mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-11-11 15:37:23 +00:00
5fb692cae5
Signed-off-by: Stefan Roese <sr@denx.de>
960 lines
25 KiB
C
960 lines
25 KiB
C
/*
|
|
* (C) Copyright 2006
|
|
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
|
|
*
|
|
* Copyright (c) 2005 Cisco Systems. All rights reserved.
|
|
* Roland Dreier <rolandd@cisco.com>
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm-ppc/io.h>
|
|
#include <ppc4xx.h>
|
|
#include <common.h>
|
|
#include <pci.h>
|
|
|
|
#if defined(CONFIG_440SPE) && defined(CONFIG_PCI)
|
|
|
|
#include "440spe_pcie.h"
|
|
|
|
enum {
|
|
PTYPE_ENDPOINT = 0x0,
|
|
PTYPE_LEGACY_ENDPOINT = 0x1,
|
|
PTYPE_ROOT_PORT = 0x4,
|
|
|
|
LNKW_X1 = 0x1,
|
|
LNKW_X4 = 0x4,
|
|
LNKW_X8 = 0x8
|
|
};
|
|
|
|
static int pcie_read_config(struct pci_controller *hose, unsigned int devfn,
|
|
int offset, int len, u32 *val) {
|
|
|
|
*val = 0;
|
|
/*
|
|
* 440SPE implements only one function per port
|
|
*/
|
|
if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1)))
|
|
return 0;
|
|
|
|
devfn = PCI_BDF(0,0,0);
|
|
offset += devfn << 4;
|
|
|
|
switch (len) {
|
|
case 1:
|
|
*val = in_8(hose->cfg_data + offset);
|
|
break;
|
|
case 2:
|
|
*val = in_le16((u16 *)(hose->cfg_data + offset));
|
|
break;
|
|
default:
|
|
*val = in_le32((u32 *)(hose->cfg_data + offset));
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pcie_write_config(struct pci_controller *hose, unsigned int devfn,
|
|
int offset, int len, u32 val) {
|
|
|
|
/*
|
|
* 440SPE implements only one function per port
|
|
*/
|
|
if (!((PCI_FUNC(devfn) == 0) && (PCI_DEV(devfn) == 1)))
|
|
return 0;
|
|
|
|
devfn = PCI_BDF(0,0,0);
|
|
offset += devfn << 4;
|
|
|
|
switch (len) {
|
|
case 1:
|
|
out_8(hose->cfg_data + offset, val);
|
|
break;
|
|
case 2:
|
|
out_le16((u16 *)(hose->cfg_data + offset), val);
|
|
break;
|
|
default:
|
|
out_le32((u32 *)(hose->cfg_data + offset), val);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int pcie_read_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 *val)
|
|
{
|
|
u32 v;
|
|
int rv;
|
|
|
|
rv = pcie_read_config(hose, dev, offset, 1, &v);
|
|
*val = (u8)v;
|
|
return rv;
|
|
}
|
|
|
|
int pcie_read_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 *val)
|
|
{
|
|
u32 v;
|
|
int rv;
|
|
|
|
rv = pcie_read_config(hose, dev, offset, 2, &v);
|
|
*val = (u16)v;
|
|
return rv;
|
|
}
|
|
|
|
int pcie_read_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 *val)
|
|
{
|
|
u32 v;
|
|
int rv;
|
|
|
|
rv = pcie_read_config(hose, dev, offset, 3, &v);
|
|
*val = (u32)v;
|
|
return rv;
|
|
}
|
|
|
|
int pcie_write_config_byte(struct pci_controller *hose,pci_dev_t dev,int offset,u8 val)
|
|
{
|
|
return pcie_write_config(hose,(u32)dev,offset,1,val);
|
|
}
|
|
|
|
int pcie_write_config_word(struct pci_controller *hose,pci_dev_t dev,int offset,u16 val)
|
|
{
|
|
return pcie_write_config(hose,(u32)dev,offset,2,(u32 )val);
|
|
}
|
|
|
|
int pcie_write_config_dword(struct pci_controller *hose,pci_dev_t dev,int offset,u32 val)
|
|
{
|
|
return pcie_write_config(hose,(u32)dev,offset,3,(u32 )val);
|
|
}
|
|
|
|
static void ppc440spe_setup_utl(u32 port) {
|
|
|
|
volatile void *utl_base = NULL;
|
|
|
|
/*
|
|
* Map UTL registers
|
|
*/
|
|
switch (port) {
|
|
case 0:
|
|
mtdcr(DCRN_PEGPL_REGBAH(PCIE0), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_REGBAL(PCIE0), 0x20000000);
|
|
mtdcr(DCRN_PEGPL_REGMSK(PCIE0), 0x00007001);
|
|
mtdcr(DCRN_PEGPL_SPECIAL(PCIE0), 0x68782800);
|
|
break;
|
|
|
|
case 1:
|
|
mtdcr(DCRN_PEGPL_REGBAH(PCIE1), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_REGBAL(PCIE1), 0x20001000);
|
|
mtdcr(DCRN_PEGPL_REGMSK(PCIE1), 0x00007001);
|
|
mtdcr(DCRN_PEGPL_SPECIAL(PCIE1), 0x68782800);
|
|
break;
|
|
|
|
case 2:
|
|
mtdcr(DCRN_PEGPL_REGBAH(PCIE2), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_REGBAL(PCIE2), 0x20002000);
|
|
mtdcr(DCRN_PEGPL_REGMSK(PCIE2), 0x00007001);
|
|
mtdcr(DCRN_PEGPL_SPECIAL(PCIE2), 0x68782800);
|
|
break;
|
|
}
|
|
utl_base = (unsigned int *)(CFG_PCIE_BASE + 0x1000 * port);
|
|
|
|
/*
|
|
* Set buffer allocations and then assert VRB and TXE.
|
|
*/
|
|
out_be32(utl_base + PEUTL_OUTTR, 0x08000000);
|
|
out_be32(utl_base + PEUTL_INTR, 0x02000000);
|
|
out_be32(utl_base + PEUTL_OPDBSZ, 0x10000000);
|
|
out_be32(utl_base + PEUTL_PBBSZ, 0x53000000);
|
|
out_be32(utl_base + PEUTL_IPHBSZ, 0x08000000);
|
|
out_be32(utl_base + PEUTL_IPDBSZ, 0x10000000);
|
|
out_be32(utl_base + PEUTL_RCIRQEN, 0x00f00000);
|
|
out_be32(utl_base + PEUTL_PCTL, 0x80800066);
|
|
}
|
|
|
|
static int check_error(void)
|
|
{
|
|
u32 valPE0, valPE1, valPE2;
|
|
int err = 0;
|
|
|
|
/* SDR0_PEGPLLLCT1 reset */
|
|
if (!(valPE0 = SDR_READ(PESDR0_PLLLCT1) & 0x01000000)) {
|
|
printf("PCIE: SDR0_PEGPLLLCT1 reset error 0x%x\n", valPE0);
|
|
}
|
|
|
|
valPE0 = SDR_READ(PESDR0_RCSSET);
|
|
valPE1 = SDR_READ(PESDR1_RCSSET);
|
|
valPE2 = SDR_READ(PESDR2_RCSSET);
|
|
|
|
/* SDR0_PExRCSSET rstgu */
|
|
if (!(valPE0 & 0x01000000) ||
|
|
!(valPE1 & 0x01000000) ||
|
|
!(valPE2 & 0x01000000)) {
|
|
printf("PCIE: SDR0_PExRCSSET rstgu error\n");
|
|
err = -1;
|
|
}
|
|
|
|
/* SDR0_PExRCSSET rstdl */
|
|
if (!(valPE0 & 0x00010000) ||
|
|
!(valPE1 & 0x00010000) ||
|
|
!(valPE2 & 0x00010000)) {
|
|
printf("PCIE: SDR0_PExRCSSET rstdl error\n");
|
|
err = -1;
|
|
}
|
|
|
|
/* SDR0_PExRCSSET rstpyn */
|
|
if ((valPE0 & 0x00001000) ||
|
|
(valPE1 & 0x00001000) ||
|
|
(valPE2 & 0x00001000)) {
|
|
printf("PCIE: SDR0_PExRCSSET rstpyn error\n");
|
|
err = -1;
|
|
}
|
|
|
|
/* SDR0_PExRCSSET hldplb */
|
|
if ((valPE0 & 0x10000000) ||
|
|
(valPE1 & 0x10000000) ||
|
|
(valPE2 & 0x10000000)) {
|
|
printf("PCIE: SDR0_PExRCSSET hldplb error\n");
|
|
err = -1;
|
|
}
|
|
|
|
/* SDR0_PExRCSSET rdy */
|
|
if ((valPE0 & 0x00100000) ||
|
|
(valPE1 & 0x00100000) ||
|
|
(valPE2 & 0x00100000)) {
|
|
printf("PCIE: SDR0_PExRCSSET rdy error\n");
|
|
err = -1;
|
|
}
|
|
|
|
/* SDR0_PExRCSSET shutdown */
|
|
if ((valPE0 & 0x00000100) ||
|
|
(valPE1 & 0x00000100) ||
|
|
(valPE2 & 0x00000100)) {
|
|
printf("PCIE: SDR0_PExRCSSET shutdown error\n");
|
|
err = -1;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Initialize PCI Express core
|
|
*/
|
|
int ppc440spe_init_pcie(void)
|
|
{
|
|
int time_out = 20;
|
|
|
|
/* Set PLL clock receiver to LVPECL */
|
|
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) | 1 << 28);
|
|
|
|
if (check_error())
|
|
return -1;
|
|
|
|
if (!(SDR_READ(PESDR0_PLLLCT2) & 0x10000))
|
|
{
|
|
printf("PCIE: PESDR_PLLCT2 resistance calibration failed (0x%08x)\n",
|
|
SDR_READ(PESDR0_PLLLCT2));
|
|
return -1;
|
|
}
|
|
/* De-assert reset of PCIe PLL, wait for lock */
|
|
SDR_WRITE(PESDR0_PLLLCT1, SDR_READ(PESDR0_PLLLCT1) & ~(1 << 24));
|
|
udelay(3);
|
|
|
|
while (time_out) {
|
|
if (!(SDR_READ(PESDR0_PLLLCT3) & 0x10000000)) {
|
|
time_out--;
|
|
udelay(1);
|
|
} else
|
|
break;
|
|
}
|
|
if (!time_out) {
|
|
printf("PCIE: VCO output not locked\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Yucca board as End point and root point setup
|
|
* and
|
|
* testing inbound and out bound windows
|
|
*
|
|
* YUCCA board can be plugged into another yucca board or you can get PCI-E
|
|
* cable which can be used to setup loop back from one port to another port.
|
|
* Please rememeber that unless there is a endpoint plugged in to root port it
|
|
* will not initialize. It is the same in case of endpoint , unless there is
|
|
* root port attached it will not initialize.
|
|
*
|
|
* In this release of software all the PCI-E ports are configured as either
|
|
* endpoint or rootpoint.In future we will have support for selective ports
|
|
* setup as endpoint and root point in single board.
|
|
*
|
|
* Once your board came up as root point , you can verify by reading
|
|
* /proc/bus/pci/devices. Where you can see the configuration registers
|
|
* of end point device attached to the port.
|
|
*
|
|
* Enpoint cofiguration can be verified by connecting Yucca board to any
|
|
* host or another yucca board. Then try to scan the device. In case of
|
|
* linux use "lspci" or appripriate os command.
|
|
*
|
|
* How do I verify the inbound and out bound windows ?(yucca to yucca)
|
|
* in this configuration inbound and outbound windows are setup to access
|
|
* sram memroy area. SRAM is at 0x4 0000 0000 , on PLB bus. This address
|
|
* is mapped at 0x90000000. From u-boot prompt write data 0xb000 0000,
|
|
* This is waere your POM(PLB out bound memory window) mapped. then
|
|
* read the data from other yucca board's u-boot prompt at address
|
|
* 0x9000 0000(SRAM). Data should match.
|
|
* In case of inbound , write data to u-boot command prompt at 0xb000 0000
|
|
* which is mapped to 0x4 0000 0000. Now on rootpoint yucca u-boot prompt check
|
|
* data at 0x9000 0000(SRAM).Data should match.
|
|
*/
|
|
int ppc440spe_init_pcie_rootport(int port)
|
|
{
|
|
static int core_init;
|
|
volatile u32 val = 0;
|
|
int attempts;
|
|
|
|
if (!core_init) {
|
|
++core_init;
|
|
if (ppc440spe_init_pcie())
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Initialize various parts of the PCI Express core for our port:
|
|
*
|
|
* - Set as a root port and enable max width
|
|
* (PXIE0 -> X8, PCIE1 and PCIE2 -> X4).
|
|
* - Set up UTL configuration.
|
|
* - Increase SERDES drive strength to levels suggested by AMCC.
|
|
* - De-assert RSTPYN, RSTDL and RSTGU.
|
|
*
|
|
* NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with
|
|
* default setting 0x11310000. The register has new fields,
|
|
* PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core
|
|
* hang.
|
|
*/
|
|
switch (port) {
|
|
case 0:
|
|
SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X8 << 12);
|
|
|
|
SDR_WRITE(PESDR0_UTLSET1, 0x21222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR0_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_RCSSET,
|
|
(SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
|
|
case 1:
|
|
SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12);
|
|
SDR_WRITE(PESDR1_UTLSET1, 0x21222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR1_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_RCSSET,
|
|
(SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
|
|
case 2:
|
|
SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_ROOT_PORT << 20 | LNKW_X4 << 12);
|
|
SDR_WRITE(PESDR2_UTLSET1, 0x21222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR2_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_RCSSET,
|
|
(SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
}
|
|
/*
|
|
* Notice: the following delay has critical impact on device
|
|
* initialization - if too short (<50ms) the link doesn't get up.
|
|
*/
|
|
mdelay(100);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
val = SDR_READ(PESDR0_RCSSTS);
|
|
break;
|
|
case 1:
|
|
val = SDR_READ(PESDR1_RCSSTS);
|
|
break;
|
|
case 2:
|
|
val = SDR_READ(PESDR2_RCSSTS);
|
|
break;
|
|
}
|
|
|
|
if (val & (1 << 20)) {
|
|
printf("PCIE%d: PGRST failed %08x\n", port, val);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Verify link is up
|
|
*/
|
|
val = 0;
|
|
switch (port) {
|
|
case 0:
|
|
val = SDR_READ(PESDR0_LOOP);
|
|
break;
|
|
case 1:
|
|
val = SDR_READ(PESDR1_LOOP);
|
|
break;
|
|
case 2:
|
|
val = SDR_READ(PESDR2_LOOP);
|
|
break;
|
|
}
|
|
if (!(val & 0x00001000)) {
|
|
printf("PCIE%d: link is not up.\n", port);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Setup UTL registers - but only on revA!
|
|
* We use default settings for revB chip.
|
|
*/
|
|
if (!ppc440spe_revB())
|
|
ppc440spe_setup_utl(port);
|
|
|
|
/*
|
|
* We map PCI Express configuration access into the 512MB regions
|
|
*
|
|
* NOTICE: revB is very strict about PLB real addressess and ranges to
|
|
* be mapped for config space; it seems to only work with d_nnnn_nnnn
|
|
* range (hangs the core upon config transaction attempts when set
|
|
* otherwise) while revA uses c_nnnn_nnnn.
|
|
*
|
|
* For revA:
|
|
* PCIE0: 0xc_4000_0000
|
|
* PCIE1: 0xc_8000_0000
|
|
* PCIE2: 0xc_c000_0000
|
|
*
|
|
* For revB:
|
|
* PCIE0: 0xd_0000_0000
|
|
* PCIE1: 0xd_2000_0000
|
|
* PCIE2: 0xd_4000_0000
|
|
*/
|
|
|
|
switch (port) {
|
|
case 0:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000);
|
|
} else {
|
|
/* revA */
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
|
|
case 1:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000);
|
|
} else {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
|
|
case 2:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000);
|
|
} else {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check for VC0 active and assert RDY.
|
|
*/
|
|
attempts = 10;
|
|
switch (port) {
|
|
case 0:
|
|
while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE0: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20);
|
|
break;
|
|
case 1:
|
|
while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE1: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
|
|
SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20);
|
|
break;
|
|
case 2:
|
|
while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE2: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
|
|
SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20);
|
|
break;
|
|
}
|
|
mdelay(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ppc440spe_init_pcie_endport(int port)
|
|
{
|
|
static int core_init;
|
|
volatile u32 val = 0;
|
|
int attempts;
|
|
|
|
if (!core_init) {
|
|
++core_init;
|
|
if (ppc440spe_init_pcie())
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Initialize various parts of the PCI Express core for our port:
|
|
*
|
|
* - Set as a end port and enable max width
|
|
* (PXIE0 -> X8, PCIE1 and PCIE2 -> X4).
|
|
* - Set up UTL configuration.
|
|
* - Increase SERDES drive strength to levels suggested by AMCC.
|
|
* - De-assert RSTPYN, RSTDL and RSTGU.
|
|
*
|
|
* NOTICE for revB chip: PESDRn_UTLSET2 is not set - we leave it with
|
|
* default setting 0x11310000. The register has new fields,
|
|
* PESDRn_UTLSET2[LKINE] in particular: clearing it leads to PCIE core
|
|
* hang.
|
|
*/
|
|
switch (port) {
|
|
case 0:
|
|
SDR_WRITE(PESDR0_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X8 << 12);
|
|
|
|
SDR_WRITE(PESDR0_UTLSET1, 0x20222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR0_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR0_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL4SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL5SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL6SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_HSSL7SET1, 0x35000000);
|
|
SDR_WRITE(PESDR0_RCSSET,
|
|
(SDR_READ(PESDR0_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
|
|
case 1:
|
|
SDR_WRITE(PESDR1_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12);
|
|
SDR_WRITE(PESDR1_UTLSET1, 0x20222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR1_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR1_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR1_RCSSET,
|
|
(SDR_READ(PESDR1_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
|
|
case 2:
|
|
SDR_WRITE(PESDR2_DLPSET, 1 << 24 | PTYPE_LEGACY_ENDPOINT << 20 | LNKW_X4 << 12);
|
|
SDR_WRITE(PESDR2_UTLSET1, 0x20222222);
|
|
if (!ppc440spe_revB())
|
|
SDR_WRITE(PESDR2_UTLSET2, 0x11000000);
|
|
SDR_WRITE(PESDR2_HSSL0SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL1SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL2SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_HSSL3SET1, 0x35000000);
|
|
SDR_WRITE(PESDR2_RCSSET,
|
|
(SDR_READ(PESDR2_RCSSET) & ~(1 << 24 | 1 << 16)) | 1 << 12);
|
|
break;
|
|
}
|
|
/*
|
|
* Notice: the following delay has critical impact on device
|
|
* initialization - if too short (<50ms) the link doesn't get up.
|
|
*/
|
|
mdelay(100);
|
|
|
|
switch (port) {
|
|
case 0: val = SDR_READ(PESDR0_RCSSTS); break;
|
|
case 1: val = SDR_READ(PESDR1_RCSSTS); break;
|
|
case 2: val = SDR_READ(PESDR2_RCSSTS); break;
|
|
}
|
|
|
|
if (val & (1 << 20)) {
|
|
printf("PCIE%d: PGRST failed %08x\n", port, val);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Verify link is up
|
|
*/
|
|
val = 0;
|
|
switch (port)
|
|
{
|
|
case 0:
|
|
val = SDR_READ(PESDR0_LOOP);
|
|
break;
|
|
case 1:
|
|
val = SDR_READ(PESDR1_LOOP);
|
|
break;
|
|
case 2:
|
|
val = SDR_READ(PESDR2_LOOP);
|
|
break;
|
|
}
|
|
if (!(val & 0x00001000)) {
|
|
printf("PCIE%d: link is not up.\n", port);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Setup UTL registers - but only on revA!
|
|
* We use default settings for revB chip.
|
|
*/
|
|
if (!ppc440spe_revB())
|
|
ppc440spe_setup_utl(port);
|
|
|
|
/*
|
|
* We map PCI Express configuration access into the 512MB regions
|
|
*
|
|
* NOTICE: revB is very strict about PLB real addressess and ranges to
|
|
* be mapped for config space; it seems to only work with d_nnnn_nnnn
|
|
* range (hangs the core upon config transaction attempts when set
|
|
* otherwise) while revA uses c_nnnn_nnnn.
|
|
*
|
|
* For revA:
|
|
* PCIE0: 0xc_4000_0000
|
|
* PCIE1: 0xc_8000_0000
|
|
* PCIE2: 0xc_c000_0000
|
|
*
|
|
* For revB:
|
|
* PCIE0: 0xd_0000_0000
|
|
* PCIE1: 0xd_2000_0000
|
|
* PCIE2: 0xd_4000_0000
|
|
*/
|
|
switch (port) {
|
|
case 0:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x00000000);
|
|
} else {
|
|
/* revA */
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE0), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE0), 0x40000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE0), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
|
|
case 1:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x20000000);
|
|
} else {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE1), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE1), 0x80000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE1), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
|
|
case 2:
|
|
if (ppc440spe_revB()) {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0x40000000);
|
|
} else {
|
|
mtdcr(DCRN_PEGPL_CFGBAH(PCIE2), 0x0000000c);
|
|
mtdcr(DCRN_PEGPL_CFGBAL(PCIE2), 0xc0000000);
|
|
}
|
|
mtdcr(DCRN_PEGPL_CFGMSK(PCIE2), 0xe0000001); /* 512MB region, valid */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check for VC0 active and assert RDY.
|
|
*/
|
|
attempts = 10;
|
|
switch (port) {
|
|
case 0:
|
|
while(!(SDR_READ(PESDR0_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE0: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
SDR_WRITE(PESDR0_RCSSET, SDR_READ(PESDR0_RCSSET) | 1 << 20);
|
|
break;
|
|
case 1:
|
|
while(!(SDR_READ(PESDR1_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE1: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
|
|
SDR_WRITE(PESDR1_RCSSET, SDR_READ(PESDR1_RCSSET) | 1 << 20);
|
|
break;
|
|
case 2:
|
|
while(!(SDR_READ(PESDR2_RCSSTS) & (1 << 16))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE2: VC0 not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
|
|
SDR_WRITE(PESDR2_RCSSET, SDR_READ(PESDR2_RCSSET) | 1 << 20);
|
|
break;
|
|
}
|
|
mdelay(100);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ppc440spe_setup_pcie_rootpoint(struct pci_controller *hose, int port)
|
|
{
|
|
volatile void *mbase = NULL;
|
|
volatile void *rmbase = NULL;
|
|
|
|
pci_set_ops(hose,
|
|
pcie_read_config_byte,
|
|
pcie_read_config_word,
|
|
pcie_read_config_dword,
|
|
pcie_write_config_byte,
|
|
pcie_write_config_word,
|
|
pcie_write_config_dword);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
mbase = (u32 *)CFG_PCIE0_XCFGBASE;
|
|
rmbase = (u32 *)CFG_PCIE0_CFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE;
|
|
break;
|
|
case 1:
|
|
mbase = (u32 *)CFG_PCIE1_XCFGBASE;
|
|
rmbase = (u32 *)CFG_PCIE1_CFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE;
|
|
break;
|
|
case 2:
|
|
mbase = (u32 *)CFG_PCIE2_XCFGBASE;
|
|
rmbase = (u32 *)CFG_PCIE2_CFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set bus numbers on our root port
|
|
*/
|
|
out_8((u8 *)mbase + PCI_PRIMARY_BUS, 0);
|
|
out_8((u8 *)mbase + PCI_SECONDARY_BUS, 1);
|
|
out_8((u8 *)mbase + PCI_SUBORDINATE_BUS, 1);
|
|
|
|
/*
|
|
* Set up outbound translation to hose->mem_space from PLB
|
|
* addresses at an offset of 0xd_0000_0000. We set the low
|
|
* bits of the mask to 11 to turn off splitting into 8
|
|
* subregions and to enable the outbound translation.
|
|
*/
|
|
out_le32(mbase + PECFG_POM0LAH, 0x00000000);
|
|
out_le32(mbase + PECFG_POM0LAL, 0x00000000);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
case 1:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE));
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
case 2:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE));
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
}
|
|
|
|
/* Set up 16GB inbound memory window at 0 */
|
|
out_le32(mbase + PCI_BASE_ADDRESS_0, 0);
|
|
out_le32(mbase + PCI_BASE_ADDRESS_1, 0);
|
|
out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc);
|
|
out_le32(mbase + PECFG_BAR0LMPA, 0);
|
|
|
|
out_le32(mbase + PECFG_PIM01SAH, 0xffff0000);
|
|
out_le32(mbase + PECFG_PIM01SAL, 0x00000000);
|
|
out_le32(mbase + PECFG_PIM0LAL, 0);
|
|
out_le32(mbase + PECFG_PIM0LAH, 0);
|
|
out_le32(mbase + PECFG_PIM1LAL, 0x00000000);
|
|
out_le32(mbase + PECFG_PIM1LAH, 0x00000004);
|
|
out_le32(mbase + PECFG_PIMEN, 0x1);
|
|
|
|
/* Enable I/O, Mem, and Busmaster cycles */
|
|
out_le16((u16 *)(mbase + PCI_COMMAND),
|
|
in_le16((u16 *)(mbase + PCI_COMMAND)) |
|
|
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
printf("PCIE:%d successfully set as rootpoint\n",port);
|
|
}
|
|
|
|
int ppc440spe_setup_pcie_endpoint(struct pci_controller *hose, int port)
|
|
{
|
|
volatile void *mbase = NULL;
|
|
int attempts = 0;
|
|
|
|
pci_set_ops(hose,
|
|
pcie_read_config_byte,
|
|
pcie_read_config_word,
|
|
pcie_read_config_dword,
|
|
pcie_write_config_byte,
|
|
pcie_write_config_word,
|
|
pcie_write_config_dword);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
mbase = (u32 *)CFG_PCIE0_XCFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE0_CFGBASE;
|
|
break;
|
|
case 1:
|
|
mbase = (u32 *)CFG_PCIE1_XCFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE1_CFGBASE;
|
|
break;
|
|
case 2:
|
|
mbase = (u32 *)CFG_PCIE2_XCFGBASE;
|
|
hose->cfg_data = (u8 *)CFG_PCIE2_CFGBASE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Set up outbound translation to hose->mem_space from PLB
|
|
* addresses at an offset of 0xd_0000_0000. We set the low
|
|
* bits of the mask to 11 to turn off splitting into 8
|
|
* subregions and to enable the outbound translation.
|
|
*/
|
|
out_le32(mbase + PECFG_POM0LAH, 0x00001ff8);
|
|
out_le32(mbase + PECFG_POM0LAL, 0x00001000);
|
|
|
|
switch (port) {
|
|
case 0:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE0), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE0), CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE0), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE0),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
case 1:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE1), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE1), (CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE));
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE1), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE1),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
case 2:
|
|
mtdcr(DCRN_PEGPL_OMR1BAH(PCIE2), 0x0000000d);
|
|
mtdcr(DCRN_PEGPL_OMR1BAL(PCIE2), (CFG_PCIE_MEMBASE +
|
|
port * CFG_PCIE_MEMSIZE));
|
|
mtdcr(DCRN_PEGPL_OMR1MSKH(PCIE2), 0x7fffffff);
|
|
mtdcr(DCRN_PEGPL_OMR1MSKL(PCIE2),
|
|
~(CFG_PCIE_MEMSIZE - 1) | 3);
|
|
break;
|
|
}
|
|
|
|
/* Set up 16GB inbound memory window at 0 */
|
|
out_le32(mbase + PCI_BASE_ADDRESS_0, 0);
|
|
out_le32(mbase + PCI_BASE_ADDRESS_1, 0);
|
|
out_le32(mbase + PECFG_BAR0HMPA, 0x7fffffc);
|
|
out_le32(mbase + PECFG_BAR0LMPA, 0);
|
|
out_le32(mbase + PECFG_PIM0LAL, 0x00000000);
|
|
out_le32(mbase + PECFG_PIM0LAH, 0x00000004); /* pointing to SRAM */
|
|
out_le32(mbase + PECFG_PIMEN, 0x1);
|
|
|
|
/* Enable I/O, Mem, and Busmaster cycles */
|
|
out_le16((u16 *)(mbase + PCI_COMMAND),
|
|
in_le16((u16 *)(mbase + PCI_COMMAND)) |
|
|
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
out_le16(mbase + 0x200,0xcaad); /* Setting vendor ID */
|
|
out_le16(mbase + 0x202,0xfeed); /* Setting device ID */
|
|
attempts = 10;
|
|
switch (port) {
|
|
case 0:
|
|
while (!(SDR_READ(PESDR0_RCSSTS) & (1 << 8))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE0: BMEN is not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
break;
|
|
case 1:
|
|
while (!(SDR_READ(PESDR1_RCSSTS) & (1 << 8))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE1: BMEN is not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
break;
|
|
case 2:
|
|
while (!(SDR_READ(PESDR2_RCSSTS) & (1 << 8))) {
|
|
if (!(attempts--)) {
|
|
printf("PCIE2: BMEN is not active\n");
|
|
return -1;
|
|
}
|
|
mdelay(1000);
|
|
}
|
|
break;
|
|
}
|
|
printf("PCIE:%d successfully set as endpoint\n",port);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_440SPE && CONFIG_PCI */
|