u-boot/drivers/net/pfe_eth/pfe_hw.c
Calvin Johnson a4a4043749 drivers: net: pfe_eth: LS1012A PFE driver introduction
This patch adds PFE driver to U-Boot

Following are the main driver files:-
pfe_hw.c: provides low level helper functions to initialize PFE
internal processor engines and other hardware blocks
pfe_driver.c: provides initialization functions
and packet send and receive functions
pfe_eth.c: provides high level gemac initialization functions
pfe_firmware.c: provides functions to load firmware into PFE
internal processor engines.
pfe_mdio.c: provides functions to initialize phy and mdio.

Signed-off-by: Calvin Johnson <calvin.johnson@nxp.com>
Signed-off-by: Anjaneyulu Jagarlmudi <anji.jagarlmudi@nxp.com>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2018-03-22 15:05:28 -05:00

999 lines
25 KiB
C

/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*
* SPDX-License-Identifier:GPL-2.0+
*/
#include <net/pfe_eth/pfe_eth.h>
#include <net/pfe_eth/pfe/pfe_hw.h>
static struct pe_info pe[MAX_PE];
/*
* Initializes the PFE library.
* Must be called before using any of the library functions.
*/
void pfe_lib_init(void)
{
int pfe_pe_id;
for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
pe[pfe_pe_id].dmem_base_addr =
(u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
pe[pfe_pe_id].pmem_base_addr =
(u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
pe[pfe_pe_id].mem_access_wdata =
(void *)CLASS_MEM_ACCESS_WDATA;
pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
}
for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
if (pfe_pe_id == TMU2_ID)
continue;
pe[pfe_pe_id].dmem_base_addr =
(u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
pe[pfe_pe_id].pmem_base_addr =
(u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
}
}
/*
* Writes a buffer to PE internal memory from the host
* through indirect access registers.
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] mem_access_addr DMEM destination address (must be 32bit
* aligned)
* @param[in] src Buffer source address
* @param[in] len Number of bytes to copy
*/
static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
unsigned int len)
{
u32 offset = 0, val, addr;
unsigned int len32 = len >> 2;
int i;
addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
for (i = 0; i < len32; i++, offset += 4, src += 4) {
val = *(u32 *)src;
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
writel(addr + offset, pe[id].mem_access_addr);
}
len = (len & 0x3);
if (len) {
val = 0;
addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
for (i = 0; i < len; i++, src++)
val |= (*(u8 *)src) << (8 * i);
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
writel(addr, pe[id].mem_access_addr);
}
}
/*
* Writes a buffer to PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] dst DMEM destination address (must be 32bit
* aligned)
* @param[in] src Buffer source address
* @param[in] len Number of bytes to copy
*/
static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
unsigned int len)
{
pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
src, len);
}
/*
* Writes a buffer to PE internal program memory (PMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., TMU3_ID)
* @param[in] dst PMEM destination address (must be 32bit
* aligned)
* @param[in] src Buffer source address
* @param[in] len Number of bytes to copy
*/
static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
unsigned int len)
{
pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
- 1)) | PE_MEM_ACCESS_IMEM, src, len);
}
/*
* Reads PE internal program memory (IMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., TMU3_ID)
* @param[in] addr PMEM read address (must be aligned on size)
* @param[in] size Number of bytes to read (maximum 4, must not
* cross 32bit boundaries)
* @return the data read (in PE endianness, i.e BE).
*/
u32 pe_pmem_read(int id, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
| PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
writel(addr, pe[id].mem_access_addr);
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
return (val >> (offset << 3)) & mask;
}
/*
* Writes PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] val Value to write (in PE endianness, i.e BE)
* @param[in] addr DMEM write address (must be aligned on size)
* @param[in] size Number of bytes to write (maximum 4, must not
* cross 32bit boundaries)
*/
void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
/* Indirect access interface is byte swapping data being written */
writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
writel(addr, pe[id].mem_access_addr);
}
/*
* Reads PE internal data memory (DMEM) from the host
* through indirect access registers.
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] addr DMEM read address (must be aligned on size)
* @param[in] size Number of bytes to read (maximum 4, must not
* cross 32bit boundaries)
* @return the data read (in PE endianness, i.e BE).
*/
u32 pe_dmem_read(int id, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
writel(addr, pe[id].mem_access_addr);
/* Indirect access interface is byte swapping data being read */
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
return (val >> (offset << 3)) & mask;
}
/*
* This function is used to write to CLASS internal bus peripherals (ccu,
* pe-lem) from the host
* through indirect access registers.
* @param[in] val value to write
* @param[in] addr Address to write to (must be aligned on size)
* @param[in] size Number of bytes to write (1, 2 or 4)
*
*/
static void class_bus_write(u32 val, u32 addr, u8 size)
{
u32 offset = addr & 0x3;
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
(size << 24);
writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
writel(addr, CLASS_BUS_ACCESS_ADDR);
}
/*
* Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
* through indirect access registers.
* @param[in] addr Address to read from (must be aligned on size)
* @param[in] size Number of bytes to read (1, 2 or 4)
* @return the read data
*/
static u32 class_bus_read(u32 addr, u8 size)
{
u32 offset = addr & 0x3;
u32 mask = 0xffffffff >> ((4 - size) << 3);
u32 val;
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
writel(addr, CLASS_BUS_ACCESS_ADDR);
val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
return (val >> (offset << 3)) & mask;
}
/*
* Writes data to the cluster memory (PE_LMEM)
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
* @param[in] src Buffer source address
* @param[in] len Number of bytes to copy
*/
static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
unsigned int len)
{
u32 len32 = len >> 2;
int i;
for (i = 0; i < len32; i++, src += 4, dst += 4)
class_bus_write(*(u32 *)src, dst, 4);
if (len & 0x2) {
class_bus_write(*(u16 *)src, dst, 2);
src += 2;
dst += 2;
}
if (len & 0x1) {
class_bus_write(*(u8 *)src, dst, 1);
src++;
dst++;
}
}
/*
* Writes value to the cluster memory (PE_LMEM)
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
* @param[in] val Value to write
* @param[in] len Number of bytes to write
*/
static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
{
u32 len32 = len >> 2;
int i;
val = val | (val << 8) | (val << 16) | (val << 24);
for (i = 0; i < len32; i++, dst += 4)
class_bus_write(val, dst, 4);
if (len & 0x2) {
class_bus_write(val, dst, 2);
dst += 2;
}
if (len & 0x1) {
class_bus_write(val, dst, 1);
dst++;
}
}
/*
* Reads data from the cluster memory (PE_LMEM)
* @param[out] dst pointer to the source buffer data are copied to
* @param[in] len length in bytes of the amount of data to read
* from cluster memory
* @param[in] offset offset in bytes in the cluster memory where data are
* read from
*/
void pe_lmem_read(u32 *dst, u32 len, u32 offset)
{
u32 len32 = len >> 2;
int i = 0;
for (i = 0; i < len32; dst++, i++, offset += 4)
*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
if (len & 0x03)
*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
}
/*
* Writes data to the cluster memory (PE_LMEM)
* @param[in] src pointer to the source buffer data are copied from
* @param[in] len length in bytes of the amount of data to write to the
* cluster memory
* @param[in] offset offset in bytes in the cluster memory where data are
* written to
*/
void pe_lmem_write(u32 *src, u32 len, u32 offset)
{
u32 len32 = len >> 2;
int i = 0;
for (i = 0; i < len32; src++, i++, offset += 4)
class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
if (len & 0x03)
class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
0x03));
}
/*
* Loads an elf section into pmem
* Code needs to be at least 16bit aligned and only PROGBITS sections are
* supported
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ...,
* TMU3_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*/
static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
printf(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr, (unsigned long)data + offset);
return -1;
}
if (addr & 0x1) {
printf("%s: load address(%x) is not 16bit aligned\n",
__func__, addr);
return -1;
}
if (size & 0x1) {
printf("%s: load size(%x) is not 16bit aligned\n", __func__,
size);
return -1;
}
debug("pmem pe%d @%x len %d\n", id, addr, size);
switch (type) {
case SHT_PROGBITS:
pe_pmem_memcpy_to32(id, addr, data + offset, size);
break;
default:
printf("%s: unsupported section type(%x)\n", __func__, type);
return -1;
}
return 0;
}
/*
* Loads an elf section into dmem
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*/
static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
u32 size32 = size >> 2;
int i;
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
printf(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr, (unsigned long)data + offset);
return -1;
}
if (addr & 0x3) {
printf("%s: load address(%x) is not 32bit aligned\n",
__func__, addr);
return -1;
}
switch (type) {
case SHT_PROGBITS:
debug("dmem pe%d @%x len %d\n", id, addr, size);
pe_dmem_memcpy_to32(id, addr, data + offset, size);
break;
case SHT_NOBITS:
debug("dmem zero pe%d @%x len %d\n", id, addr, size);
for (i = 0; i < size32; i++, addr += 4)
pe_dmem_write(id, 0, addr, 4);
if (size & 0x3)
pe_dmem_write(id, 0, addr, size & 0x3);
break;
default:
printf("%s: unsupported section type(%x)\n", __func__, type);
return -1;
}
return 0;
}
/*
* Loads an elf section into DDR
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*/
static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
u32 flags = be32_to_cpu(shdr->sh_flags);
switch (type) {
case SHT_PROGBITS:
debug("ddr pe%d @%x len %d\n", id, addr, size);
if (flags & SHF_EXECINSTR) {
if (id <= CLASS_MAX_ID) {
/* DO the loading only once in DDR */
if (id == CLASS0_ID) {
debug(
"%s: load address(%x) and elf file address(%lx) rcvd\n"
, __func__, addr,
(unsigned long)data + offset);
if (((unsigned long)(data + offset)
& 0x3) != (addr & 0x3)) {
printf(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr,
(unsigned long)data +
offset);
return -1;
}
if (addr & 0x1) {
printf(
"%s: load address(%x) is not 16bit aligned\n"
, __func__, addr);
return -1;
}
if (size & 0x1) {
printf(
"%s: load length(%x) is not 16bit aligned\n"
, __func__, size);
return -1;
}
memcpy((void *)DDR_PFE_TO_VIRT(addr),
data + offset, size);
}
} else {
printf(
"%s: unsupported ddr section type(%x) for PE(%d)\n"
, __func__, type, id);
return -1;
}
} else {
memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
size);
}
break;
case SHT_NOBITS:
debug("ddr zero pe%d @%x len %d\n", id, addr, size);
memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
break;
default:
printf("%s: unsupported section type(%x)\n", __func__, type);
return -1;
}
return 0;
}
/*
* Loads an elf section into pe lmem
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
* initialized to 0
*
* @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*/
static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
{
u32 offset = be32_to_cpu(shdr->sh_offset);
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
u32 type = be32_to_cpu(shdr->sh_type);
if (id > CLASS_MAX_ID) {
printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
__func__, type, id);
return -1;
}
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
printf(
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
__func__, addr, (unsigned long)data + offset);
return -1;
}
if (addr & 0x3) {
printf("%s: load address(%x) is not 32bit aligned\n",
__func__, addr);
return -1;
}
debug("lmem pe%d @%x len %d\n", id, addr, size);
switch (type) {
case SHT_PROGBITS:
class_pe_lmem_memcpy_to32(addr, data + offset, size);
break;
case SHT_NOBITS:
class_pe_lmem_memset(addr, 0, size);
break;
default:
printf("%s: unsupported section type(%x)\n", __func__, type);
return -1;
}
return 0;
}
/*
* Loads an elf section into a PE
* For now only supports loading a section to dmem (all PE's), pmem (class and
* tmu PE's), DDDR (util PE code)
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
* ..., UTIL_ID)
* @param[in] data pointer to the elf firmware
* @param[in] shdr pointer to the elf section header
*/
int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
{
u32 addr = be32_to_cpu(shdr->sh_addr);
u32 size = be32_to_cpu(shdr->sh_size);
if (IS_DMEM(addr, size))
return pe_load_dmem_section(id, data, shdr);
else if (IS_PMEM(addr, size))
return pe_load_pmem_section(id, data, shdr);
else if (IS_PFE_LMEM(addr, size))
return 0;
else if (IS_PHYS_DDR(addr, size))
return pe_load_ddr_section(id, data, shdr);
else if (IS_PE_LMEM(addr, size))
return pe_load_pe_lmem_section(id, data, shdr);
printf("%s: unsupported memory range(%x)\n", __func__, addr);
return 0;
}
/**************************** BMU ***************************/
/*
* Resets a BMU block.
* @param[in] base BMU block base address
*/
static inline void bmu_reset(void *base)
{
writel(CORE_SW_RESET, base + BMU_CTRL);
/* Wait for self clear */
while (readl(base + BMU_CTRL) & CORE_SW_RESET)
;
}
/*
* Enabled a BMU block.
* @param[in] base BMU block base address
*/
void bmu_enable(void *base)
{
writel(CORE_ENABLE, base + BMU_CTRL);
}
/*
* Disables a BMU block.
* @param[in] base BMU block base address
*/
static inline void bmu_disable(void *base)
{
writel(CORE_DISABLE, base + BMU_CTRL);
}
/*
* Sets the configuration of a BMU block.
* @param[in] base BMU block base address
* @param[in] cfg BMU configuration
*/
static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
{
writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
/* Interrupts are never used */
writel(0x0, base + BMU_INT_ENABLE);
}
/*
* Initializes a BMU block.
* @param[in] base BMU block base address
* @param[in] cfg BMU configuration
*/
void bmu_init(void *base, struct bmu_cfg *cfg)
{
bmu_disable(base);
bmu_set_config(base, cfg);
bmu_reset(base);
}
/**************************** GPI ***************************/
/*
* Resets a GPI block.
* @param[in] base GPI base address
*/
static inline void gpi_reset(void *base)
{
writel(CORE_SW_RESET, base + GPI_CTRL);
}
/*
* Enables a GPI block.
* @param[in] base GPI base address
*/
void gpi_enable(void *base)
{
writel(CORE_ENABLE, base + GPI_CTRL);
}
/*
* Disables a GPI block.
* @param[in] base GPI base address
*/
void gpi_disable(void *base)
{
writel(CORE_DISABLE, base + GPI_CTRL);
}
/*
* Sets the configuration of a GPI block.
* @param[in] base GPI base address
* @param[in] cfg GPI configuration
*/
static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
{
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
+ GPI_LMEM_ALLOC_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
+ GPI_LMEM_FREE_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
+ GPI_DDR_ALLOC_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
+ GPI_DDR_FREE_ADDR);
writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
/*Make GPI AXI transactions non-bufferable */
writel(0x1, base + GPI_AXI_CTRL);
}
/*
* Initializes a GPI block.
* @param[in] base GPI base address
* @param[in] cfg GPI configuration
*/
void gpi_init(void *base, struct gpi_cfg *cfg)
{
gpi_reset(base);
gpi_disable(base);
gpi_set_config(base, cfg);
}
/**************************** CLASSIFIER ***************************/
/*
* Resets CLASSIFIER block.
*/
static inline void class_reset(void)
{
writel(CORE_SW_RESET, CLASS_TX_CTRL);
}
/*
* Enables all CLASS-PE's cores.
*/
void class_enable(void)
{
writel(CORE_ENABLE, CLASS_TX_CTRL);
}
/*
* Disables all CLASS-PE's cores.
*/
void class_disable(void)
{
writel(CORE_DISABLE, CLASS_TX_CTRL);
}
/*
* Sets the configuration of the CLASSIFIER block.
* @param[in] cfg CLASSIFIER configuration
*/
static inline void class_set_config(struct class_cfg *cfg)
{
if (PLL_CLK_EN == 0) {
/* Clock ratio: for 1:1 the value is 0 */
writel(0x0, CLASS_PE_SYS_CLK_RATIO);
} else {
/* Clock ratio: for 1:2 the value is 1 */
writel(0x1, CLASS_PE_SYS_CLK_RATIO);
}
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
CLASS_ROUTE_HASH_ENTRY_SIZE);
writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
ROUTE_TABLE_SIZE);
writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
writel(23, CLASS_AFULL_THRES);
writel(23, CLASS_TSQ_FIFO_THRES);
writel(24, CLASS_MAX_BUF_CNT);
writel(24, CLASS_TSQ_MAX_CNT);
/*Make Class AXI transactions non-bufferable */
writel(0x1, CLASS_AXI_CTRL);
/*Make Util AXI transactions non-bufferable */
/*Util is disabled in U-boot, do it from here */
writel(0x1, UTIL_AXI_CTRL);
}
/*
* Initializes CLASSIFIER block.
* @param[in] cfg CLASSIFIER configuration
*/
void class_init(struct class_cfg *cfg)
{
class_reset();
class_disable();
class_set_config(cfg);
}
/**************************** TMU ***************************/
/*
* Enables TMU-PE cores.
* @param[in] pe_mask TMU PE mask
*/
void tmu_enable(u32 pe_mask)
{
writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
}
/*
* Disables TMU cores.
* @param[in] pe_mask TMU PE mask
*/
void tmu_disable(u32 pe_mask)
{
writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
}
/*
* Initializes TMU block.
* @param[in] cfg TMU configuration
*/
void tmu_init(struct tmu_cfg *cfg)
{
int q, phyno;
/* keep in soft reset */
writel(SW_RESET, TMU_CTRL);
/*Make Class AXI transactions non-bufferable */
writel(0x1, TMU_AXI_CTRL);
/* enable EMAC PHY ports */
writel(0x3, TMU_SYS_GENERIC_CONTROL);
writel(750, TMU_INQ_WATERMARK);
writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
TMU_PHY0_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
TMU_PHY1_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
TMU_PHY3_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
TMU_BMU_INQ_ADDR);
/* enabling all 10 schedulers [9:0] of each TDQ */
writel(0x3FF, TMU_TDQ0_SCH_CTRL);
writel(0x3FF, TMU_TDQ1_SCH_CTRL);
writel(0x3FF, TMU_TDQ3_SCH_CTRL);
if (PLL_CLK_EN == 0) {
/* Clock ratio: for 1:1 the value is 0 */
writel(0x0, TMU_PE_SYS_CLK_RATIO);
} else {
/* Clock ratio: for 1:2 the value is 1 */
writel(0x1, TMU_PE_SYS_CLK_RATIO);
}
/* Extra packet pointers will be stored from this address onwards */
debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN);
writel(5, TMU_TDQ_IIFG_CFG);
writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
writel(0x0, TMU_CTRL);
/* MEM init */
writel(MEM_INIT, TMU_CTRL);
while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
;
/* LLM init */
writel(LLM_INIT, TMU_CTRL);
while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
;
/* set up each queue for tail drop */
for (phyno = 0; phyno < 4; phyno++) {
if (phyno == 2)
continue;
for (q = 0; q < 16; q++) {
u32 qmax;
writel((phyno << 8) | q, TMU_TEQ_CTRL);
writel(BIT(22), TMU_TEQ_QCFG);
if (phyno == 3)
qmax = DEFAULT_TMU3_QDEPTH;
else
qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
DEFAULT_MAX_QDEPTH;
writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
}
}
writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
writel(0, TMU_CTRL);
}
/**************************** HIF ***************************/
/*
* Enable hif tx DMA and interrupt
*/
void hif_tx_enable(void)
{
writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
}
/*
* Disable hif tx DMA and interrupt
*/
void hif_tx_disable(void)
{
u32 hif_int;
writel(0, HIF_TX_CTRL);
hif_int = readl(HIF_INT_ENABLE);
hif_int &= HIF_TXPKT_INT_EN;
writel(hif_int, HIF_INT_ENABLE);
}
/*
* Enable hif rx DMA and interrupt
*/
void hif_rx_enable(void)
{
writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
}
/*
* Disable hif rx DMA and interrupt
*/
void hif_rx_disable(void)
{
u32 hif_int;
writel(0, HIF_RX_CTRL);
hif_int = readl(HIF_INT_ENABLE);
hif_int &= HIF_RXPKT_INT_EN;
writel(hif_int, HIF_INT_ENABLE);
}
/*
* Initializes HIF copy block.
*/
void hif_init(void)
{
/* Initialize HIF registers */
writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
HIF_POLL_CTRL);
/* Make HIF AXI transactions non-bufferable */
writel(0x1, HIF_AXI_CTRL);
}