u-boot/board/ti/ks2_evm/board_k2g.c
Jean-Jacques Hiblot 1514244cc1 ti: remove usage of DM_I2C_COMPAT and don't disable DM_I2C in SPL
DM_I2C_COMPAT is a compatibility layer that allows using the non-DM I2C
API when DM_I2C is used. The goal is to eventually remove DM_I2C_COMPAT
when all I2C "clients" have been migrated to use the DM API.
This a step in that direction for the TI based platforms.
Build tested with buildman:
buildman -dle am33xx ti omap3 omap4 omap5 davinci keystone

boot tested with:
am335x_evm, am335x_boneblack, am335x_boneblack_vboot (DM version),
am57xx_evm, dra7xx_evm, k2g_evm, am437x_evm

Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Heiko Schocher <hs@denx.de>
2018-12-10 07:15:21 +01:00

386 lines
8.5 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* K2G EVM : Board initialization
*
* (C) Copyright 2015
* Texas Instruments Incorporated, <www.ti.com>
*/
#include <common.h>
#include <asm/arch/clock.h>
#include <asm/ti-common/keystone_net.h>
#include <asm/arch/psc_defs.h>
#include <asm/arch/mmc_host_def.h>
#include <fdtdec.h>
#include <i2c.h>
#include <remoteproc.h>
#include "mux-k2g.h"
#include "../common/board_detect.h"
#define K2G_GP_AUDIO_CODEC_ADDRESS 0x1B
const unsigned int sysclk_array[MAX_SYSCLK] = {
19200000,
24000000,
25000000,
26000000,
};
unsigned int get_external_clk(u32 clk)
{
unsigned int clk_freq;
u8 sysclk_index = get_sysclk_index();
switch (clk) {
case sys_clk:
clk_freq = sysclk_array[sysclk_index];
break;
case pa_clk:
clk_freq = sysclk_array[sysclk_index];
break;
case tetris_clk:
clk_freq = sysclk_array[sysclk_index];
break;
case ddr3a_clk:
clk_freq = sysclk_array[sysclk_index];
break;
case uart_clk:
clk_freq = sysclk_array[sysclk_index];
break;
default:
clk_freq = 0;
break;
}
return clk_freq;
}
int speeds[DEVSPEED_NUMSPDS] = {
SPD400,
SPD600,
SPD800,
SPD900,
SPD1000,
SPD900,
SPD800,
SPD600,
SPD400,
SPD200,
};
static int dev_speeds[DEVSPEED_NUMSPDS] = {
SPD600,
SPD800,
SPD900,
SPD1000,
SPD900,
SPD800,
SPD600,
SPD400,
};
static struct pll_init_data main_pll_config[MAX_SYSCLK][NUM_SPDS] = {
[SYSCLK_19MHz] = {
[SPD400] = {MAIN_PLL, 125, 3, 2},
[SPD600] = {MAIN_PLL, 125, 2, 2},
[SPD800] = {MAIN_PLL, 250, 3, 2},
[SPD900] = {MAIN_PLL, 187, 2, 2},
[SPD1000] = {MAIN_PLL, 104, 1, 2},
},
[SYSCLK_24MHz] = {
[SPD400] = {MAIN_PLL, 100, 3, 2},
[SPD600] = {MAIN_PLL, 300, 6, 2},
[SPD800] = {MAIN_PLL, 200, 3, 2},
[SPD900] = {MAIN_PLL, 75, 1, 2},
[SPD1000] = {MAIN_PLL, 250, 3, 2},
},
[SYSCLK_25MHz] = {
[SPD400] = {MAIN_PLL, 32, 1, 2},
[SPD600] = {MAIN_PLL, 48, 1, 2},
[SPD800] = {MAIN_PLL, 64, 1, 2},
[SPD900] = {MAIN_PLL, 72, 1, 2},
[SPD1000] = {MAIN_PLL, 80, 1, 2},
},
[SYSCLK_26MHz] = {
[SPD400] = {MAIN_PLL, 400, 13, 2},
[SPD600] = {MAIN_PLL, 230, 5, 2},
[SPD800] = {MAIN_PLL, 123, 2, 2},
[SPD900] = {MAIN_PLL, 69, 1, 2},
[SPD1000] = {MAIN_PLL, 384, 5, 2},
},
};
static struct pll_init_data tetris_pll_config[MAX_SYSCLK][NUM_SPDS] = {
[SYSCLK_19MHz] = {
[SPD200] = {TETRIS_PLL, 625, 6, 10},
[SPD400] = {TETRIS_PLL, 125, 1, 6},
[SPD600] = {TETRIS_PLL, 125, 1, 4},
[SPD800] = {TETRIS_PLL, 333, 2, 4},
[SPD900] = {TETRIS_PLL, 187, 2, 2},
[SPD1000] = {TETRIS_PLL, 104, 1, 2},
},
[SYSCLK_24MHz] = {
[SPD200] = {TETRIS_PLL, 250, 3, 10},
[SPD400] = {TETRIS_PLL, 100, 1, 6},
[SPD600] = {TETRIS_PLL, 100, 1, 4},
[SPD800] = {TETRIS_PLL, 400, 3, 4},
[SPD900] = {TETRIS_PLL, 75, 1, 2},
[SPD1000] = {TETRIS_PLL, 250, 3, 2},
},
[SYSCLK_25MHz] = {
[SPD200] = {TETRIS_PLL, 80, 1, 10},
[SPD400] = {TETRIS_PLL, 96, 1, 6},
[SPD600] = {TETRIS_PLL, 96, 1, 4},
[SPD800] = {TETRIS_PLL, 128, 1, 4},
[SPD900] = {TETRIS_PLL, 72, 1, 2},
[SPD1000] = {TETRIS_PLL, 80, 1, 2},
},
[SYSCLK_26MHz] = {
[SPD200] = {TETRIS_PLL, 307, 4, 10},
[SPD400] = {TETRIS_PLL, 369, 4, 6},
[SPD600] = {TETRIS_PLL, 369, 4, 4},
[SPD800] = {TETRIS_PLL, 123, 1, 4},
[SPD900] = {TETRIS_PLL, 69, 1, 2},
[SPD1000] = {TETRIS_PLL, 384, 5, 2},
},
};
static struct pll_init_data uart_pll_config[MAX_SYSCLK] = {
[SYSCLK_19MHz] = {UART_PLL, 160, 1, 8},
[SYSCLK_24MHz] = {UART_PLL, 128, 1, 8},
[SYSCLK_25MHz] = {UART_PLL, 768, 5, 10},
[SYSCLK_26MHz] = {UART_PLL, 384, 13, 2},
};
static struct pll_init_data nss_pll_config[MAX_SYSCLK] = {
[SYSCLK_19MHz] = {NSS_PLL, 625, 6, 2},
[SYSCLK_24MHz] = {NSS_PLL, 250, 3, 2},
[SYSCLK_25MHz] = {NSS_PLL, 80, 1, 2},
[SYSCLK_26MHz] = {NSS_PLL, 1000, 13, 2},
};
static struct pll_init_data ddr3_pll_config_800[MAX_SYSCLK] = {
[SYSCLK_19MHz] = {DDR3A_PLL, 167, 1, 16},
[SYSCLK_24MHz] = {DDR3A_PLL, 133, 1, 16},
[SYSCLK_25MHz] = {DDR3A_PLL, 128, 1, 16},
[SYSCLK_26MHz] = {DDR3A_PLL, 123, 1, 16},
};
static struct pll_init_data ddr3_pll_config_1066[MAX_SYSCLK] = {
[SYSCLK_19MHz] = {DDR3A_PLL, 194, 1, 14},
[SYSCLK_24MHz] = {DDR3A_PLL, 156, 1, 14},
[SYSCLK_25MHz] = {DDR3A_PLL, 149, 1, 14},
[SYSCLK_26MHz] = {DDR3A_PLL, 144, 1, 14},
};
struct pll_init_data *get_pll_init_data(int pll)
{
int speed;
struct pll_init_data *data = NULL;
u8 sysclk_index = get_sysclk_index();
switch (pll) {
case MAIN_PLL:
speed = get_max_dev_speed(dev_speeds);
data = &main_pll_config[sysclk_index][speed];
break;
case TETRIS_PLL:
speed = get_max_arm_speed(speeds);
data = &tetris_pll_config[sysclk_index][speed];
break;
case NSS_PLL:
data = &nss_pll_config[sysclk_index];
break;
case UART_PLL:
data = &uart_pll_config[sysclk_index];
break;
case DDR3_PLL:
if (cpu_revision() & CPU_66AK2G1x) {
speed = get_max_arm_speed(speeds);
if (speed == SPD1000)
data = &ddr3_pll_config_1066[sysclk_index];
else
data = &ddr3_pll_config_800[sysclk_index];
} else {
data = &ddr3_pll_config_800[sysclk_index];
}
break;
default:
data = NULL;
}
return data;
}
s16 divn_val[16] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
#if defined(CONFIG_MMC)
int board_mmc_init(bd_t *bis)
{
if (psc_enable_module(KS2_LPSC_MMC)) {
printf("%s module enabled failed\n", __func__);
return -1;
}
if (board_is_k2g_gp() || board_is_k2g_g1())
omap_mmc_init(0, 0, 0, -1, -1);
omap_mmc_init(1, 0, 0, -1, -1);
return 0;
}
#endif
#if defined(CONFIG_MULTI_DTB_FIT)
int board_fit_config_name_match(const char *name)
{
bool eeprom_read = board_ti_was_eeprom_read();
if (!strcmp(name, "keystone-k2g-generic") && !eeprom_read)
return 0;
else if (!strcmp(name, "keystone-k2g-evm") &&
(board_ti_is("66AK2GGP") || board_ti_is("66AK2GG1")))
return 0;
else if (!strcmp(name, "keystone-k2g-ice") && board_ti_is("66AK2GIC"))
return 0;
else
return -1;
}
#endif
#if defined(CONFIG_DTB_RESELECT)
static int k2g_alt_board_detect(void)
{
#ifndef CONFIG_DM_I2C
int rc;
rc = i2c_set_bus_num(1);
if (rc)
return rc;
rc = i2c_probe(K2G_GP_AUDIO_CODEC_ADDRESS);
if (rc)
return rc;
#else
struct udevice *bus, *dev;
int rc;
rc = uclass_get_device_by_seq(UCLASS_I2C, 1, &bus);
if (rc)
return rc;
rc = dm_i2c_probe(bus, K2G_GP_AUDIO_CODEC_ADDRESS, 0, &dev);
if (rc)
return rc;
#endif
ti_i2c_eeprom_am_set("66AK2GGP", "1.0X");
return 0;
}
static void k2g_reset_mux_config(void)
{
/* Unlock the reset mux register */
clrbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
/* Configure BOOTCFG_RSTMUX8 for WDT event to cause a device reset */
clrsetbits_le32(KS2_RSTMUX8, RSTMUX_OMODE8_MASK,
RSTMUX_OMODE8_DEV_RESET << RSTMUX_OMODE8_SHIFT);
/* lock the reset mux register to prevent any spurious writes. */
setbits_le32(KS2_RSTMUX8, RSTMUX_LOCK8_MASK);
}
int embedded_dtb_select(void)
{
int rc;
rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
CONFIG_EEPROM_CHIP_ADDRESS);
if (rc) {
rc = k2g_alt_board_detect();
if (rc) {
printf("Unable to do board detection\n");
return -1;
}
}
fdtdec_setup();
k2g_mux_config();
k2g_reset_mux_config();
if (board_is_k2g_gp() || board_is_k2g_g1()) {
/* deassert FLASH_HOLD */
clrbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_DIR_OFFSET,
BIT(9));
setbits_le32(K2G_GPIO1_BANK2_BASE + K2G_GPIO_SETDATA_OFFSET,
BIT(9));
}
return 0;
}
#endif
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
#if !defined(CONFIG_SPL_BUILD) && defined(CONFIG_TI_I2C_BOARD_DETECT)
int rc;
rc = ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
CONFIG_EEPROM_CHIP_ADDRESS);
if (rc)
printf("ti_i2c_eeprom_init failed %d\n", rc);
board_ti_set_ethaddr(1);
#endif
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
if (board_is_k2g_gp())
env_set("board_name", "66AK2GGP\0");
else if (board_is_k2g_g1())
env_set("board_name", "66AK2GG1\0");
else if (board_is_k2g_ice())
env_set("board_name", "66AK2GIC\0");
#endif
return 0;
}
#endif
#ifdef CONFIG_BOARD_EARLY_INIT_F
int board_early_init_f(void)
{
init_plls();
k2g_mux_config();
return 0;
}
#endif
#ifdef CONFIG_SPL_BUILD
void spl_init_keystone_plls(void)
{
init_plls();
}
#endif
#ifdef CONFIG_TI_SECURE_DEVICE
void board_pmmc_image_process(ulong pmmc_image, size_t pmmc_size)
{
int id = env_get_ulong("dev_pmmc", 10, 0);
int ret;
if (!rproc_is_initialized())
rproc_init();
ret = rproc_load(id, pmmc_image, pmmc_size);
printf("Load Remote Processor %d with data@addr=0x%08lx %u bytes:%s\n",
id, pmmc_image, pmmc_size, ret ? " Failed!" : " Success!");
if (!ret)
rproc_start(id);
}
U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_PMMC, board_pmmc_image_process);
#endif