mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-25 14:10:43 +00:00
drivers: net: pfe_eth: LS1012A PFE driver introduction
This patch adds PFE driver to U-Boot Following are the main driver files:- pfe_hw.c: provides low level helper functions to initialize PFE internal processor engines and other hardware blocks pfe_driver.c: provides initialization functions and packet send and receive functions pfe_eth.c: provides high level gemac initialization functions pfe_firmware.c: provides functions to load firmware into PFE internal processor engines. pfe_mdio.c: provides functions to initialize phy and mdio. Signed-off-by: Calvin Johnson <calvin.johnson@nxp.com> Signed-off-by: Anjaneyulu Jagarlmudi <anji.jagarlmudi@nxp.com> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
This commit is contained in:
parent
6b1373f245
commit
a4a4043749
5 changed files with 2460 additions and 0 deletions
643
drivers/net/pfe_eth/pfe_driver.c
Normal file
643
drivers/net/pfe_eth/pfe_driver.c
Normal file
|
@ -0,0 +1,643 @@
|
|||
/*
|
||||
* Copyright 2015-2016 Freescale Semiconductor, Inc.
|
||||
* Copyright 2017 NXP
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#include <net/pfe_eth/pfe_eth.h>
|
||||
#include <net/pfe_eth/pfe_firmware.h>
|
||||
|
||||
static struct tx_desc_s *g_tx_desc;
|
||||
static struct rx_desc_s *g_rx_desc;
|
||||
|
||||
/*
|
||||
* HIF Rx interface function
|
||||
* Reads the rx descriptor from the current location (rx_to_read).
|
||||
* - If the descriptor has a valid data/pkt, then get the data pointer
|
||||
* - check for the input rx phy number
|
||||
* - increment the rx data pointer by pkt_head_room_size
|
||||
* - decrement the data length by pkt_head_room_size
|
||||
* - handover the packet to caller.
|
||||
*
|
||||
* @param[out] pkt_ptr - Pointer to store rx packet
|
||||
* @param[out] phy_port - Pointer to store recv phy port
|
||||
*
|
||||
* @return -1 if no packet, else return length of packet.
|
||||
*/
|
||||
int pfe_recv(uchar **pkt_ptr, int *phy_port)
|
||||
{
|
||||
struct rx_desc_s *rx_desc = g_rx_desc;
|
||||
struct buf_desc *bd;
|
||||
int len = 0;
|
||||
|
||||
struct hif_header_s *hif_header;
|
||||
|
||||
bd = rx_desc->rx_base + rx_desc->rx_to_read;
|
||||
|
||||
if (readl(&bd->ctrl) & BD_CTRL_DESC_EN)
|
||||
return len; /* No pending Rx packet */
|
||||
|
||||
/* this len include hif_header(8 bytes) */
|
||||
len = readl(&bd->ctrl) & 0xFFFF;
|
||||
|
||||
hif_header = (struct hif_header_s *)DDR_PFE_TO_VIRT(readl(&bd->data));
|
||||
|
||||
/* Get the receive port info from the packet */
|
||||
debug("Pkt received:");
|
||||
debug(" Pkt ptr(%p), len(%d), gemac_port(%d) status(%08x)\n",
|
||||
hif_header, len, hif_header->port_no, readl(&bd->status));
|
||||
#ifdef DEBUG
|
||||
{
|
||||
int i;
|
||||
unsigned char *p = (unsigned char *)hif_header;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
if (!(i % 16))
|
||||
printf("\n");
|
||||
printf(" %02x", p[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
*pkt_ptr = (uchar *)(hif_header + 1);
|
||||
*phy_port = hif_header->port_no;
|
||||
len -= sizeof(struct hif_header_s);
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
/*
|
||||
* HIF function to check the Rx done
|
||||
* This function will check the rx done indication of the current rx_to_read
|
||||
* locations
|
||||
* if success, moves the rx_to_read to next location.
|
||||
*/
|
||||
int pfe_eth_free_pkt(struct udevice *dev, uchar *packet, int length)
|
||||
{
|
||||
struct rx_desc_s *rx_desc = g_rx_desc;
|
||||
struct buf_desc *bd;
|
||||
|
||||
debug("%s:rx_base: %p, rx_to_read: %d\n", __func__, rx_desc->rx_base,
|
||||
rx_desc->rx_to_read);
|
||||
|
||||
bd = rx_desc->rx_base + rx_desc->rx_to_read;
|
||||
|
||||
/* reset the control field */
|
||||
writel((MAX_FRAME_SIZE | BD_CTRL_LIFM | BD_CTRL_DESC_EN
|
||||
| BD_CTRL_DIR), &bd->ctrl);
|
||||
writel(0, &bd->status);
|
||||
|
||||
debug("Rx Done : status: %08x, ctrl: %08x\n", readl(&bd->status),
|
||||
readl(&bd->ctrl));
|
||||
|
||||
/* Give START_STROBE to BDP to fetch the descriptor __NOW__,
|
||||
* BDP need not wait for rx_poll_cycle time to fetch the descriptor,
|
||||
* In idle state (ie., no rx pkt), BDP will not fetch
|
||||
* the descriptor even if strobe is given.
|
||||
*/
|
||||
writel((readl(HIF_RX_CTRL) | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
|
||||
|
||||
/* increment the rx_to_read index to next location */
|
||||
rx_desc->rx_to_read = (rx_desc->rx_to_read + 1)
|
||||
& (rx_desc->rx_ring_size - 1);
|
||||
|
||||
debug("Rx next pkt location: %d\n", rx_desc->rx_to_read);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* HIF Tx interface function
|
||||
* This function sends a single packet to PFE from HIF interface.
|
||||
* - No interrupt indication on tx completion.
|
||||
* - Data is copied to tx buffers before tx descriptor is updated
|
||||
* and TX DMA is enabled.
|
||||
*
|
||||
* @param[in] phy_port Phy port number to send out this packet
|
||||
* @param[in] data Pointer to the data
|
||||
* @param[in] length Length of the ethernet packet to be transferred.
|
||||
*
|
||||
* @return -1 if tx Q is full, else returns the tx location where the pkt is
|
||||
* placed.
|
||||
*/
|
||||
int pfe_send(int phy_port, void *data, int length)
|
||||
{
|
||||
struct tx_desc_s *tx_desc = g_tx_desc;
|
||||
struct buf_desc *bd;
|
||||
struct hif_header_s hif_header;
|
||||
u8 *tx_buf_va;
|
||||
|
||||
debug("%s:pkt: %p, len: %d, tx_base: %p, tx_to_send: %d\n", __func__,
|
||||
data, length, tx_desc->tx_base, tx_desc->tx_to_send);
|
||||
|
||||
bd = tx_desc->tx_base + tx_desc->tx_to_send;
|
||||
|
||||
/* check queue-full condition */
|
||||
if (readl(&bd->ctrl) & BD_CTRL_DESC_EN)
|
||||
return -1;
|
||||
|
||||
/* PFE checks for min pkt size */
|
||||
if (length < MIN_PKT_SIZE)
|
||||
length = MIN_PKT_SIZE;
|
||||
|
||||
tx_buf_va = (void *)DDR_PFE_TO_VIRT(readl(&bd->data));
|
||||
debug("%s: tx_buf_va: %p, tx_buf_pa: %08x\n", __func__, tx_buf_va,
|
||||
readl(&bd->data));
|
||||
|
||||
/* Fill the gemac/phy port number to send this packet out */
|
||||
memset(&hif_header, 0, sizeof(struct hif_header_s));
|
||||
hif_header.port_no = phy_port;
|
||||
|
||||
memcpy(tx_buf_va, (u8 *)&hif_header, sizeof(struct hif_header_s));
|
||||
memcpy(tx_buf_va + sizeof(struct hif_header_s), data, length);
|
||||
length += sizeof(struct hif_header_s);
|
||||
|
||||
#ifdef DEBUG
|
||||
{
|
||||
int i;
|
||||
unsigned char *p = (unsigned char *)tx_buf_va;
|
||||
|
||||
for (i = 0; i < length; i++) {
|
||||
if (!(i % 16))
|
||||
printf("\n");
|
||||
printf("%02x ", p[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
debug("Tx Done: status: %08x, ctrl: %08x\n", readl(&bd->status),
|
||||
readl(&bd->ctrl));
|
||||
|
||||
/* fill the tx desc */
|
||||
writel((u32)(BD_CTRL_DESC_EN | BD_CTRL_LIFM | (length & 0xFFFF)),
|
||||
&bd->ctrl);
|
||||
writel(0, &bd->status);
|
||||
|
||||
writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_TX_CTRL);
|
||||
|
||||
udelay(100);
|
||||
|
||||
return tx_desc->tx_to_send;
|
||||
}
|
||||
|
||||
/*
|
||||
* HIF function to check the Tx done
|
||||
* This function will check the tx done indication of the current tx_to_send
|
||||
* locations
|
||||
* if success, moves the tx_to_send to next location.
|
||||
*
|
||||
* @return -1 if TX ownership bit is not cleared by hw.
|
||||
* else on success (tx done completion) return zero.
|
||||
*/
|
||||
int pfe_tx_done(void)
|
||||
{
|
||||
struct tx_desc_s *tx_desc = g_tx_desc;
|
||||
struct buf_desc *bd;
|
||||
|
||||
debug("%s:tx_base: %p, tx_to_send: %d\n", __func__, tx_desc->tx_base,
|
||||
tx_desc->tx_to_send);
|
||||
|
||||
bd = tx_desc->tx_base + tx_desc->tx_to_send;
|
||||
|
||||
/* check queue-full condition */
|
||||
if (readl(&bd->ctrl) & BD_CTRL_DESC_EN)
|
||||
return -1;
|
||||
|
||||
/* reset the control field */
|
||||
writel(0, &bd->ctrl);
|
||||
writel(0, &bd->status);
|
||||
|
||||
debug("Tx Done : status: %08x, ctrl: %08x\n", readl(&bd->status),
|
||||
readl(&bd->ctrl));
|
||||
|
||||
/* increment the txtosend index to next location */
|
||||
tx_desc->tx_to_send = (tx_desc->tx_to_send + 1)
|
||||
& (tx_desc->tx_ring_size - 1);
|
||||
|
||||
debug("Tx next pkt location: %d\n", tx_desc->tx_to_send);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function to dump Rx descriptors.
|
||||
*/
|
||||
static inline void hif_rx_desc_dump(void)
|
||||
{
|
||||
struct buf_desc *bd_va;
|
||||
int i;
|
||||
struct rx_desc_s *rx_desc;
|
||||
|
||||
if (!g_rx_desc) {
|
||||
printf("%s: HIF Rx desc no init\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
rx_desc = g_rx_desc;
|
||||
bd_va = rx_desc->rx_base;
|
||||
|
||||
debug("HIF rx desc: base_va: %p, base_pa: %08x\n", rx_desc->rx_base,
|
||||
rx_desc->rx_base_pa);
|
||||
for (i = 0; i < rx_desc->rx_ring_size; i++) {
|
||||
debug("status: %08x, ctrl: %08x, data: %08x, next: 0x%08x\n",
|
||||
readl(&bd_va->status),
|
||||
readl(&bd_va->ctrl),
|
||||
readl(&bd_va->data),
|
||||
readl(&bd_va->next));
|
||||
bd_va++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This function mark all Rx descriptors as LAST_BD.
|
||||
*/
|
||||
void hif_rx_desc_disable(void)
|
||||
{
|
||||
int i;
|
||||
struct rx_desc_s *rx_desc;
|
||||
struct buf_desc *bd_va;
|
||||
|
||||
if (!g_rx_desc) {
|
||||
printf("%s: HIF Rx desc not initialized\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
rx_desc = g_rx_desc;
|
||||
bd_va = rx_desc->rx_base;
|
||||
|
||||
for (i = 0; i < rx_desc->rx_ring_size; i++) {
|
||||
writel(readl(&bd_va->ctrl) | BD_CTRL_LAST_BD, &bd_va->ctrl);
|
||||
bd_va++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* HIF Rx Desc initialization function.
|
||||
*/
|
||||
static int hif_rx_desc_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
u32 ctrl;
|
||||
struct buf_desc *bd_va;
|
||||
struct buf_desc *bd_pa;
|
||||
struct rx_desc_s *rx_desc;
|
||||
u32 rx_buf_pa;
|
||||
int i;
|
||||
|
||||
/* sanity check */
|
||||
if (g_rx_desc) {
|
||||
printf("%s: HIF Rx desc re-init request\n", __func__);
|
||||
return 0;
|
||||
}
|
||||
|
||||
rx_desc = (struct rx_desc_s *)malloc(sizeof(struct rx_desc_s));
|
||||
if (!rx_desc) {
|
||||
printf("%s: Memory allocation failure\n", __func__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
memset(rx_desc, 0, sizeof(struct rx_desc_s));
|
||||
|
||||
/* init: Rx ring buffer */
|
||||
rx_desc->rx_ring_size = HIF_RX_DESC_NT;
|
||||
|
||||
/* NOTE: must be 64bit aligned */
|
||||
bd_va = (struct buf_desc *)(pfe_addr->ddr_pfe_baseaddr
|
||||
+ RX_BD_BASEADDR);
|
||||
bd_pa = (struct buf_desc *)(pfe_addr->ddr_pfe_phys_baseaddr
|
||||
+ RX_BD_BASEADDR);
|
||||
|
||||
rx_desc->rx_base = bd_va;
|
||||
rx_desc->rx_base_pa = (unsigned long)bd_pa;
|
||||
|
||||
rx_buf_pa = pfe_addr->ddr_pfe_phys_baseaddr + HIF_RX_PKT_DDR_BASEADDR;
|
||||
|
||||
debug("%s: Rx desc base: %p, base_pa: %08x, desc_count: %d\n",
|
||||
__func__, rx_desc->rx_base, rx_desc->rx_base_pa,
|
||||
rx_desc->rx_ring_size);
|
||||
|
||||
memset(bd_va, 0, sizeof(struct buf_desc) * rx_desc->rx_ring_size);
|
||||
|
||||
ctrl = (MAX_FRAME_SIZE | BD_CTRL_DESC_EN | BD_CTRL_DIR | BD_CTRL_LIFM);
|
||||
|
||||
for (i = 0; i < rx_desc->rx_ring_size; i++) {
|
||||
writel((unsigned long)(bd_pa + 1), &bd_va->next);
|
||||
writel(ctrl, &bd_va->ctrl);
|
||||
writel(rx_buf_pa + (i * MAX_FRAME_SIZE), &bd_va->data);
|
||||
bd_va++;
|
||||
bd_pa++;
|
||||
}
|
||||
--bd_va;
|
||||
writel((u32)rx_desc->rx_base_pa, &bd_va->next);
|
||||
|
||||
writel(rx_desc->rx_base_pa, HIF_RX_BDP_ADDR);
|
||||
writel((readl(HIF_RX_CTRL) | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
|
||||
|
||||
g_rx_desc = rx_desc;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function to dump Tx Descriptors.
|
||||
*/
|
||||
static inline void hif_tx_desc_dump(void)
|
||||
{
|
||||
struct tx_desc_s *tx_desc;
|
||||
int i;
|
||||
struct buf_desc *bd_va;
|
||||
|
||||
if (!g_tx_desc) {
|
||||
printf("%s: HIF Tx desc no init\n", __func__);
|
||||
return;
|
||||
}
|
||||
|
||||
tx_desc = g_tx_desc;
|
||||
bd_va = tx_desc->tx_base;
|
||||
|
||||
debug("HIF tx desc: base_va: %p, base_pa: %08x\n", tx_desc->tx_base,
|
||||
tx_desc->tx_base_pa);
|
||||
|
||||
for (i = 0; i < tx_desc->tx_ring_size; i++)
|
||||
bd_va++;
|
||||
}
|
||||
|
||||
/*
|
||||
* HIF Tx descriptor initialization function.
|
||||
*/
|
||||
static int hif_tx_desc_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
struct buf_desc *bd_va;
|
||||
struct buf_desc *bd_pa;
|
||||
int i;
|
||||
struct tx_desc_s *tx_desc;
|
||||
u32 tx_buf_pa;
|
||||
|
||||
/* sanity check */
|
||||
if (g_tx_desc) {
|
||||
printf("%s: HIF Tx desc re-init request\n", __func__);
|
||||
return 0;
|
||||
}
|
||||
|
||||
tx_desc = (struct tx_desc_s *)malloc(sizeof(struct tx_desc_s));
|
||||
if (!tx_desc) {
|
||||
printf("%s:%d:Memory allocation failure\n", __func__,
|
||||
__LINE__);
|
||||
return -ENOMEM;
|
||||
}
|
||||
memset(tx_desc, 0, sizeof(struct tx_desc_s));
|
||||
|
||||
/* init: Tx ring buffer */
|
||||
tx_desc->tx_ring_size = HIF_TX_DESC_NT;
|
||||
|
||||
/* NOTE: must be 64bit aligned */
|
||||
bd_va = (struct buf_desc *)(pfe_addr->ddr_pfe_baseaddr
|
||||
+ TX_BD_BASEADDR);
|
||||
bd_pa = (struct buf_desc *)(pfe_addr->ddr_pfe_phys_baseaddr
|
||||
+ TX_BD_BASEADDR);
|
||||
|
||||
tx_desc->tx_base_pa = (unsigned long)bd_pa;
|
||||
tx_desc->tx_base = bd_va;
|
||||
|
||||
debug("%s: Tx desc_base: %p, base_pa: %08x, desc_count: %d\n",
|
||||
__func__, tx_desc->tx_base, tx_desc->tx_base_pa,
|
||||
tx_desc->tx_ring_size);
|
||||
|
||||
memset(bd_va, 0, sizeof(struct buf_desc) * tx_desc->tx_ring_size);
|
||||
|
||||
tx_buf_pa = pfe_addr->ddr_pfe_phys_baseaddr + HIF_TX_PKT_DDR_BASEADDR;
|
||||
|
||||
for (i = 0; i < tx_desc->tx_ring_size; i++) {
|
||||
writel((unsigned long)(bd_pa + 1), &bd_va->next);
|
||||
writel(tx_buf_pa + (i * MAX_FRAME_SIZE), &bd_va->data);
|
||||
bd_va++;
|
||||
bd_pa++;
|
||||
}
|
||||
--bd_va;
|
||||
writel((u32)tx_desc->tx_base_pa, &bd_va->next);
|
||||
|
||||
writel(tx_desc->tx_base_pa, HIF_TX_BDP_ADDR);
|
||||
|
||||
g_tx_desc = tx_desc;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE/Class initialization.
|
||||
*/
|
||||
static void pfe_class_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
struct class_cfg class_cfg = {
|
||||
.route_table_baseaddr = pfe_addr->ddr_pfe_phys_baseaddr +
|
||||
ROUTE_TABLE_BASEADDR,
|
||||
.route_table_hash_bits = ROUTE_TABLE_HASH_BITS,
|
||||
};
|
||||
|
||||
class_init(&class_cfg);
|
||||
|
||||
debug("class init complete\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE/TMU initialization.
|
||||
*/
|
||||
static void pfe_tmu_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
struct tmu_cfg tmu_cfg = {
|
||||
.llm_base_addr = pfe_addr->ddr_pfe_phys_baseaddr
|
||||
+ TMU_LLM_BASEADDR,
|
||||
.llm_queue_len = TMU_LLM_QUEUE_LEN,
|
||||
};
|
||||
|
||||
tmu_init(&tmu_cfg);
|
||||
|
||||
debug("tmu init complete\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE/BMU (both BMU1 & BMU2) initialization.
|
||||
*/
|
||||
static void pfe_bmu_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
struct bmu_cfg bmu1_cfg = {
|
||||
.baseaddr = CBUS_VIRT_TO_PFE(LMEM_BASE_ADDR +
|
||||
BMU1_LMEM_BASEADDR),
|
||||
.count = BMU1_BUF_COUNT,
|
||||
.size = BMU1_BUF_SIZE,
|
||||
};
|
||||
|
||||
struct bmu_cfg bmu2_cfg = {
|
||||
.baseaddr = pfe_addr->ddr_pfe_phys_baseaddr + BMU2_DDR_BASEADDR,
|
||||
.count = BMU2_BUF_COUNT,
|
||||
.size = BMU2_BUF_SIZE,
|
||||
};
|
||||
|
||||
bmu_init(BMU1_BASE_ADDR, &bmu1_cfg);
|
||||
debug("bmu1 init: done\n");
|
||||
|
||||
bmu_init(BMU2_BASE_ADDR, &bmu2_cfg);
|
||||
debug("bmu2 init: done\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE/GPI initialization function.
|
||||
* - egpi1, egpi2, egpi3, hgpi
|
||||
*/
|
||||
static void pfe_gpi_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
struct gpi_cfg egpi1_cfg = {
|
||||
.lmem_rtry_cnt = EGPI1_LMEM_RTRY_CNT,
|
||||
.tmlf_txthres = EGPI1_TMLF_TXTHRES,
|
||||
.aseq_len = EGPI1_ASEQ_LEN,
|
||||
};
|
||||
|
||||
struct gpi_cfg egpi2_cfg = {
|
||||
.lmem_rtry_cnt = EGPI2_LMEM_RTRY_CNT,
|
||||
.tmlf_txthres = EGPI2_TMLF_TXTHRES,
|
||||
.aseq_len = EGPI2_ASEQ_LEN,
|
||||
};
|
||||
|
||||
struct gpi_cfg hgpi_cfg = {
|
||||
.lmem_rtry_cnt = HGPI_LMEM_RTRY_CNT,
|
||||
.tmlf_txthres = HGPI_TMLF_TXTHRES,
|
||||
.aseq_len = HGPI_ASEQ_LEN,
|
||||
};
|
||||
|
||||
gpi_init(EGPI1_BASE_ADDR, &egpi1_cfg);
|
||||
debug("GPI1 init complete\n");
|
||||
|
||||
gpi_init(EGPI2_BASE_ADDR, &egpi2_cfg);
|
||||
debug("GPI2 init complete\n");
|
||||
|
||||
gpi_init(HGPI_BASE_ADDR, &hgpi_cfg);
|
||||
debug("HGPI init complete\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE/HIF initialization function.
|
||||
*/
|
||||
static int pfe_hif_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
hif_tx_disable();
|
||||
hif_rx_disable();
|
||||
|
||||
ret = hif_tx_desc_init(pfe_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
ret = hif_rx_desc_init(pfe_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
hif_init();
|
||||
|
||||
hif_tx_enable();
|
||||
hif_rx_enable();
|
||||
|
||||
hif_rx_desc_dump();
|
||||
hif_tx_desc_dump();
|
||||
|
||||
debug("HIF init complete\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE initialization
|
||||
* - Firmware loading (CLASS-PE and TMU-PE)
|
||||
* - BMU1 and BMU2 init
|
||||
* - GEMAC init
|
||||
* - GPI init
|
||||
* - CLASS-PE init
|
||||
* - TMU-PE init
|
||||
* - HIF tx and rx descriptors init
|
||||
*
|
||||
* @param[in] edev Pointer to eth device structure.
|
||||
*
|
||||
* @return 0, on success.
|
||||
*/
|
||||
static int pfe_hw_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
debug("%s: start\n", __func__);
|
||||
|
||||
writel(0x3, CLASS_PE_SYS_CLK_RATIO);
|
||||
writel(0x3, TMU_PE_SYS_CLK_RATIO);
|
||||
writel(0x3, UTIL_PE_SYS_CLK_RATIO);
|
||||
udelay(10);
|
||||
|
||||
pfe_class_init(pfe_addr);
|
||||
|
||||
pfe_tmu_init(pfe_addr);
|
||||
|
||||
pfe_bmu_init(pfe_addr);
|
||||
|
||||
pfe_gpi_init(pfe_addr);
|
||||
|
||||
ret = pfe_hif_init(pfe_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
bmu_enable(BMU1_BASE_ADDR);
|
||||
debug("bmu1 enabled\n");
|
||||
|
||||
bmu_enable(BMU2_BASE_ADDR);
|
||||
debug("bmu2 enabled\n");
|
||||
|
||||
debug("%s: done\n", __func__);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE driver init function.
|
||||
* - Initializes pfe_lib
|
||||
* - pfe hw init
|
||||
* - fw loading and enables PEs
|
||||
* - should be executed once.
|
||||
*
|
||||
* @param[in] pfe Pointer the pfe control block
|
||||
*/
|
||||
int pfe_drv_init(struct pfe_ddr_address *pfe_addr)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
pfe_lib_init();
|
||||
|
||||
ret = pfe_hw_init(pfe_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Load the class,TM, Util fw.
|
||||
* By now pfe is:
|
||||
* - out of reset + disabled + configured.
|
||||
* Fw loading should be done after pfe_hw_init()
|
||||
*/
|
||||
/* It loads default inbuilt sbl firmware */
|
||||
pfe_firmware_init();
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE remove function
|
||||
* - stops PEs
|
||||
* - frees tx/rx descriptor resources
|
||||
* - should be called once.
|
||||
*
|
||||
* @param[in] pfe Pointer to pfe control block.
|
||||
*/
|
||||
int pfe_eth_remove(struct udevice *dev)
|
||||
{
|
||||
if (g_tx_desc)
|
||||
free(g_tx_desc);
|
||||
|
||||
if (g_rx_desc)
|
||||
free(g_rx_desc);
|
||||
|
||||
pfe_firmware_exit();
|
||||
|
||||
return 0;
|
||||
}
|
297
drivers/net/pfe_eth/pfe_eth.c
Normal file
297
drivers/net/pfe_eth/pfe_eth.c
Normal file
|
@ -0,0 +1,297 @@
|
|||
/*
|
||||
* Copyright 2015-2016 Freescale Semiconductor, Inc.
|
||||
* Copyright 2017 NXP
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
#include <common.h>
|
||||
#include <dm.h>
|
||||
#include <dm/platform_data/pfe_dm_eth.h>
|
||||
#include <net.h>
|
||||
#include <net/pfe_eth/pfe_eth.h>
|
||||
#include <net/pfe_eth/pfe_mdio.h>
|
||||
|
||||
struct gemac_s gem_info[] = {
|
||||
/* PORT_0 configuration */
|
||||
{
|
||||
/* GEMAC config */
|
||||
.gemac_speed = PFE_MAC_SPEED_1000M,
|
||||
.gemac_duplex = DUPLEX_FULL,
|
||||
|
||||
/* phy iface */
|
||||
.phy_address = CONFIG_PFE_EMAC1_PHY_ADDR,
|
||||
.phy_mode = PHY_INTERFACE_MODE_SGMII,
|
||||
},
|
||||
/* PORT_1 configuration */
|
||||
{
|
||||
/* GEMAC config */
|
||||
.gemac_speed = PFE_MAC_SPEED_1000M,
|
||||
.gemac_duplex = DUPLEX_FULL,
|
||||
|
||||
/* phy iface */
|
||||
.phy_address = CONFIG_PFE_EMAC2_PHY_ADDR,
|
||||
.phy_mode = PHY_INTERFACE_MODE_RGMII_TXID,
|
||||
},
|
||||
};
|
||||
|
||||
static inline void pfe_gemac_enable(void *gemac_base)
|
||||
{
|
||||
writel(readl(gemac_base + EMAC_ECNTRL_REG) |
|
||||
EMAC_ECNTRL_ETHER_EN, gemac_base + EMAC_ECNTRL_REG);
|
||||
}
|
||||
|
||||
static inline void pfe_gemac_disable(void *gemac_base)
|
||||
{
|
||||
writel(readl(gemac_base + EMAC_ECNTRL_REG) &
|
||||
~EMAC_ECNTRL_ETHER_EN, gemac_base + EMAC_ECNTRL_REG);
|
||||
}
|
||||
|
||||
static inline void pfe_gemac_set_speed(void *gemac_base, u32 speed)
|
||||
{
|
||||
struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR;
|
||||
u32 ecr = readl(gemac_base + EMAC_ECNTRL_REG) & ~EMAC_ECNTRL_SPEED;
|
||||
u32 rcr = readl(gemac_base + EMAC_RCNTRL_REG) & ~EMAC_RCNTRL_RMII_10T;
|
||||
u32 rgmii_pcr = in_be32(&scfg->rgmiipcr) &
|
||||
~(SCFG_RGMIIPCR_SETSP_1000M | SCFG_RGMIIPCR_SETSP_10M);
|
||||
|
||||
if (speed == _1000BASET) {
|
||||
ecr |= EMAC_ECNTRL_SPEED;
|
||||
rgmii_pcr |= SCFG_RGMIIPCR_SETSP_1000M;
|
||||
} else if (speed != _100BASET) {
|
||||
rcr |= EMAC_RCNTRL_RMII_10T;
|
||||
rgmii_pcr |= SCFG_RGMIIPCR_SETSP_10M;
|
||||
}
|
||||
|
||||
writel(ecr, gemac_base + EMAC_ECNTRL_REG);
|
||||
out_be32(&scfg->rgmiipcr, rgmii_pcr | SCFG_RGMIIPCR_SETFD);
|
||||
|
||||
/* remove loop back */
|
||||
rcr &= ~EMAC_RCNTRL_LOOP;
|
||||
/* enable flow control */
|
||||
rcr |= EMAC_RCNTRL_FCE;
|
||||
|
||||
/* Enable MII mode */
|
||||
rcr |= EMAC_RCNTRL_MII_MODE;
|
||||
|
||||
writel(rcr, gemac_base + EMAC_RCNTRL_REG);
|
||||
|
||||
/* Enable Tx full duplex */
|
||||
writel(readl(gemac_base + EMAC_TCNTRL_REG) | EMAC_TCNTRL_FDEN,
|
||||
gemac_base + EMAC_TCNTRL_REG);
|
||||
}
|
||||
|
||||
static int pfe_eth_write_hwaddr(struct udevice *dev)
|
||||
{
|
||||
struct pfe_eth_dev *priv = dev_get_priv(dev);
|
||||
struct gemac_s *gem = priv->gem;
|
||||
struct eth_pdata *pdata = dev_get_platdata(dev);
|
||||
uchar *mac = pdata->enetaddr;
|
||||
|
||||
writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
|
||||
gem->gemac_base + EMAC_PHY_ADDR_LOW);
|
||||
writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, gem->gemac_base +
|
||||
EMAC_PHY_ADDR_HIGH);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Stops or Disables GEMAC pointing to this eth iface.
|
||||
*
|
||||
* @param[in] edev Pointer to eth device structure.
|
||||
*
|
||||
* @return none
|
||||
*/
|
||||
static inline void pfe_eth_stop(struct udevice *dev)
|
||||
{
|
||||
struct pfe_eth_dev *priv = dev_get_priv(dev);
|
||||
|
||||
pfe_gemac_disable(priv->gem->gemac_base);
|
||||
|
||||
gpi_disable(priv->gem->egpi_base);
|
||||
}
|
||||
|
||||
static int pfe_eth_start(struct udevice *dev)
|
||||
{
|
||||
struct pfe_eth_dev *priv = dev_get_priv(dev);
|
||||
struct gemac_s *gem = priv->gem;
|
||||
int speed;
|
||||
|
||||
/* set ethernet mac address */
|
||||
pfe_eth_write_hwaddr(dev);
|
||||
|
||||
writel(EMAC_TFWR, gem->gemac_base + EMAC_TFWR_STR_FWD);
|
||||
writel(EMAC_RX_SECTION_FULL_32, gem->gemac_base + EMAC_RX_SECTIOM_FULL);
|
||||
writel(EMAC_TRUNC_FL_16K, gem->gemac_base + EMAC_TRUNC_FL);
|
||||
writel(EMAC_TX_SECTION_EMPTY_30, gem->gemac_base
|
||||
+ EMAC_TX_SECTION_EMPTY);
|
||||
writel(EMAC_MIBC_NO_CLR_NO_DIS, gem->gemac_base
|
||||
+ EMAC_MIB_CTRL_STS_REG);
|
||||
|
||||
#ifdef CONFIG_PHYLIB
|
||||
/* Start up the PHY */
|
||||
if (phy_startup(priv->phydev)) {
|
||||
printf("Could not initialize PHY %s\n",
|
||||
priv->phydev->dev->name);
|
||||
return -1;
|
||||
}
|
||||
speed = priv->phydev->speed;
|
||||
printf("Speed detected %x\n", speed);
|
||||
if (priv->phydev->duplex == DUPLEX_HALF) {
|
||||
printf("Half duplex not supported\n");
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
|
||||
pfe_gemac_set_speed(gem->gemac_base, speed);
|
||||
|
||||
/* Enable GPI */
|
||||
gpi_enable(gem->egpi_base);
|
||||
|
||||
/* Enable GEMAC */
|
||||
pfe_gemac_enable(gem->gemac_base);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pfe_eth_send(struct udevice *dev, void *packet, int length)
|
||||
{
|
||||
struct pfe_eth_dev *priv = (struct pfe_eth_dev *)dev->priv;
|
||||
|
||||
int rc;
|
||||
int i = 0;
|
||||
|
||||
rc = pfe_send(priv->gemac_port, packet, length);
|
||||
|
||||
if (rc < 0) {
|
||||
printf("Tx Queue full\n");
|
||||
return rc;
|
||||
}
|
||||
|
||||
while (1) {
|
||||
rc = pfe_tx_done();
|
||||
if (rc == 0)
|
||||
break;
|
||||
|
||||
udelay(100);
|
||||
i++;
|
||||
if (i == 30000)
|
||||
printf("Tx timeout, send failed\n");
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pfe_eth_recv(struct udevice *dev, int flags, uchar **packetp)
|
||||
{
|
||||
struct pfe_eth_dev *priv = dev_get_priv(dev);
|
||||
uchar *pkt_buf;
|
||||
int len;
|
||||
int phy_port;
|
||||
|
||||
len = pfe_recv(&pkt_buf, &phy_port);
|
||||
|
||||
if (len == 0)
|
||||
return -EAGAIN; /* no packet in rx */
|
||||
else if (len < 0)
|
||||
return -EAGAIN;
|
||||
|
||||
debug("Rx pkt: pkt_buf(0x%p), phy_port(%d), len(%d)\n", pkt_buf,
|
||||
phy_port, len);
|
||||
if (phy_port != priv->gemac_port) {
|
||||
printf("Rx pkt not on expected port\n");
|
||||
return -EAGAIN;
|
||||
}
|
||||
|
||||
*packetp = pkt_buf;
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
static int pfe_eth_probe(struct udevice *dev)
|
||||
{
|
||||
struct pfe_eth_dev *priv = dev_get_priv(dev);
|
||||
struct pfe_ddr_address *pfe_addr;
|
||||
struct pfe_eth_pdata *pdata = dev_get_platdata(dev);
|
||||
int ret = 0;
|
||||
static int init_done;
|
||||
|
||||
if (!init_done) {
|
||||
pfe_addr = (struct pfe_ddr_address *)malloc(sizeof
|
||||
(struct pfe_ddr_address));
|
||||
if (!pfe_addr)
|
||||
return -ENOMEM;
|
||||
|
||||
pfe_addr->ddr_pfe_baseaddr =
|
||||
(void *)pdata->pfe_ddr_addr.ddr_pfe_baseaddr;
|
||||
pfe_addr->ddr_pfe_phys_baseaddr =
|
||||
(unsigned long)pdata->pfe_ddr_addr.ddr_pfe_phys_baseaddr;
|
||||
|
||||
debug("ddr_pfe_baseaddr: %p, ddr_pfe_phys_baseaddr: %08x\n",
|
||||
pfe_addr->ddr_pfe_baseaddr,
|
||||
(u32)pfe_addr->ddr_pfe_phys_baseaddr);
|
||||
|
||||
ret = pfe_drv_init(pfe_addr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
init_pfe_scfg_dcfg_regs();
|
||||
init_done = 1;
|
||||
}
|
||||
|
||||
priv->gemac_port = pdata->pfe_eth_pdata_mac.phy_interface;
|
||||
priv->gem = &gem_info[priv->gemac_port];
|
||||
priv->dev = dev;
|
||||
|
||||
switch (priv->gemac_port) {
|
||||
case EMAC_PORT_0:
|
||||
default:
|
||||
priv->gem->gemac_base = EMAC1_BASE_ADDR;
|
||||
priv->gem->egpi_base = EGPI1_BASE_ADDR;
|
||||
break;
|
||||
case EMAC_PORT_1:
|
||||
priv->gem->gemac_base = EMAC2_BASE_ADDR;
|
||||
priv->gem->egpi_base = EGPI2_BASE_ADDR;
|
||||
break;
|
||||
}
|
||||
|
||||
ret = pfe_eth_board_init(dev);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
#if defined(CONFIG_PHYLIB)
|
||||
ret = pfe_phy_configure(priv, pdata->pfe_eth_pdata_mac.phy_interface,
|
||||
gem_info[priv->gemac_port].phy_address);
|
||||
#endif
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int pfe_eth_bind(struct udevice *dev)
|
||||
{
|
||||
struct pfe_eth_pdata *pdata = dev_get_platdata(dev);
|
||||
char name[20];
|
||||
|
||||
sprintf(name, "pfe_eth%u", pdata->pfe_eth_pdata_mac.phy_interface);
|
||||
|
||||
return device_set_name(dev, name);
|
||||
}
|
||||
|
||||
static const struct eth_ops pfe_eth_ops = {
|
||||
.start = pfe_eth_start,
|
||||
.send = pfe_eth_send,
|
||||
.recv = pfe_eth_recv,
|
||||
.free_pkt = pfe_eth_free_pkt,
|
||||
.stop = pfe_eth_stop,
|
||||
.write_hwaddr = pfe_eth_write_hwaddr,
|
||||
};
|
||||
|
||||
U_BOOT_DRIVER(pfe_eth) = {
|
||||
.name = "pfe_eth",
|
||||
.id = UCLASS_ETH,
|
||||
.bind = pfe_eth_bind,
|
||||
.probe = pfe_eth_probe,
|
||||
.remove = pfe_eth_remove,
|
||||
.ops = &pfe_eth_ops,
|
||||
.priv_auto_alloc_size = sizeof(struct pfe_eth_dev),
|
||||
.platdata_auto_alloc_size = sizeof(struct pfe_eth_pdata)
|
||||
};
|
230
drivers/net/pfe_eth/pfe_firmware.c
Normal file
230
drivers/net/pfe_eth/pfe_firmware.c
Normal file
|
@ -0,0 +1,230 @@
|
|||
/*
|
||||
* Copyright 2015-2016 Freescale Semiconductor, Inc.
|
||||
* Copyright 2017 NXP
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
|
||||
/*
|
||||
* @file
|
||||
* Contains all the functions to handle parsing and loading of PE firmware
|
||||
* files.
|
||||
*/
|
||||
|
||||
#include <net/pfe_eth/pfe_eth.h>
|
||||
#include <net/pfe_eth/pfe_firmware.h>
|
||||
|
||||
#define PFE_FIRMEWARE_FIT_CNF_NAME "config@1"
|
||||
|
||||
static const void *pfe_fit_addr = (void *)CONFIG_SYS_LS_PFE_FW_ADDR;
|
||||
|
||||
/*
|
||||
* PFE elf firmware loader.
|
||||
* Loads an elf firmware image into a list of PE's (specified using a bitmask)
|
||||
*
|
||||
* @param pe_mask Mask of PE id's to load firmware to
|
||||
* @param pfe_firmware Pointer to the firmware image
|
||||
*
|
||||
* @return 0 on success, a negative value on error
|
||||
*/
|
||||
static int pfe_load_elf(int pe_mask, uint8_t *pfe_firmware)
|
||||
{
|
||||
Elf32_Ehdr *elf_hdr = (Elf32_Ehdr *)pfe_firmware;
|
||||
Elf32_Half sections = be16_to_cpu(elf_hdr->e_shnum);
|
||||
Elf32_Shdr *shdr = (Elf32_Shdr *)(pfe_firmware +
|
||||
be32_to_cpu(elf_hdr->e_shoff));
|
||||
int id, section;
|
||||
int ret;
|
||||
|
||||
debug("%s: no of sections: %d\n", __func__, sections);
|
||||
|
||||
/* Some sanity checks */
|
||||
if (strncmp((char *)&elf_hdr->e_ident[EI_MAG0], ELFMAG, SELFMAG)) {
|
||||
printf("%s: incorrect elf magic number\n", __func__);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (elf_hdr->e_ident[EI_CLASS] != ELFCLASS32) {
|
||||
printf("%s: incorrect elf class(%x)\n", __func__,
|
||||
elf_hdr->e_ident[EI_CLASS]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (elf_hdr->e_ident[EI_DATA] != ELFDATA2MSB) {
|
||||
printf("%s: incorrect elf data(%x)\n", __func__,
|
||||
elf_hdr->e_ident[EI_DATA]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (be16_to_cpu(elf_hdr->e_type) != ET_EXEC) {
|
||||
printf("%s: incorrect elf file type(%x)\n", __func__,
|
||||
be16_to_cpu(elf_hdr->e_type));
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (section = 0; section < sections; section++, shdr++) {
|
||||
if (!(be32_to_cpu(shdr->sh_flags) & (SHF_WRITE | SHF_ALLOC |
|
||||
SHF_EXECINSTR)))
|
||||
continue;
|
||||
for (id = 0; id < MAX_PE; id++)
|
||||
if (pe_mask & BIT(id)) {
|
||||
ret = pe_load_elf_section(id,
|
||||
pfe_firmware, shdr);
|
||||
if (ret < 0)
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
||||
err:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get PFE firmware from FIT image
|
||||
*
|
||||
* @param data pointer to PFE firmware
|
||||
* @param size pointer to size of the firmware
|
||||
* @param fw_name pfe firmware name, either class or tmu
|
||||
*
|
||||
* @return 0 on success, a negative value on error
|
||||
*/
|
||||
static int pfe_get_fw(const void **data,
|
||||
size_t *size, char *fw_name)
|
||||
{
|
||||
int conf_node_off, fw_node_off;
|
||||
char *conf_node_name = NULL;
|
||||
char *desc;
|
||||
int ret = 0;
|
||||
|
||||
conf_node_name = PFE_FIRMEWARE_FIT_CNF_NAME;
|
||||
|
||||
conf_node_off = fit_conf_get_node(pfe_fit_addr, conf_node_name);
|
||||
if (conf_node_off < 0) {
|
||||
printf("PFE Firmware: %s: no such config\n", conf_node_name);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
fw_node_off = fit_conf_get_prop_node(pfe_fit_addr, conf_node_off,
|
||||
fw_name);
|
||||
if (fw_node_off < 0) {
|
||||
printf("PFE Firmware: No '%s' in config\n",
|
||||
fw_name);
|
||||
return -ENOLINK;
|
||||
}
|
||||
|
||||
if (!(fit_image_verify(pfe_fit_addr, fw_node_off))) {
|
||||
printf("PFE Firmware: Bad firmware image (bad CRC)\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (fit_image_get_data(pfe_fit_addr, fw_node_off, data, size)) {
|
||||
printf("PFE Firmware: Can't get %s subimage data/size",
|
||||
fw_name);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
ret = fit_get_desc(pfe_fit_addr, fw_node_off, &desc);
|
||||
if (ret)
|
||||
printf("PFE Firmware: Can't get description\n");
|
||||
else
|
||||
printf("%s\n", desc);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check PFE FIT image
|
||||
*
|
||||
* @return 0 on success, a negative value on error
|
||||
*/
|
||||
static int pfe_fit_check(void)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
ret = fdt_check_header(pfe_fit_addr);
|
||||
if (ret) {
|
||||
printf("PFE Firmware: Bad firmware image (not a FIT image)\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!fit_check_format(pfe_fit_addr)) {
|
||||
printf("PFE Firmware: Bad firmware image (bad FIT header)\n");
|
||||
ret = -1;
|
||||
return ret;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE firmware initialization.
|
||||
* Loads different firmware files from FIT image.
|
||||
* Initializes PE IMEM/DMEM and UTIL-PE DDR
|
||||
* Initializes control path symbol addresses (by looking them up in the elf
|
||||
* firmware files
|
||||
* Takes PE's out of reset
|
||||
*
|
||||
* @return 0 on success, a negative value on error
|
||||
*/
|
||||
int pfe_firmware_init(void)
|
||||
{
|
||||
char *pfe_firmware_name;
|
||||
const void *raw_image_addr;
|
||||
size_t raw_image_size = 0;
|
||||
u8 *pfe_firmware;
|
||||
int ret = 0;
|
||||
int fw_count;
|
||||
|
||||
ret = pfe_fit_check();
|
||||
if (ret)
|
||||
goto err;
|
||||
|
||||
for (fw_count = 0; fw_count < 2; fw_count++) {
|
||||
if (fw_count == 0)
|
||||
pfe_firmware_name = "class";
|
||||
else if (fw_count == 1)
|
||||
pfe_firmware_name = "tmu";
|
||||
|
||||
pfe_get_fw(&raw_image_addr, &raw_image_size, pfe_firmware_name);
|
||||
pfe_firmware = malloc(raw_image_size);
|
||||
if (!pfe_firmware)
|
||||
return -ENOMEM;
|
||||
memcpy((void *)pfe_firmware, (void *)raw_image_addr,
|
||||
raw_image_size);
|
||||
|
||||
if (fw_count == 0)
|
||||
ret = pfe_load_elf(CLASS_MASK, pfe_firmware);
|
||||
else if (fw_count == 1)
|
||||
ret = pfe_load_elf(TMU_MASK, pfe_firmware);
|
||||
|
||||
if (ret < 0) {
|
||||
printf("%s: %s firmware load failed\n", __func__,
|
||||
pfe_firmware_name);
|
||||
goto err;
|
||||
}
|
||||
debug("%s: %s firmware loaded\n", __func__, pfe_firmware_name);
|
||||
free(pfe_firmware);
|
||||
}
|
||||
|
||||
tmu_enable(0xb);
|
||||
class_enable();
|
||||
gpi_enable(HGPI_BASE_ADDR);
|
||||
|
||||
err:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* PFE firmware cleanup
|
||||
* Puts PE's in reset
|
||||
*/
|
||||
void pfe_firmware_exit(void)
|
||||
{
|
||||
debug("%s\n", __func__);
|
||||
|
||||
class_disable();
|
||||
tmu_disable(0xf);
|
||||
hif_tx_disable();
|
||||
hif_rx_disable();
|
||||
}
|
999
drivers/net/pfe_eth/pfe_hw.c
Normal file
999
drivers/net/pfe_eth/pfe_hw.c
Normal file
|
@ -0,0 +1,999 @@
|
|||
/*
|
||||
* Copyright 2015-2016 Freescale Semiconductor, Inc.
|
||||
* Copyright 2017 NXP
|
||||
*
|
||||
* SPDX-License-Identifier:GPL-2.0+
|
||||
*/
|
||||
#include <net/pfe_eth/pfe_eth.h>
|
||||
#include <net/pfe_eth/pfe/pfe_hw.h>
|
||||
|
||||
static struct pe_info pe[MAX_PE];
|
||||
|
||||
/*
|
||||
* Initializes the PFE library.
|
||||
* Must be called before using any of the library functions.
|
||||
*/
|
||||
void pfe_lib_init(void)
|
||||
{
|
||||
int pfe_pe_id;
|
||||
|
||||
for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) {
|
||||
pe[pfe_pe_id].dmem_base_addr =
|
||||
(u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id);
|
||||
pe[pfe_pe_id].pmem_base_addr =
|
||||
(u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id);
|
||||
pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE;
|
||||
pe[pfe_pe_id].mem_access_wdata =
|
||||
(void *)CLASS_MEM_ACCESS_WDATA;
|
||||
pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR;
|
||||
pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA;
|
||||
}
|
||||
|
||||
for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) {
|
||||
if (pfe_pe_id == TMU2_ID)
|
||||
continue;
|
||||
pe[pfe_pe_id].dmem_base_addr =
|
||||
(u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
|
||||
pe[pfe_pe_id].pmem_base_addr =
|
||||
(u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID);
|
||||
pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE;
|
||||
pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA;
|
||||
pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR;
|
||||
pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes a buffer to PE internal memory from the host
|
||||
* through indirect access registers.
|
||||
*
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] mem_access_addr DMEM destination address (must be 32bit
|
||||
* aligned)
|
||||
* @param[in] src Buffer source address
|
||||
* @param[in] len Number of bytes to copy
|
||||
*/
|
||||
static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src,
|
||||
unsigned int len)
|
||||
{
|
||||
u32 offset = 0, val, addr;
|
||||
unsigned int len32 = len >> 2;
|
||||
int i;
|
||||
|
||||
addr = mem_access_addr | PE_MEM_ACCESS_WRITE |
|
||||
PE_MEM_ACCESS_BYTE_ENABLE(0, 4);
|
||||
|
||||
for (i = 0; i < len32; i++, offset += 4, src += 4) {
|
||||
val = *(u32 *)src;
|
||||
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
|
||||
writel(addr + offset, pe[id].mem_access_addr);
|
||||
}
|
||||
|
||||
len = (len & 0x3);
|
||||
if (len) {
|
||||
val = 0;
|
||||
|
||||
addr = (mem_access_addr | PE_MEM_ACCESS_WRITE |
|
||||
PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset;
|
||||
|
||||
for (i = 0; i < len; i++, src++)
|
||||
val |= (*(u8 *)src) << (8 * i);
|
||||
|
||||
writel(cpu_to_be32(val), pe[id].mem_access_wdata);
|
||||
writel(addr, pe[id].mem_access_addr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes a buffer to PE internal data memory (DMEM) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] dst DMEM destination address (must be 32bit
|
||||
* aligned)
|
||||
* @param[in] src Buffer source address
|
||||
* @param[in] len Number of bytes to copy
|
||||
*/
|
||||
static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src,
|
||||
unsigned int len)
|
||||
{
|
||||
pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM,
|
||||
src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes a buffer to PE internal program memory (PMEM) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., TMU3_ID)
|
||||
* @param[in] dst PMEM destination address (must be 32bit
|
||||
* aligned)
|
||||
* @param[in] src Buffer source address
|
||||
* @param[in] len Number of bytes to copy
|
||||
*/
|
||||
static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src,
|
||||
unsigned int len)
|
||||
{
|
||||
pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size
|
||||
- 1)) | PE_MEM_ACCESS_IMEM, src, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reads PE internal program memory (IMEM) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., TMU3_ID)
|
||||
* @param[in] addr PMEM read address (must be aligned on size)
|
||||
* @param[in] size Number of bytes to read (maximum 4, must not
|
||||
* cross 32bit boundaries)
|
||||
* @return the data read (in PE endianness, i.e BE).
|
||||
*/
|
||||
u32 pe_pmem_read(int id, u32 addr, u8 size)
|
||||
{
|
||||
u32 offset = addr & 0x3;
|
||||
u32 mask = 0xffffffff >> ((4 - size) << 3);
|
||||
u32 val;
|
||||
|
||||
addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1))
|
||||
| PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM |
|
||||
PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
|
||||
|
||||
writel(addr, pe[id].mem_access_addr);
|
||||
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
|
||||
|
||||
return (val >> (offset << 3)) & mask;
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes PE internal data memory (DMEM) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] val Value to write (in PE endianness, i.e BE)
|
||||
* @param[in] addr DMEM write address (must be aligned on size)
|
||||
* @param[in] size Number of bytes to write (maximum 4, must not
|
||||
* cross 32bit boundaries)
|
||||
*/
|
||||
void pe_dmem_write(int id, u32 val, u32 addr, u8 size)
|
||||
{
|
||||
u32 offset = addr & 0x3;
|
||||
|
||||
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE |
|
||||
PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
|
||||
|
||||
/* Indirect access interface is byte swapping data being written */
|
||||
writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata);
|
||||
writel(addr, pe[id].mem_access_addr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reads PE internal data memory (DMEM) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] addr DMEM read address (must be aligned on size)
|
||||
* @param[in] size Number of bytes to read (maximum 4, must not
|
||||
* cross 32bit boundaries)
|
||||
* @return the data read (in PE endianness, i.e BE).
|
||||
*/
|
||||
u32 pe_dmem_read(int id, u32 addr, u8 size)
|
||||
{
|
||||
u32 offset = addr & 0x3;
|
||||
u32 mask = 0xffffffff >> ((4 - size) << 3);
|
||||
u32 val;
|
||||
|
||||
addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ |
|
||||
PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size);
|
||||
|
||||
writel(addr, pe[id].mem_access_addr);
|
||||
|
||||
/* Indirect access interface is byte swapping data being read */
|
||||
val = be32_to_cpu(readl(pe[id].mem_access_rdata));
|
||||
|
||||
return (val >> (offset << 3)) & mask;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function is used to write to CLASS internal bus peripherals (ccu,
|
||||
* pe-lem) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] val value to write
|
||||
* @param[in] addr Address to write to (must be aligned on size)
|
||||
* @param[in] size Number of bytes to write (1, 2 or 4)
|
||||
*
|
||||
*/
|
||||
static void class_bus_write(u32 val, u32 addr, u8 size)
|
||||
{
|
||||
u32 offset = addr & 0x3;
|
||||
|
||||
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
|
||||
|
||||
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE |
|
||||
(size << 24);
|
||||
|
||||
writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA);
|
||||
writel(addr, CLASS_BUS_ACCESS_ADDR);
|
||||
}
|
||||
|
||||
/*
|
||||
* Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host
|
||||
* through indirect access registers.
|
||||
* @param[in] addr Address to read from (must be aligned on size)
|
||||
* @param[in] size Number of bytes to read (1, 2 or 4)
|
||||
* @return the read data
|
||||
*/
|
||||
static u32 class_bus_read(u32 addr, u8 size)
|
||||
{
|
||||
u32 offset = addr & 0x3;
|
||||
u32 mask = 0xffffffff >> ((4 - size) << 3);
|
||||
u32 val;
|
||||
|
||||
writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE);
|
||||
|
||||
addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24);
|
||||
|
||||
writel(addr, CLASS_BUS_ACCESS_ADDR);
|
||||
val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA));
|
||||
|
||||
return (val >> (offset << 3)) & mask;
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes data to the cluster memory (PE_LMEM)
|
||||
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
|
||||
* @param[in] src Buffer source address
|
||||
* @param[in] len Number of bytes to copy
|
||||
*/
|
||||
static void class_pe_lmem_memcpy_to32(u32 dst, const void *src,
|
||||
unsigned int len)
|
||||
{
|
||||
u32 len32 = len >> 2;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < len32; i++, src += 4, dst += 4)
|
||||
class_bus_write(*(u32 *)src, dst, 4);
|
||||
|
||||
if (len & 0x2) {
|
||||
class_bus_write(*(u16 *)src, dst, 2);
|
||||
src += 2;
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (len & 0x1) {
|
||||
class_bus_write(*(u8 *)src, dst, 1);
|
||||
src++;
|
||||
dst++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes value to the cluster memory (PE_LMEM)
|
||||
* @param[in] dst PE LMEM destination address (must be 32bit aligned)
|
||||
* @param[in] val Value to write
|
||||
* @param[in] len Number of bytes to write
|
||||
*/
|
||||
static void class_pe_lmem_memset(u32 dst, int val, unsigned int len)
|
||||
{
|
||||
u32 len32 = len >> 2;
|
||||
int i;
|
||||
|
||||
val = val | (val << 8) | (val << 16) | (val << 24);
|
||||
|
||||
for (i = 0; i < len32; i++, dst += 4)
|
||||
class_bus_write(val, dst, 4);
|
||||
|
||||
if (len & 0x2) {
|
||||
class_bus_write(val, dst, 2);
|
||||
dst += 2;
|
||||
}
|
||||
|
||||
if (len & 0x1) {
|
||||
class_bus_write(val, dst, 1);
|
||||
dst++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Reads data from the cluster memory (PE_LMEM)
|
||||
* @param[out] dst pointer to the source buffer data are copied to
|
||||
* @param[in] len length in bytes of the amount of data to read
|
||||
* from cluster memory
|
||||
* @param[in] offset offset in bytes in the cluster memory where data are
|
||||
* read from
|
||||
*/
|
||||
void pe_lmem_read(u32 *dst, u32 len, u32 offset)
|
||||
{
|
||||
u32 len32 = len >> 2;
|
||||
int i = 0;
|
||||
|
||||
for (i = 0; i < len32; dst++, i++, offset += 4)
|
||||
*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4);
|
||||
|
||||
if (len & 0x03)
|
||||
*dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03));
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes data to the cluster memory (PE_LMEM)
|
||||
* @param[in] src pointer to the source buffer data are copied from
|
||||
* @param[in] len length in bytes of the amount of data to write to the
|
||||
* cluster memory
|
||||
* @param[in] offset offset in bytes in the cluster memory where data are
|
||||
* written to
|
||||
*/
|
||||
void pe_lmem_write(u32 *src, u32 len, u32 offset)
|
||||
{
|
||||
u32 len32 = len >> 2;
|
||||
int i = 0;
|
||||
|
||||
for (i = 0; i < len32; src++, i++, offset += 4)
|
||||
class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4);
|
||||
|
||||
if (len & 0x03)
|
||||
class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len &
|
||||
0x03));
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an elf section into pmem
|
||||
* Code needs to be at least 16bit aligned and only PROGBITS sections are
|
||||
* supported
|
||||
*
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ...,
|
||||
* TMU3_ID)
|
||||
* @param[in] data pointer to the elf firmware
|
||||
* @param[in] shdr pointer to the elf section header
|
||||
*/
|
||||
static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr)
|
||||
{
|
||||
u32 offset = be32_to_cpu(shdr->sh_offset);
|
||||
u32 addr = be32_to_cpu(shdr->sh_addr);
|
||||
u32 size = be32_to_cpu(shdr->sh_size);
|
||||
u32 type = be32_to_cpu(shdr->sh_type);
|
||||
|
||||
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
|
||||
printf(
|
||||
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
|
||||
__func__, addr, (unsigned long)data + offset);
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (addr & 0x1) {
|
||||
printf("%s: load address(%x) is not 16bit aligned\n",
|
||||
__func__, addr);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (size & 0x1) {
|
||||
printf("%s: load size(%x) is not 16bit aligned\n", __func__,
|
||||
size);
|
||||
return -1;
|
||||
}
|
||||
|
||||
debug("pmem pe%d @%x len %d\n", id, addr, size);
|
||||
switch (type) {
|
||||
case SHT_PROGBITS:
|
||||
pe_pmem_memcpy_to32(id, addr, data + offset, size);
|
||||
break;
|
||||
|
||||
default:
|
||||
printf("%s: unsupported section type(%x)\n", __func__, type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an elf section into dmem
|
||||
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
|
||||
* initialized to 0
|
||||
*
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] data pointer to the elf firmware
|
||||
* @param[in] shdr pointer to the elf section header
|
||||
*/
|
||||
static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr)
|
||||
{
|
||||
u32 offset = be32_to_cpu(shdr->sh_offset);
|
||||
u32 addr = be32_to_cpu(shdr->sh_addr);
|
||||
u32 size = be32_to_cpu(shdr->sh_size);
|
||||
u32 type = be32_to_cpu(shdr->sh_type);
|
||||
u32 size32 = size >> 2;
|
||||
int i;
|
||||
|
||||
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
|
||||
printf(
|
||||
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
|
||||
__func__, addr, (unsigned long)data + offset);
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (addr & 0x3) {
|
||||
printf("%s: load address(%x) is not 32bit aligned\n",
|
||||
__func__, addr);
|
||||
return -1;
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case SHT_PROGBITS:
|
||||
debug("dmem pe%d @%x len %d\n", id, addr, size);
|
||||
pe_dmem_memcpy_to32(id, addr, data + offset, size);
|
||||
break;
|
||||
|
||||
case SHT_NOBITS:
|
||||
debug("dmem zero pe%d @%x len %d\n", id, addr, size);
|
||||
for (i = 0; i < size32; i++, addr += 4)
|
||||
pe_dmem_write(id, 0, addr, 4);
|
||||
|
||||
if (size & 0x3)
|
||||
pe_dmem_write(id, 0, addr, size & 0x3);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
printf("%s: unsupported section type(%x)\n", __func__, type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an elf section into DDR
|
||||
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
|
||||
* initialized to 0
|
||||
*
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] data pointer to the elf firmware
|
||||
* @param[in] shdr pointer to the elf section header
|
||||
*/
|
||||
static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr)
|
||||
{
|
||||
u32 offset = be32_to_cpu(shdr->sh_offset);
|
||||
u32 addr = be32_to_cpu(shdr->sh_addr);
|
||||
u32 size = be32_to_cpu(shdr->sh_size);
|
||||
u32 type = be32_to_cpu(shdr->sh_type);
|
||||
u32 flags = be32_to_cpu(shdr->sh_flags);
|
||||
|
||||
switch (type) {
|
||||
case SHT_PROGBITS:
|
||||
debug("ddr pe%d @%x len %d\n", id, addr, size);
|
||||
if (flags & SHF_EXECINSTR) {
|
||||
if (id <= CLASS_MAX_ID) {
|
||||
/* DO the loading only once in DDR */
|
||||
if (id == CLASS0_ID) {
|
||||
debug(
|
||||
"%s: load address(%x) and elf file address(%lx) rcvd\n"
|
||||
, __func__, addr,
|
||||
(unsigned long)data + offset);
|
||||
if (((unsigned long)(data + offset)
|
||||
& 0x3) != (addr & 0x3)) {
|
||||
printf(
|
||||
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
|
||||
__func__, addr,
|
||||
(unsigned long)data +
|
||||
offset);
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (addr & 0x1) {
|
||||
printf(
|
||||
"%s: load address(%x) is not 16bit aligned\n"
|
||||
, __func__, addr);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (size & 0x1) {
|
||||
printf(
|
||||
"%s: load length(%x) is not 16bit aligned\n"
|
||||
, __func__, size);
|
||||
return -1;
|
||||
}
|
||||
|
||||
memcpy((void *)DDR_PFE_TO_VIRT(addr),
|
||||
data + offset, size);
|
||||
}
|
||||
} else {
|
||||
printf(
|
||||
"%s: unsupported ddr section type(%x) for PE(%d)\n"
|
||||
, __func__, type, id);
|
||||
return -1;
|
||||
}
|
||||
|
||||
} else {
|
||||
memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset,
|
||||
size);
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case SHT_NOBITS:
|
||||
debug("ddr zero pe%d @%x len %d\n", id, addr, size);
|
||||
memset((void *)DDR_PFE_TO_VIRT(addr), 0, size);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
printf("%s: unsupported section type(%x)\n", __func__, type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an elf section into pe lmem
|
||||
* Data needs to be at least 32bit aligned, NOBITS sections are correctly
|
||||
* initialized to 0
|
||||
*
|
||||
* @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID)
|
||||
* @param[in] data pointer to the elf firmware
|
||||
* @param[in] shdr pointer to the elf section header
|
||||
*/
|
||||
static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr)
|
||||
{
|
||||
u32 offset = be32_to_cpu(shdr->sh_offset);
|
||||
u32 addr = be32_to_cpu(shdr->sh_addr);
|
||||
u32 size = be32_to_cpu(shdr->sh_size);
|
||||
u32 type = be32_to_cpu(shdr->sh_type);
|
||||
|
||||
if (id > CLASS_MAX_ID) {
|
||||
printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n",
|
||||
__func__, type, id);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) {
|
||||
printf(
|
||||
"%s: load address(%x) and elf file address(%lx) don't have the same alignment\n",
|
||||
__func__, addr, (unsigned long)data + offset);
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (addr & 0x3) {
|
||||
printf("%s: load address(%x) is not 32bit aligned\n",
|
||||
__func__, addr);
|
||||
return -1;
|
||||
}
|
||||
|
||||
debug("lmem pe%d @%x len %d\n", id, addr, size);
|
||||
|
||||
switch (type) {
|
||||
case SHT_PROGBITS:
|
||||
class_pe_lmem_memcpy_to32(addr, data + offset, size);
|
||||
break;
|
||||
|
||||
case SHT_NOBITS:
|
||||
class_pe_lmem_memset(addr, 0, size);
|
||||
break;
|
||||
|
||||
default:
|
||||
printf("%s: unsupported section type(%x)\n", __func__, type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Loads an elf section into a PE
|
||||
* For now only supports loading a section to dmem (all PE's), pmem (class and
|
||||
* tmu PE's), DDDR (util PE code)
|
||||
* @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID,
|
||||
* ..., UTIL_ID)
|
||||
* @param[in] data pointer to the elf firmware
|
||||
* @param[in] shdr pointer to the elf section header
|
||||
*/
|
||||
int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr)
|
||||
{
|
||||
u32 addr = be32_to_cpu(shdr->sh_addr);
|
||||
u32 size = be32_to_cpu(shdr->sh_size);
|
||||
|
||||
if (IS_DMEM(addr, size))
|
||||
return pe_load_dmem_section(id, data, shdr);
|
||||
else if (IS_PMEM(addr, size))
|
||||
return pe_load_pmem_section(id, data, shdr);
|
||||
else if (IS_PFE_LMEM(addr, size))
|
||||
return 0;
|
||||
else if (IS_PHYS_DDR(addr, size))
|
||||
return pe_load_ddr_section(id, data, shdr);
|
||||
else if (IS_PE_LMEM(addr, size))
|
||||
return pe_load_pe_lmem_section(id, data, shdr);
|
||||
|
||||
printf("%s: unsupported memory range(%x)\n", __func__, addr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**************************** BMU ***************************/
|
||||
/*
|
||||
* Resets a BMU block.
|
||||
* @param[in] base BMU block base address
|
||||
*/
|
||||
static inline void bmu_reset(void *base)
|
||||
{
|
||||
writel(CORE_SW_RESET, base + BMU_CTRL);
|
||||
|
||||
/* Wait for self clear */
|
||||
while (readl(base + BMU_CTRL) & CORE_SW_RESET)
|
||||
;
|
||||
}
|
||||
|
||||
/*
|
||||
* Enabled a BMU block.
|
||||
* @param[in] base BMU block base address
|
||||
*/
|
||||
void bmu_enable(void *base)
|
||||
{
|
||||
writel(CORE_ENABLE, base + BMU_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disables a BMU block.
|
||||
* @param[in] base BMU block base address
|
||||
*/
|
||||
static inline void bmu_disable(void *base)
|
||||
{
|
||||
writel(CORE_DISABLE, base + BMU_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets the configuration of a BMU block.
|
||||
* @param[in] base BMU block base address
|
||||
* @param[in] cfg BMU configuration
|
||||
*/
|
||||
static inline void bmu_set_config(void *base, struct bmu_cfg *cfg)
|
||||
{
|
||||
writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR);
|
||||
writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG);
|
||||
writel(cfg->size & 0xffff, base + BMU_BUF_SIZE);
|
||||
|
||||
/* Interrupts are never used */
|
||||
writel(0x0, base + BMU_INT_ENABLE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes a BMU block.
|
||||
* @param[in] base BMU block base address
|
||||
* @param[in] cfg BMU configuration
|
||||
*/
|
||||
void bmu_init(void *base, struct bmu_cfg *cfg)
|
||||
{
|
||||
bmu_disable(base);
|
||||
|
||||
bmu_set_config(base, cfg);
|
||||
|
||||
bmu_reset(base);
|
||||
}
|
||||
|
||||
/**************************** GPI ***************************/
|
||||
/*
|
||||
* Resets a GPI block.
|
||||
* @param[in] base GPI base address
|
||||
*/
|
||||
static inline void gpi_reset(void *base)
|
||||
{
|
||||
writel(CORE_SW_RESET, base + GPI_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Enables a GPI block.
|
||||
* @param[in] base GPI base address
|
||||
*/
|
||||
void gpi_enable(void *base)
|
||||
{
|
||||
writel(CORE_ENABLE, base + GPI_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disables a GPI block.
|
||||
* @param[in] base GPI base address
|
||||
*/
|
||||
void gpi_disable(void *base)
|
||||
{
|
||||
writel(CORE_DISABLE, base + GPI_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets the configuration of a GPI block.
|
||||
* @param[in] base GPI base address
|
||||
* @param[in] cfg GPI configuration
|
||||
*/
|
||||
static inline void gpi_set_config(void *base, struct gpi_cfg *cfg)
|
||||
{
|
||||
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base
|
||||
+ GPI_LMEM_ALLOC_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base
|
||||
+ GPI_LMEM_FREE_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base
|
||||
+ GPI_DDR_ALLOC_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base
|
||||
+ GPI_DDR_FREE_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR);
|
||||
writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET);
|
||||
writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET);
|
||||
writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET);
|
||||
writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET);
|
||||
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE);
|
||||
writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE);
|
||||
|
||||
writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) |
|
||||
GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG);
|
||||
writel(cfg->tmlf_txthres, base + GPI_TMLF_TX);
|
||||
writel(cfg->aseq_len, base + GPI_DTX_ASEQ);
|
||||
|
||||
/*Make GPI AXI transactions non-bufferable */
|
||||
writel(0x1, base + GPI_AXI_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes a GPI block.
|
||||
* @param[in] base GPI base address
|
||||
* @param[in] cfg GPI configuration
|
||||
*/
|
||||
void gpi_init(void *base, struct gpi_cfg *cfg)
|
||||
{
|
||||
gpi_reset(base);
|
||||
|
||||
gpi_disable(base);
|
||||
|
||||
gpi_set_config(base, cfg);
|
||||
}
|
||||
|
||||
/**************************** CLASSIFIER ***************************/
|
||||
/*
|
||||
* Resets CLASSIFIER block.
|
||||
*/
|
||||
static inline void class_reset(void)
|
||||
{
|
||||
writel(CORE_SW_RESET, CLASS_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Enables all CLASS-PE's cores.
|
||||
*/
|
||||
void class_enable(void)
|
||||
{
|
||||
writel(CORE_ENABLE, CLASS_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disables all CLASS-PE's cores.
|
||||
*/
|
||||
void class_disable(void)
|
||||
{
|
||||
writel(CORE_DISABLE, CLASS_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets the configuration of the CLASSIFIER block.
|
||||
* @param[in] cfg CLASSIFIER configuration
|
||||
*/
|
||||
static inline void class_set_config(struct class_cfg *cfg)
|
||||
{
|
||||
if (PLL_CLK_EN == 0) {
|
||||
/* Clock ratio: for 1:1 the value is 0 */
|
||||
writel(0x0, CLASS_PE_SYS_CLK_RATIO);
|
||||
} else {
|
||||
/* Clock ratio: for 1:2 the value is 1 */
|
||||
writel(0x1, CLASS_PE_SYS_CLK_RATIO);
|
||||
}
|
||||
writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE);
|
||||
writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE);
|
||||
writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) |
|
||||
CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits),
|
||||
CLASS_ROUTE_HASH_ENTRY_SIZE);
|
||||
writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI);
|
||||
|
||||
writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE);
|
||||
memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0,
|
||||
ROUTE_TABLE_SIZE);
|
||||
|
||||
writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0);
|
||||
writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1);
|
||||
writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0);
|
||||
writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1);
|
||||
writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR);
|
||||
|
||||
writel(23, CLASS_AFULL_THRES);
|
||||
writel(23, CLASS_TSQ_FIFO_THRES);
|
||||
|
||||
writel(24, CLASS_MAX_BUF_CNT);
|
||||
writel(24, CLASS_TSQ_MAX_CNT);
|
||||
|
||||
/*Make Class AXI transactions non-bufferable */
|
||||
writel(0x1, CLASS_AXI_CTRL);
|
||||
|
||||
/*Make Util AXI transactions non-bufferable */
|
||||
/*Util is disabled in U-boot, do it from here */
|
||||
writel(0x1, UTIL_AXI_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes CLASSIFIER block.
|
||||
* @param[in] cfg CLASSIFIER configuration
|
||||
*/
|
||||
void class_init(struct class_cfg *cfg)
|
||||
{
|
||||
class_reset();
|
||||
|
||||
class_disable();
|
||||
|
||||
class_set_config(cfg);
|
||||
}
|
||||
|
||||
/**************************** TMU ***************************/
|
||||
/*
|
||||
* Enables TMU-PE cores.
|
||||
* @param[in] pe_mask TMU PE mask
|
||||
*/
|
||||
void tmu_enable(u32 pe_mask)
|
||||
{
|
||||
writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disables TMU cores.
|
||||
* @param[in] pe_mask TMU PE mask
|
||||
*/
|
||||
void tmu_disable(u32 pe_mask)
|
||||
{
|
||||
writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes TMU block.
|
||||
* @param[in] cfg TMU configuration
|
||||
*/
|
||||
void tmu_init(struct tmu_cfg *cfg)
|
||||
{
|
||||
int q, phyno;
|
||||
|
||||
/* keep in soft reset */
|
||||
writel(SW_RESET, TMU_CTRL);
|
||||
|
||||
/*Make Class AXI transactions non-bufferable */
|
||||
writel(0x1, TMU_AXI_CTRL);
|
||||
|
||||
/* enable EMAC PHY ports */
|
||||
writel(0x3, TMU_SYS_GENERIC_CONTROL);
|
||||
|
||||
writel(750, TMU_INQ_WATERMARK);
|
||||
|
||||
writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR),
|
||||
TMU_PHY0_INQ_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR),
|
||||
TMU_PHY1_INQ_ADDR);
|
||||
|
||||
writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR),
|
||||
TMU_PHY3_INQ_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR);
|
||||
writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL),
|
||||
TMU_BMU_INQ_ADDR);
|
||||
|
||||
/* enabling all 10 schedulers [9:0] of each TDQ */
|
||||
writel(0x3FF, TMU_TDQ0_SCH_CTRL);
|
||||
writel(0x3FF, TMU_TDQ1_SCH_CTRL);
|
||||
writel(0x3FF, TMU_TDQ3_SCH_CTRL);
|
||||
|
||||
if (PLL_CLK_EN == 0) {
|
||||
/* Clock ratio: for 1:1 the value is 0 */
|
||||
writel(0x0, TMU_PE_SYS_CLK_RATIO);
|
||||
} else {
|
||||
/* Clock ratio: for 1:2 the value is 1 */
|
||||
writel(0x1, TMU_PE_SYS_CLK_RATIO);
|
||||
}
|
||||
|
||||
/* Extra packet pointers will be stored from this address onwards */
|
||||
debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr);
|
||||
writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR);
|
||||
|
||||
debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len);
|
||||
writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN);
|
||||
|
||||
writel(5, TMU_TDQ_IIFG_CFG);
|
||||
writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE);
|
||||
|
||||
writel(0x0, TMU_CTRL);
|
||||
|
||||
/* MEM init */
|
||||
writel(MEM_INIT, TMU_CTRL);
|
||||
|
||||
while (!(readl(TMU_CTRL) & MEM_INIT_DONE))
|
||||
;
|
||||
|
||||
/* LLM init */
|
||||
writel(LLM_INIT, TMU_CTRL);
|
||||
|
||||
while (!(readl(TMU_CTRL) & LLM_INIT_DONE))
|
||||
;
|
||||
|
||||
/* set up each queue for tail drop */
|
||||
for (phyno = 0; phyno < 4; phyno++) {
|
||||
if (phyno == 2)
|
||||
continue;
|
||||
for (q = 0; q < 16; q++) {
|
||||
u32 qmax;
|
||||
|
||||
writel((phyno << 8) | q, TMU_TEQ_CTRL);
|
||||
writel(BIT(22), TMU_TEQ_QCFG);
|
||||
|
||||
if (phyno == 3)
|
||||
qmax = DEFAULT_TMU3_QDEPTH;
|
||||
else
|
||||
qmax = (q == 0) ? DEFAULT_Q0_QDEPTH :
|
||||
DEFAULT_MAX_QDEPTH;
|
||||
|
||||
writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2);
|
||||
writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3);
|
||||
}
|
||||
}
|
||||
writel(0x05, TMU_TEQ_DISABLE_DROPCHK);
|
||||
writel(0, TMU_CTRL);
|
||||
}
|
||||
|
||||
/**************************** HIF ***************************/
|
||||
/*
|
||||
* Enable hif tx DMA and interrupt
|
||||
*/
|
||||
void hif_tx_enable(void)
|
||||
{
|
||||
writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disable hif tx DMA and interrupt
|
||||
*/
|
||||
void hif_tx_disable(void)
|
||||
{
|
||||
u32 hif_int;
|
||||
|
||||
writel(0, HIF_TX_CTRL);
|
||||
|
||||
hif_int = readl(HIF_INT_ENABLE);
|
||||
hif_int &= HIF_TXPKT_INT_EN;
|
||||
writel(hif_int, HIF_INT_ENABLE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Enable hif rx DMA and interrupt
|
||||
*/
|
||||
void hif_rx_enable(void)
|
||||
{
|
||||
writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Disable hif rx DMA and interrupt
|
||||
*/
|
||||
void hif_rx_disable(void)
|
||||
{
|
||||
u32 hif_int;
|
||||
|
||||
writel(0, HIF_RX_CTRL);
|
||||
|
||||
hif_int = readl(HIF_INT_ENABLE);
|
||||
hif_int &= HIF_RXPKT_INT_EN;
|
||||
writel(hif_int, HIF_INT_ENABLE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initializes HIF copy block.
|
||||
*/
|
||||
void hif_init(void)
|
||||
{
|
||||
/* Initialize HIF registers */
|
||||
writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE,
|
||||
HIF_POLL_CTRL);
|
||||
/* Make HIF AXI transactions non-bufferable */
|
||||
writel(0x1, HIF_AXI_CTRL);
|
||||
}
|
291
drivers/net/pfe_eth/pfe_mdio.c
Normal file
291
drivers/net/pfe_eth/pfe_mdio.c
Normal file
|
@ -0,0 +1,291 @@
|
|||
/*
|
||||
* Copyright 2015-2016 Freescale Semiconductor, Inc.
|
||||
* Copyright 2017 NXP
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*/
|
||||
#include <common.h>
|
||||
#include <dm.h>
|
||||
#include <dm/platform_data/pfe_dm_eth.h>
|
||||
#include <net.h>
|
||||
#include <net/pfe_eth/pfe_eth.h>
|
||||
|
||||
extern struct gemac_s gem_info[];
|
||||
#if defined(CONFIG_PHYLIB)
|
||||
|
||||
#define MDIO_TIMEOUT 5000
|
||||
static int pfe_write_addr(struct mii_dev *bus, int phy_addr, int dev_addr,
|
||||
int reg_addr)
|
||||
{
|
||||
void *reg_base = bus->priv;
|
||||
u32 devadr;
|
||||
u32 phy;
|
||||
u32 reg_data;
|
||||
int timeout = MDIO_TIMEOUT;
|
||||
|
||||
devadr = ((dev_addr & EMAC_MII_DATA_RA_MASK) << EMAC_MII_DATA_RA_SHIFT);
|
||||
phy = ((phy_addr & EMAC_MII_DATA_PA_MASK) << EMAC_MII_DATA_PA_SHIFT);
|
||||
|
||||
reg_data = (EMAC_MII_DATA_TA | phy | devadr | reg_addr);
|
||||
|
||||
writel(reg_data, reg_base + EMAC_MII_DATA_REG);
|
||||
|
||||
/*
|
||||
* wait for the MII interrupt
|
||||
*/
|
||||
while (!(readl(reg_base + EMAC_IEVENT_REG) & EMAC_IEVENT_MII)) {
|
||||
if (timeout-- <= 0) {
|
||||
printf("Phy MDIO read/write timeout\n");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* clear MII interrupt
|
||||
*/
|
||||
writel(EMAC_IEVENT_MII, reg_base + EMAC_IEVENT_REG);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pfe_phy_read(struct mii_dev *bus, int phy_addr, int dev_addr,
|
||||
int reg_addr)
|
||||
{
|
||||
void *reg_base = bus->priv;
|
||||
u32 reg;
|
||||
u32 phy;
|
||||
u32 reg_data;
|
||||
u16 val;
|
||||
int timeout = MDIO_TIMEOUT;
|
||||
|
||||
if (dev_addr == MDIO_DEVAD_NONE) {
|
||||
reg = ((reg_addr & EMAC_MII_DATA_RA_MASK) <<
|
||||
EMAC_MII_DATA_RA_SHIFT);
|
||||
} else {
|
||||
pfe_write_addr(bus, phy_addr, dev_addr, reg_addr);
|
||||
reg = ((dev_addr & EMAC_MII_DATA_RA_MASK) <<
|
||||
EMAC_MII_DATA_RA_SHIFT);
|
||||
}
|
||||
|
||||
phy = ((phy_addr & EMAC_MII_DATA_PA_MASK) << EMAC_MII_DATA_PA_SHIFT);
|
||||
|
||||
if (dev_addr == MDIO_DEVAD_NONE)
|
||||
reg_data = (EMAC_MII_DATA_ST | EMAC_MII_DATA_OP_RD |
|
||||
EMAC_MII_DATA_TA | phy | reg);
|
||||
else
|
||||
reg_data = (EMAC_MII_DATA_OP_CL45_RD | EMAC_MII_DATA_TA |
|
||||
phy | reg);
|
||||
|
||||
writel(reg_data, reg_base + EMAC_MII_DATA_REG);
|
||||
|
||||
/*
|
||||
* wait for the MII interrupt
|
||||
*/
|
||||
while (!(readl(reg_base + EMAC_IEVENT_REG) & EMAC_IEVENT_MII)) {
|
||||
if (timeout-- <= 0) {
|
||||
printf("Phy MDIO read/write timeout\n");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* clear MII interrupt
|
||||
*/
|
||||
writel(EMAC_IEVENT_MII, reg_base + EMAC_IEVENT_REG);
|
||||
|
||||
/*
|
||||
* it's now safe to read the PHY's register
|
||||
*/
|
||||
val = (u16)readl(reg_base + EMAC_MII_DATA_REG);
|
||||
debug("%s: %p phy: 0x%x reg:0x%08x val:%#x\n", __func__, reg_base,
|
||||
phy_addr, reg_addr, val);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static int pfe_phy_write(struct mii_dev *bus, int phy_addr, int dev_addr,
|
||||
int reg_addr, u16 data)
|
||||
{
|
||||
void *reg_base = bus->priv;
|
||||
u32 reg;
|
||||
u32 phy;
|
||||
u32 reg_data;
|
||||
int timeout = MDIO_TIMEOUT;
|
||||
int val;
|
||||
|
||||
if (dev_addr == MDIO_DEVAD_NONE) {
|
||||
reg = ((reg_addr & EMAC_MII_DATA_RA_MASK) <<
|
||||
EMAC_MII_DATA_RA_SHIFT);
|
||||
} else {
|
||||
pfe_write_addr(bus, phy_addr, dev_addr, reg_addr);
|
||||
reg = ((dev_addr & EMAC_MII_DATA_RA_MASK) <<
|
||||
EMAC_MII_DATA_RA_SHIFT);
|
||||
}
|
||||
|
||||
phy = ((phy_addr & EMAC_MII_DATA_PA_MASK) << EMAC_MII_DATA_PA_SHIFT);
|
||||
|
||||
if (dev_addr == MDIO_DEVAD_NONE)
|
||||
reg_data = (EMAC_MII_DATA_ST | EMAC_MII_DATA_OP_WR |
|
||||
EMAC_MII_DATA_TA | phy | reg | data);
|
||||
else
|
||||
reg_data = (EMAC_MII_DATA_OP_CL45_WR | EMAC_MII_DATA_TA |
|
||||
phy | reg | data);
|
||||
|
||||
writel(reg_data, reg_base + EMAC_MII_DATA_REG);
|
||||
|
||||
/*
|
||||
* wait for the MII interrupt
|
||||
*/
|
||||
while (!(readl(reg_base + EMAC_IEVENT_REG) & EMAC_IEVENT_MII)) {
|
||||
if (timeout-- <= 0) {
|
||||
printf("Phy MDIO read/write timeout\n");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* clear MII interrupt
|
||||
*/
|
||||
writel(EMAC_IEVENT_MII, reg_base + EMAC_IEVENT_REG);
|
||||
|
||||
debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phy_addr,
|
||||
reg_addr, data);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static void pfe_configure_serdes(struct pfe_eth_dev *priv)
|
||||
{
|
||||
struct mii_dev bus;
|
||||
int value, sgmii_2500 = 0;
|
||||
struct gemac_s *gem = priv->gem;
|
||||
|
||||
if (gem->phy_mode == PHY_INTERFACE_MODE_SGMII_2500)
|
||||
sgmii_2500 = 1;
|
||||
|
||||
printf("%s %d\n", __func__, priv->gemac_port);
|
||||
|
||||
/* PCS configuration done with corresponding GEMAC */
|
||||
bus.priv = gem_info[priv->gemac_port].gemac_base;
|
||||
|
||||
pfe_phy_read(&bus, 0, MDIO_DEVAD_NONE, 0x0);
|
||||
pfe_phy_read(&bus, 0, MDIO_DEVAD_NONE, 0x1);
|
||||
pfe_phy_read(&bus, 0, MDIO_DEVAD_NONE, 0x2);
|
||||
pfe_phy_read(&bus, 0, MDIO_DEVAD_NONE, 0x3);
|
||||
|
||||
/* Reset serdes */
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x0, 0x8000);
|
||||
|
||||
/* SGMII IF mode + AN enable only for 1G SGMII, not for 2.5G */
|
||||
value = PHY_SGMII_IF_MODE_SGMII;
|
||||
if (!sgmii_2500)
|
||||
value |= PHY_SGMII_IF_MODE_AN;
|
||||
else
|
||||
value |= PHY_SGMII_IF_MODE_SGMII_GBT;
|
||||
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x14, value);
|
||||
|
||||
/* Dev ability according to SGMII specification */
|
||||
value = PHY_SGMII_DEV_ABILITY_SGMII;
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x4, value);
|
||||
|
||||
/* These values taken from validation team */
|
||||
if (!sgmii_2500) {
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x13, 0x0);
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x12, 0x400);
|
||||
} else {
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x13, 0x7);
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0x12, 0xa120);
|
||||
}
|
||||
|
||||
/* Restart AN */
|
||||
value = PHY_SGMII_CR_DEF_VAL;
|
||||
if (!sgmii_2500)
|
||||
value |= PHY_SGMII_CR_RESET_AN;
|
||||
/* Disable Auto neg for 2.5G SGMII as it doesn't support auto neg*/
|
||||
if (sgmii_2500)
|
||||
value &= ~PHY_SGMII_ENABLE_AN;
|
||||
pfe_phy_write(&bus, 0, MDIO_DEVAD_NONE, 0, value);
|
||||
}
|
||||
|
||||
int pfe_phy_configure(struct pfe_eth_dev *priv, int dev_id, int phy_id)
|
||||
{
|
||||
struct phy_device *phydev = NULL;
|
||||
struct udevice *dev = priv->dev;
|
||||
struct gemac_s *gem = priv->gem;
|
||||
struct ccsr_scfg *scfg = (struct ccsr_scfg *)CONFIG_SYS_FSL_SCFG_ADDR;
|
||||
|
||||
if (!gem->bus)
|
||||
return -1;
|
||||
|
||||
/* Configure SGMII PCS */
|
||||
if (gem->phy_mode == PHY_INTERFACE_MODE_SGMII ||
|
||||
gem->phy_mode == PHY_INTERFACE_MODE_SGMII_2500) {
|
||||
out_be32(&scfg->mdioselcr, 0x00000000);
|
||||
pfe_configure_serdes(priv);
|
||||
}
|
||||
|
||||
mdelay(100);
|
||||
|
||||
/* By this time on-chip SGMII initialization is done
|
||||
* we can switch mdio interface to external PHYs
|
||||
*/
|
||||
out_be32(&scfg->mdioselcr, 0x80000000);
|
||||
|
||||
phydev = phy_connect(gem->bus, phy_id, dev, gem->phy_mode);
|
||||
if (!phydev) {
|
||||
printf("phy_connect failed\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
phy_config(phydev);
|
||||
|
||||
priv->phydev = phydev;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
struct mii_dev *pfe_mdio_init(struct pfe_mdio_info *mdio_info)
|
||||
{
|
||||
struct mii_dev *bus;
|
||||
int ret;
|
||||
u32 mdio_speed;
|
||||
u32 pclk = 250000000;
|
||||
|
||||
bus = mdio_alloc();
|
||||
if (!bus) {
|
||||
printf("mdio_alloc failed\n");
|
||||
return NULL;
|
||||
}
|
||||
bus->read = pfe_phy_read;
|
||||
bus->write = pfe_phy_write;
|
||||
|
||||
/* MAC1 MDIO used to communicate with external PHYS */
|
||||
bus->priv = mdio_info->reg_base;
|
||||
sprintf(bus->name, mdio_info->name);
|
||||
|
||||
/* configure mdio speed */
|
||||
mdio_speed = (DIV_ROUND_UP(pclk, 4000000) << EMAC_MII_SPEED_SHIFT);
|
||||
mdio_speed |= EMAC_HOLDTIME(0x5);
|
||||
writel(mdio_speed, mdio_info->reg_base + EMAC_MII_CTRL_REG);
|
||||
|
||||
ret = mdio_register(bus);
|
||||
if (ret) {
|
||||
printf("mdio_register failed\n");
|
||||
free(bus);
|
||||
return NULL;
|
||||
}
|
||||
return bus;
|
||||
}
|
||||
|
||||
void pfe_set_mdio(int dev_id, struct mii_dev *bus)
|
||||
{
|
||||
gem_info[dev_id].bus = bus;
|
||||
}
|
||||
|
||||
void pfe_set_phy_address_mode(int dev_id, int phy_id, int phy_mode)
|
||||
{
|
||||
gem_info[dev_id].phy_address = phy_id;
|
||||
gem_info[dev_id].phy_mode = phy_mode;
|
||||
}
|
Loading…
Reference in a new issue