In many cases they likely should come from the device tree instead. Move these out of CONFIG namespace and in to CFG namespace. Signed-off-by: Tom Rini <trini@konsulko.com> Reviewed-by: Simon Glass <sjg@chromium.org>
820 lines
21 KiB
C
820 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
|
|
*
|
|
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
|
|
* Ported to U-Boot by Stefan Agner
|
|
* Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
|
|
* Jason ported to M54418TWR and MVFA5.
|
|
* Authors: Stefan Agner <stefan.agner@toradex.com>
|
|
* Bill Pringlemeir <bpringlemeir@nbsps.com>
|
|
* Shaohui Xie <b21989@freescale.com>
|
|
* Jason Jin <Jason.jin@freescale.com>
|
|
*
|
|
* Based on original driver mpc5121_nfc.c.
|
|
*
|
|
* Limitations:
|
|
* - Untested on MPC5125 and M54418.
|
|
* - DMA and pipelining not used.
|
|
* - 2K pages or less.
|
|
* - HW ECC: Only 2K page with 64+ OOB.
|
|
* - HW ECC: Only 24 and 32-bit error correction implemented.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
#include <dm/device_compat.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <nand.h>
|
|
#include <errno.h>
|
|
#include <asm/io.h>
|
|
#if CONFIG_NAND_VF610_NFC_DT
|
|
#include <dm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#endif
|
|
|
|
/* Register Offsets */
|
|
#define NFC_FLASH_CMD1 0x3F00
|
|
#define NFC_FLASH_CMD2 0x3F04
|
|
#define NFC_COL_ADDR 0x3F08
|
|
#define NFC_ROW_ADDR 0x3F0c
|
|
#define NFC_ROW_ADDR_INC 0x3F14
|
|
#define NFC_FLASH_STATUS1 0x3F18
|
|
#define NFC_FLASH_STATUS2 0x3F1c
|
|
#define NFC_CACHE_SWAP 0x3F28
|
|
#define NFC_SECTOR_SIZE 0x3F2c
|
|
#define NFC_FLASH_CONFIG 0x3F30
|
|
#define NFC_IRQ_STATUS 0x3F38
|
|
|
|
/* Addresses for NFC MAIN RAM BUFFER areas */
|
|
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
|
|
|
|
#define PAGE_2K 0x0800
|
|
#define OOB_64 0x0040
|
|
#define OOB_MAX 0x0100
|
|
|
|
/*
|
|
* NFC_CMD2[CODE] values. See section:
|
|
* - 31.4.7 Flash Command Code Description, Vybrid manual
|
|
* - 23.8.6 Flash Command Sequencer, MPC5125 manual
|
|
*
|
|
* Briefly these are bitmasks of controller cycles.
|
|
*/
|
|
#define READ_PAGE_CMD_CODE 0x7EE0
|
|
#define READ_ONFI_PARAM_CMD_CODE 0x4860
|
|
#define PROGRAM_PAGE_CMD_CODE 0x7FC0
|
|
#define ERASE_CMD_CODE 0x4EC0
|
|
#define READ_ID_CMD_CODE 0x4804
|
|
#define RESET_CMD_CODE 0x4040
|
|
#define STATUS_READ_CMD_CODE 0x4068
|
|
|
|
/* NFC ECC mode define */
|
|
#define ECC_BYPASS 0
|
|
#define ECC_45_BYTE 6
|
|
#define ECC_60_BYTE 7
|
|
|
|
/*** Register Mask and bit definitions */
|
|
|
|
/* NFC_FLASH_CMD1 Field */
|
|
#define CMD_BYTE2_MASK 0xFF000000
|
|
#define CMD_BYTE2_SHIFT 24
|
|
|
|
/* NFC_FLASH_CM2 Field */
|
|
#define CMD_BYTE1_MASK 0xFF000000
|
|
#define CMD_BYTE1_SHIFT 24
|
|
#define CMD_CODE_MASK 0x00FFFF00
|
|
#define CMD_CODE_SHIFT 8
|
|
#define BUFNO_MASK 0x00000006
|
|
#define BUFNO_SHIFT 1
|
|
#define START_BIT (1<<0)
|
|
|
|
/* NFC_COL_ADDR Field */
|
|
#define COL_ADDR_MASK 0x0000FFFF
|
|
#define COL_ADDR_SHIFT 0
|
|
|
|
/* NFC_ROW_ADDR Field */
|
|
#define ROW_ADDR_MASK 0x00FFFFFF
|
|
#define ROW_ADDR_SHIFT 0
|
|
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
|
|
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
|
|
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
|
|
#define ROW_ADDR_CHIP_SEL_SHIFT 24
|
|
|
|
/* NFC_FLASH_STATUS2 Field */
|
|
#define STATUS_BYTE1_MASK 0x000000FF
|
|
|
|
/* NFC_FLASH_CONFIG Field */
|
|
#define CFG_ECC_SRAM_ADDR_MASK 0x7FC00000
|
|
#define CFG_ECC_SRAM_ADDR_SHIFT 22
|
|
#define CFG_ECC_SRAM_REQ_BIT (1<<21)
|
|
#define CFG_DMA_REQ_BIT (1<<20)
|
|
#define CFG_ECC_MODE_MASK 0x000E0000
|
|
#define CFG_ECC_MODE_SHIFT 17
|
|
#define CFG_FAST_FLASH_BIT (1<<16)
|
|
#define CFG_16BIT (1<<7)
|
|
#define CFG_BOOT_MODE_BIT (1<<6)
|
|
#define CFG_ADDR_AUTO_INCR_BIT (1<<5)
|
|
#define CFG_BUFNO_AUTO_INCR_BIT (1<<4)
|
|
#define CFG_PAGE_CNT_MASK 0xF
|
|
#define CFG_PAGE_CNT_SHIFT 0
|
|
|
|
/* NFC_IRQ_STATUS Field */
|
|
#define IDLE_IRQ_BIT (1<<29)
|
|
#define IDLE_EN_BIT (1<<20)
|
|
#define CMD_DONE_CLEAR_BIT (1<<18)
|
|
#define IDLE_CLEAR_BIT (1<<17)
|
|
|
|
#define NFC_TIMEOUT (1000)
|
|
|
|
/*
|
|
* ECC status - seems to consume 8 bytes (double word). The documented
|
|
* status byte is located in the lowest byte of the second word (which is
|
|
* the 4th or 7th byte depending on endianness).
|
|
* Calculate an offset to store the ECC status at the end of the buffer.
|
|
*/
|
|
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
|
|
|
|
#define ECC_STATUS 0x4
|
|
#define ECC_STATUS_MASK 0x80
|
|
#define ECC_STATUS_ERR_COUNT 0x3F
|
|
|
|
enum vf610_nfc_alt_buf {
|
|
ALT_BUF_DATA = 0,
|
|
ALT_BUF_ID = 1,
|
|
ALT_BUF_STAT = 2,
|
|
ALT_BUF_ONFI = 3,
|
|
};
|
|
|
|
struct vf610_nfc {
|
|
struct nand_chip chip;
|
|
/* NULL without CONFIG_NAND_VF610_NFC_DT */
|
|
struct udevice *dev;
|
|
void __iomem *regs;
|
|
uint buf_offset;
|
|
int write_sz;
|
|
/* Status and ID are in alternate locations. */
|
|
enum vf610_nfc_alt_buf alt_buf;
|
|
};
|
|
|
|
#define mtd_to_nfc(_mtd) nand_get_controller_data(mtd_to_nand(_mtd))
|
|
|
|
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
|
|
#define ECC_HW_MODE ECC_45_BYTE
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc = {
|
|
.eccbytes = 45,
|
|
.eccpos = {19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
|
56, 57, 58, 59, 60, 61, 62, 63},
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 17} }
|
|
};
|
|
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
|
|
#define ECC_HW_MODE ECC_60_BYTE
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc = {
|
|
.eccbytes = 60,
|
|
.eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
|
|
12, 13, 14, 15, 16, 17, 18, 19,
|
|
20, 21, 22, 23, 24, 25, 26, 27,
|
|
28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43,
|
|
44, 45, 46, 47, 48, 49, 50, 51,
|
|
52, 53, 54, 55, 56, 57, 58, 59,
|
|
60, 61, 62, 63 },
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 2} }
|
|
};
|
|
#endif
|
|
|
|
static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
return readl(nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
writel(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
|
|
u32 mask, u32 shift, u32 val)
|
|
{
|
|
vf610_nfc_write(mtd, reg,
|
|
(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
|
|
}
|
|
|
|
static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
|
|
{
|
|
/*
|
|
* Use this accessor for the internal SRAM buffers. On the ARM
|
|
* Freescale Vybrid SoC it's known that the driver can treat
|
|
* the SRAM buffer as if it's memory. Other platform might need
|
|
* to treat the buffers differently.
|
|
*
|
|
* For the time being, use memcpy
|
|
*/
|
|
memcpy(dst, src, n);
|
|
}
|
|
|
|
/* Clear flags for upcoming command */
|
|
static inline void vf610_nfc_clear_status(void __iomem *regbase)
|
|
{
|
|
void __iomem *reg = regbase + NFC_IRQ_STATUS;
|
|
u32 tmp = __raw_readl(reg);
|
|
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
/* Wait for complete operation */
|
|
static void vf610_nfc_done(struct mtd_info *mtd)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint start;
|
|
|
|
/*
|
|
* Barrier is needed after this write. This write need
|
|
* to be done before reading the next register the first
|
|
* time.
|
|
* vf610_nfc_set implicates such a barrier by using writel
|
|
* to write to the register.
|
|
*/
|
|
vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
|
|
|
|
start = get_timer(0);
|
|
|
|
while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
|
|
if (get_timer(start) > NFC_TIMEOUT) {
|
|
printf("Timeout while waiting for IDLE.\n");
|
|
return;
|
|
}
|
|
}
|
|
vf610_nfc_clear_status(nfc->regs);
|
|
}
|
|
|
|
static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
|
|
{
|
|
u32 flash_id;
|
|
|
|
if (col < 4) {
|
|
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
|
|
flash_id >>= (3 - col) * 8;
|
|
} else {
|
|
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
|
|
flash_id >>= 24;
|
|
}
|
|
|
|
return flash_id & 0xff;
|
|
}
|
|
|
|
static u8 vf610_nfc_get_status(struct mtd_info *mtd)
|
|
{
|
|
return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
|
|
}
|
|
|
|
/* Single command */
|
|
static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
|
|
u32 cmd_code)
|
|
{
|
|
void __iomem *reg = regbase + NFC_FLASH_CMD2;
|
|
u32 tmp;
|
|
vf610_nfc_clear_status(regbase);
|
|
|
|
tmp = __raw_readl(reg);
|
|
tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
|
|
tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
|
|
tmp |= cmd_code << CMD_CODE_SHIFT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
/* Two commands */
|
|
static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
|
|
u32 cmd_byte2, u32 cmd_code)
|
|
{
|
|
void __iomem *reg = regbase + NFC_FLASH_CMD1;
|
|
u32 tmp;
|
|
vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
|
|
|
|
tmp = __raw_readl(reg);
|
|
tmp &= ~CMD_BYTE2_MASK;
|
|
tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
|
|
{
|
|
if (column != -1) {
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
if (nfc->chip.options & NAND_BUSWIDTH_16)
|
|
column = column / 2;
|
|
vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
|
|
COL_ADDR_SHIFT, column);
|
|
}
|
|
if (page != -1)
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, page);
|
|
}
|
|
|
|
static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
|
|
{
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
|
|
CFG_ECC_MODE_MASK,
|
|
CFG_ECC_MODE_SHIFT, ecc_mode);
|
|
}
|
|
|
|
static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
|
|
{
|
|
__raw_writel(size, regbase + NFC_SECTOR_SIZE);
|
|
}
|
|
|
|
/* Send command to NAND chip */
|
|
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
|
|
|
|
nfc->buf_offset = max(column, 0);
|
|
nfc->alt_buf = ALT_BUF_DATA;
|
|
|
|
switch (command) {
|
|
case NAND_CMD_SEQIN:
|
|
/* Use valid column/page from preread... */
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
nfc->buf_offset = 0;
|
|
|
|
/*
|
|
* SEQIN => data => PAGEPROG sequence is done by the controller
|
|
* hence we do not need to issue the command here...
|
|
*/
|
|
return;
|
|
case NAND_CMD_PAGEPROG:
|
|
trfr_sz += nfc->write_sz;
|
|
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
|
|
command, PROGRAM_PAGE_CMD_CODE);
|
|
break;
|
|
|
|
case NAND_CMD_RESET:
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
trfr_sz += mtd->oobsize;
|
|
column = mtd->writesize;
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
trfr_sz += mtd->writesize + mtd->oobsize;
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
break;
|
|
|
|
case NAND_CMD_PARAM:
|
|
nfc->alt_buf = ALT_BUF_ONFI;
|
|
trfr_sz = 3 * sizeof(struct nand_onfi_params);
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
|
|
READ_ONFI_PARAM_CMD_CODE);
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, column);
|
|
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_ERASE1:
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_commands(nfc->regs, command,
|
|
NAND_CMD_ERASE2, ERASE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
nfc->alt_buf = ALT_BUF_ID;
|
|
nfc->buf_offset = 0;
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, column);
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
nfc->alt_buf = ALT_BUF_STAT;
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
vf610_nfc_done(mtd);
|
|
|
|
nfc->write_sz = 0;
|
|
}
|
|
|
|
/* Read data from NFC buffers */
|
|
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
|
|
/* Alternate buffers are only supported through read_byte */
|
|
if (nfc->alt_buf)
|
|
return;
|
|
|
|
vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
|
|
|
|
nfc->buf_offset += len;
|
|
}
|
|
|
|
/* Write data to NFC buffers */
|
|
static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
uint l;
|
|
|
|
l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
|
|
vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
|
|
|
|
nfc->write_sz += l;
|
|
nfc->buf_offset += l;
|
|
}
|
|
|
|
/* Read byte from NFC buffers */
|
|
static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u8 tmp;
|
|
uint c = nfc->buf_offset;
|
|
|
|
switch (nfc->alt_buf) {
|
|
case ALT_BUF_ID:
|
|
tmp = vf610_nfc_get_id(mtd, c);
|
|
break;
|
|
case ALT_BUF_STAT:
|
|
tmp = vf610_nfc_get_status(mtd);
|
|
break;
|
|
#ifdef __LITTLE_ENDIAN
|
|
case ALT_BUF_ONFI:
|
|
/* Reverse byte since the controller uses big endianness */
|
|
c = nfc->buf_offset ^ 0x3;
|
|
/* fall-through */
|
|
#endif
|
|
default:
|
|
tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
|
|
break;
|
|
}
|
|
nfc->buf_offset++;
|
|
return tmp;
|
|
}
|
|
|
|
/* Read word from NFC buffers */
|
|
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
|
|
{
|
|
u16 tmp;
|
|
|
|
vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
|
|
return tmp;
|
|
}
|
|
|
|
/* If not provided, upper layers apply a fixed delay. */
|
|
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/* NFC handles R/B internally; always ready. */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
|
|
*/
|
|
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
#ifdef CONFIG_VF610
|
|
u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
|
|
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
|
|
|
|
if (chip >= 0) {
|
|
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
|
|
tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
|
|
}
|
|
|
|
vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
|
|
#endif
|
|
}
|
|
|
|
/* Count the number of 0's in buff upto max_bits */
|
|
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
|
|
{
|
|
uint32_t *buff32 = (uint32_t *)buff;
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < (size / 4); k++) {
|
|
written_bits += hweight32(~buff32[k]);
|
|
if (written_bits > max_bits)
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *oob, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
|
|
u8 ecc_status;
|
|
u8 ecc_count;
|
|
int flips;
|
|
int flips_threshold = nfc->chip.ecc.strength / 2;
|
|
|
|
ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
|
|
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
|
|
|
|
if (!(ecc_status & ECC_STATUS_MASK))
|
|
return ecc_count;
|
|
|
|
/* Read OOB without ECC unit enabled */
|
|
vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
|
|
vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
/*
|
|
* On an erased page, bit count (including OOB) should be zero or
|
|
* at least less then half of the ECC strength.
|
|
*/
|
|
flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
|
|
flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
|
|
|
|
if (unlikely(flips > flips_threshold))
|
|
return -EINVAL;
|
|
|
|
/* Erased page. */
|
|
memset(dat, 0xff, nfc->chip.ecc.size);
|
|
memset(oob, 0xff, mtd->oobsize);
|
|
return flips;
|
|
}
|
|
|
|
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int stat;
|
|
|
|
vf610_nfc_read_buf(mtd, buf, eccsize);
|
|
if (oob_required)
|
|
vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
return 0;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ECC will be calculated automatically
|
|
*/
|
|
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
vf610_nfc_write_buf(mtd, buf, mtd->writesize);
|
|
if (oob_required)
|
|
vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Always write whole page including OOB due to HW ECC */
|
|
nfc->write_sz = mtd->writesize + mtd->oobsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vf610_nfc_config {
|
|
int hardware_ecc;
|
|
int width;
|
|
int flash_bbt;
|
|
};
|
|
|
|
static int vf610_nfc_nand_init(struct vf610_nfc *nfc, int devnum)
|
|
{
|
|
struct nand_chip *chip = &nfc->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int err = 0;
|
|
struct vf610_nfc_config cfg = {
|
|
.hardware_ecc = 1,
|
|
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
|
|
.width = 16,
|
|
#else
|
|
.width = 8,
|
|
#endif
|
|
.flash_bbt = 1,
|
|
};
|
|
|
|
nand_set_controller_data(chip, nfc);
|
|
|
|
if (cfg.width == 16)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
chip->dev_ready = vf610_nfc_dev_ready;
|
|
chip->cmdfunc = vf610_nfc_command;
|
|
chip->read_byte = vf610_nfc_read_byte;
|
|
chip->read_word = vf610_nfc_read_word;
|
|
chip->read_buf = vf610_nfc_read_buf;
|
|
chip->write_buf = vf610_nfc_write_buf;
|
|
chip->select_chip = vf610_nfc_select_chip;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
|
|
/* Set configuration register. */
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CFG_16BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CFG_ADDR_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CFG_BUFNO_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CFG_BOOT_MODE_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CFG_DMA_REQ_BIT);
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CFG_FAST_FLASH_BIT);
|
|
|
|
/* Disable virtual pages, only one elementary transfer unit */
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CFG_PAGE_CNT_MASK,
|
|
CFG_PAGE_CNT_SHIFT, 1);
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (cfg.width == 16)
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CFG_16BIT);
|
|
|
|
/* Bad block options. */
|
|
if (cfg.flash_bbt)
|
|
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
|
|
NAND_BBT_CREATE;
|
|
|
|
/* Single buffer only, max 256 OOB minus ECC status */
|
|
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
|
|
dev_err(nfc->dev, "Unsupported flash page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (cfg.hardware_ecc) {
|
|
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
|
|
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (chip->ecc.size != mtd->writesize) {
|
|
dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
|
|
dev_err(nfc->dev, "Step size needs to be page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
/* Current HW ECC layouts only use 64 bytes of OOB */
|
|
if (mtd->oobsize > 64)
|
|
mtd->oobsize = 64;
|
|
|
|
/* propagate ecc.layout to mtd_info */
|
|
mtd->ecclayout = chip->ecc.layout;
|
|
chip->ecc.read_page = vf610_nfc_read_page;
|
|
chip->ecc.write_page = vf610_nfc_write_page;
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
chip->ecc.layout = &vf610_nfc_ecc;
|
|
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
|
|
chip->ecc.strength = 24;
|
|
chip->ecc.bytes = 45;
|
|
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
|
|
chip->ecc.strength = 32;
|
|
chip->ecc.bytes = 60;
|
|
#endif
|
|
|
|
/* Set ECC_STATUS offset */
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
|
|
CFG_ECC_SRAM_ADDR_MASK,
|
|
CFG_ECC_SRAM_ADDR_SHIFT,
|
|
ECC_SRAM_ADDR >> 3);
|
|
|
|
/* Enable ECC status in SRAM */
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CFG_ECC_SRAM_REQ_BIT);
|
|
}
|
|
|
|
/* second phase scan */
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
return err;
|
|
|
|
err = nand_register(devnum, mtd);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
return err;
|
|
}
|
|
|
|
#if CONFIG_NAND_VF610_NFC_DT
|
|
static const struct udevice_id vf610_nfc_dt_ids[] = {
|
|
{
|
|
.compatible = "fsl,vf610-nfc",
|
|
},
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static int vf610_nfc_dt_probe(struct udevice *dev)
|
|
{
|
|
struct resource res;
|
|
struct vf610_nfc *nfc = dev_get_priv(dev);
|
|
int ret;
|
|
|
|
ret = dev_read_resource(dev, 0, &res);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nfc->regs = devm_ioremap(dev, res.start, resource_size(&res));
|
|
nfc->dev = dev;
|
|
return vf610_nfc_nand_init(nfc, 0);
|
|
}
|
|
|
|
U_BOOT_DRIVER(vf610_nfc_dt) = {
|
|
.name = "vf610-nfc-dt",
|
|
.id = UCLASS_MTD,
|
|
.of_match = vf610_nfc_dt_ids,
|
|
.priv_auto = sizeof(struct vf610_nfc),
|
|
.probe = vf610_nfc_dt_probe,
|
|
};
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
struct udevice *dev;
|
|
int ret;
|
|
|
|
ret = uclass_get_device_by_driver(UCLASS_MTD,
|
|
DM_DRIVER_GET(vf610_nfc_dt),
|
|
&dev);
|
|
if (ret && ret != -ENODEV)
|
|
pr_err("Failed to initialize NAND controller. (error %d)\n",
|
|
ret);
|
|
}
|
|
#else
|
|
void board_nand_init(void)
|
|
{
|
|
int err;
|
|
struct vf610_nfc *nfc;
|
|
|
|
nfc = calloc(1, sizeof(*nfc));
|
|
if (!nfc) {
|
|
printf("%s: Out of memory\n", __func__);
|
|
return;
|
|
}
|
|
|
|
nfc->regs = (void __iomem *)CFG_SYS_NAND_BASE;
|
|
err = vf610_nfc_nand_init(nfc, 0);
|
|
if (err)
|
|
printf("VF610 NAND init failed (err %d)\n", err);
|
|
}
|
|
#endif /* CONFIG_NAND_VF610_NFC_DT */
|