u-boot/drivers/ddr/altera/sdram_s10.c
Ley Foon Tan 0bc28b7cb8 ddr: altera: stratix10: Add DDR support for Stratix10 SoC
Add DDR support for Stratix SoC

Signed-off-by: Chin Liang See <chin.liang.see@intel.com>
Signed-off-by: Ley Foon Tan <ley.foon.tan@intel.com>
2018-07-12 09:22:12 +02:00

388 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2018 Intel Corporation <www.intel.com>
*
*/
#include <common.h>
#include <errno.h>
#include <div64.h>
#include <asm/io.h>
#include <wait_bit.h>
#include <asm/arch/firewall_s10.h>
#include <asm/arch/sdram_s10.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
DECLARE_GLOBAL_DATA_PTR;
static const struct socfpga_system_manager *sysmgr_regs =
(void *)SOCFPGA_SYSMGR_ADDRESS;
#define DDR_CONFIG(A, B, C, R) (((A) << 24) | ((B) << 16) | ((C) << 8) | (R))
/* The followring are the supported configurations */
u32 ddr_config[] = {
/* DDR_CONFIG(Address order,Bank,Column,Row) */
/* List for DDR3 or LPDDR3 (pinout order > chip, row, bank, column) */
DDR_CONFIG(0, 3, 10, 12),
DDR_CONFIG(0, 3, 9, 13),
DDR_CONFIG(0, 3, 10, 13),
DDR_CONFIG(0, 3, 9, 14),
DDR_CONFIG(0, 3, 10, 14),
DDR_CONFIG(0, 3, 10, 15),
DDR_CONFIG(0, 3, 11, 14),
DDR_CONFIG(0, 3, 11, 15),
DDR_CONFIG(0, 3, 10, 16),
DDR_CONFIG(0, 3, 11, 16),
DDR_CONFIG(0, 3, 12, 15), /* 0xa */
/* List for DDR4 only (pinout order > chip, bank, row, column) */
DDR_CONFIG(1, 3, 10, 14),
DDR_CONFIG(1, 4, 10, 14),
DDR_CONFIG(1, 3, 10, 15),
DDR_CONFIG(1, 4, 10, 15),
DDR_CONFIG(1, 3, 10, 16),
DDR_CONFIG(1, 4, 10, 16),
DDR_CONFIG(1, 3, 10, 17),
DDR_CONFIG(1, 4, 10, 17),
};
static u32 hmc_readl(u32 reg)
{
return readl(((void __iomem *)SOCFPGA_HMC_MMR_IO48_ADDRESS + (reg)));
}
static u32 hmc_ecc_readl(u32 reg)
{
return readl((void __iomem *)SOCFPGA_SDR_ADDRESS + (reg));
}
static u32 hmc_ecc_writel(u32 data, u32 reg)
{
return writel(data, (void __iomem *)SOCFPGA_SDR_ADDRESS + (reg));
}
static u32 ddr_sch_writel(u32 data, u32 reg)
{
return writel(data,
(void __iomem *)SOCFPGA_SDR_SCHEDULER_ADDRESS + (reg));
}
int match_ddr_conf(u32 ddr_conf)
{
int i;
for (i = 0; i < ARRAY_SIZE(ddr_config); i++) {
if (ddr_conf == ddr_config[i])
return i;
}
return 0;
}
static int emif_clear(void)
{
hmc_ecc_writel(0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(SOCFPGA_SDR_ADDRESS +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
static int emif_reset(void)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(NIOSRESERVED0), hmc_readl(NIOSRESERVED1),
hmc_readl(NIOSRESERVED2), hmc_readl(DRAMSTS));
if (s2c && emif_clear()) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(SOCFPGA_SDR_ADDRESS +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear();
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
static int poll_hmc_clock_status(void)
{
return wait_for_bit_le32(&sysmgr_regs->hmc_clk,
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
/**
* sdram_mmr_init_full() - Function to initialize SDRAM MMR
*
* Initialize the SDRAM MMR.
*/
int sdram_mmr_init_full(unsigned int unused)
{
u32 update_value, io48_value, ddrioctl;
u32 i;
int ret;
/* Enable access to DDR from CPU master */
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_DDRREG),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE0),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1A),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1B),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1C),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1D),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1E),
CCU_ADBASE_DI_MASK);
/* Enable access to DDR from IO master */
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE0),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1A),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1B),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1C),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1D),
CCU_ADBASE_DI_MASK);
clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1E),
CCU_ADBASE_DI_MASK);
/* this enables nonsecure access to DDR */
/* mpuregion0addr_limit */
FW_MPU_DDR_SCR_WRITEL(0xFFFF0000, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT);
FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT);
/* nonmpuregion0addr_limit */
FW_MPU_DDR_SCR_WRITEL(0xFFFF0000,
FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT);
FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT);
/* Enable mpuregion0enable and nonmpuregion0enable */
FW_MPU_DDR_SCR_WRITEL(MPUREGION0_ENABLE | NONMPUREGION0_ENABLE,
FW_MPU_DDR_SCR_EN_SET);
/* Ensure HMC clock is running */
if (poll_hmc_clock_status()) {
puts("DDR: Error as HMC clock not running\n");
return -1;
}
/* release DDR scheduler from reset */
socfpga_per_reset(SOCFPGA_RESET(SDR), 0);
/* Try 3 times to do a calibration */
for (i = 0; i < 3; i++) {
ret = wait_for_bit_le32((const void *)(SOCFPGA_SDR_ADDRESS +
DDRCALSTAT),
DDR_HMC_DDRCALSTAT_CAL_MSK, true, 1000,
false);
if (!ret)
break;
emif_reset();
}
if (ret) {
puts("DDR: Error as SDRAM calibration failed\n");
return -1;
}
debug("DDR: Calibration success\n");
u32 ctrlcfg0 = hmc_readl(CTRLCFG0);
u32 ctrlcfg1 = hmc_readl(CTRLCFG1);
u32 dramaddrw = hmc_readl(DRAMADDRW);
u32 dramtim0 = hmc_readl(DRAMTIMING0);
u32 caltim0 = hmc_readl(CALTIMING0);
u32 caltim1 = hmc_readl(CALTIMING1);
u32 caltim2 = hmc_readl(CALTIMING2);
u32 caltim3 = hmc_readl(CALTIMING3);
u32 caltim4 = hmc_readl(CALTIMING4);
u32 caltim9 = hmc_readl(CALTIMING9);
/*
* Configure the DDR IO size [0xFFCFB008]
* niosreserve0: Used to indicate DDR width &
* bit[7:0] = Number of data bits (bit[6:5] 0x01=32bit, 0x10=64bit)
* bit[8] = 1 if user-mode OCT is present
* bit[9] = 1 if warm reset compiled into EMIF Cal Code
* bit[10] = 1 if warm reset is on during generation in EMIF Cal
* niosreserve1: IP ADCDS version encoded as 16 bit value
* bit[2:0] = Variant (0=not special,1=FAE beta, 2=Customer beta,
* 3=EAP, 4-6 are reserved)
* bit[5:3] = Service Pack # (e.g. 1)
* bit[9:6] = Minor Release #
* bit[14:10] = Major Release #
*/
update_value = hmc_readl(NIOSRESERVED0);
hmc_ecc_writel(((update_value & 0xFF) >> 5), DDRIOCTRL);
ddrioctl = hmc_ecc_readl(DDRIOCTRL);
/* enable HPS interface to HMC */
hmc_ecc_writel(DDR_HMC_HPSINTFCSEL_ENABLE_MASK, HPSINTFCSEL);
/* Set the DDR Configuration */
io48_value = DDR_CONFIG(CTRLCFG1_CFG_ADDR_ORDER(ctrlcfg1),
(DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw)),
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw),
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw));
update_value = match_ddr_conf(io48_value);
if (update_value)
ddr_sch_writel(update_value, DDR_SCH_DDRCONF);
/* Configure HMC dramaddrw */
hmc_ecc_writel(hmc_readl(DRAMADDRW), DRAMADDRWIDTH);
/*
* Configure DDR timing
* RDTOMISS = tRTP + tRP + tRCD - BL/2
* WRTOMISS = WL + tWR + tRP + tRCD and
* WL = RL + BL/2 + 2 - rd-to-wr ; tWR = 15ns so...
* First part of equation is in memory clock units so divide by 2
* for HMC clock units. 1066MHz is close to 1ns so use 15 directly.
* WRTOMISS = ((RL + BL/2 + 2 + tWR) >> 1)- rd-to-wr + tRP + tRCD
*/
u32 burst_len = CTRLCFG0_CFG_CTRL_BURST_LEN(ctrlcfg0);
update_value = CALTIMING2_CFG_RD_TO_WR_PCH(caltim2) +
CALTIMING4_CFG_PCH_TO_VALID(caltim4) +
CALTIMING0_CFG_ACT_TO_RDWR(caltim0) -
(burst_len >> 2);
io48_value = (((DRAMTIMING0_CFG_TCL(dramtim0) + 2 + DDR_TWR +
(burst_len >> 1)) >> 1) -
/* Up to here was in memory cycles so divide by 2 */
CALTIMING1_CFG_RD_TO_WR(caltim1) +
CALTIMING0_CFG_ACT_TO_RDWR(caltim0) +
CALTIMING4_CFG_PCH_TO_VALID(caltim4));
ddr_sch_writel(((CALTIMING0_CFG_ACT_TO_ACT(caltim0) <<
DDR_SCH_DDRTIMING_ACTTOACT_OFF) |
(update_value << DDR_SCH_DDRTIMING_RDTOMISS_OFF) |
(io48_value << DDR_SCH_DDRTIMING_WRTOMISS_OFF) |
((burst_len >> 2) << DDR_SCH_DDRTIMING_BURSTLEN_OFF) |
(CALTIMING1_CFG_RD_TO_WR(caltim1) <<
DDR_SCH_DDRTIMING_RDTOWR_OFF) |
(CALTIMING3_CFG_WR_TO_RD(caltim3) <<
DDR_SCH_DDRTIMING_WRTORD_OFF) |
(((ddrioctl == 1) ? 1 : 0) <<
DDR_SCH_DDRTIMING_BWRATIO_OFF)),
DDR_SCH_DDRTIMING);
/* Configure DDR mode [precharge = 0] */
ddr_sch_writel(((ddrioctl ? 0 : 1) <<
DDR_SCH_DDRMOD_BWRATIOEXTENDED_OFF),
DDR_SCH_DDRMODE);
/* Configure the read latency */
ddr_sch_writel((DRAMTIMING0_CFG_TCL(dramtim0) >> 1) +
DDR_READ_LATENCY_DELAY,
DDR_SCH_READ_LATENCY);
/*
* Configuring timing values concerning activate commands
* [FAWBANK alway 1 because always 4 bank DDR]
*/
ddr_sch_writel(((CALTIMING0_CFG_ACT_TO_ACT_DB(caltim0) <<
DDR_SCH_ACTIVATE_RRD_OFF) |
(CALTIMING9_CFG_4_ACT_TO_ACT(caltim9) <<
DDR_SCH_ACTIVATE_FAW_OFF) |
(DDR_ACTIVATE_FAWBANK <<
DDR_SCH_ACTIVATE_FAWBANK_OFF)),
DDR_SCH_ACTIVATE);
/*
* Configuring timing values concerning device to device data bus
* ownership change
*/
ddr_sch_writel(((CALTIMING1_CFG_RD_TO_RD_DC(caltim1) <<
DDR_SCH_DEVTODEV_BUSRDTORD_OFF) |
(CALTIMING1_CFG_RD_TO_WR_DC(caltim1) <<
DDR_SCH_DEVTODEV_BUSRDTOWR_OFF) |
(CALTIMING3_CFG_WR_TO_RD_DC(caltim3) <<
DDR_SCH_DEVTODEV_BUSWRTORD_OFF)),
DDR_SCH_DEVTODEV);
/* assigning the SDRAM size */
unsigned long long size = sdram_calculate_size();
/* If the size is invalid, use default Config size */
if (size <= 0)
gd->ram_size = PHYS_SDRAM_1_SIZE;
else
gd->ram_size = size;
/* Enable or disable the SDRAM ECC */
if (CTRLCFG1_CFG_CTRL_EN_ECC(ctrlcfg1)) {
setbits_le32(SOCFPGA_SDR_ADDRESS + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(SOCFPGA_SDR_ADDRESS + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK));
setbits_le32(SOCFPGA_SDR_ADDRESS + ECCCTRL2,
(DDR_HMC_ECCCTL2_RMW_EN_SET_MSK |
DDR_HMC_ECCCTL2_AWB_EN_SET_MSK));
} else {
clrbits_le32(SOCFPGA_SDR_ADDRESS + ECCCTRL1,
(DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_CNT_RST_SET_MSK |
DDR_HMC_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(SOCFPGA_SDR_ADDRESS + ECCCTRL2,
(DDR_HMC_ECCCTL2_RMW_EN_SET_MSK |
DDR_HMC_ECCCTL2_AWB_EN_SET_MSK));
}
debug("DDR: HMC init success\n");
return 0;
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
unsigned long sdram_calculate_size(void)
{
u32 dramaddrw = hmc_readl(DRAMADDRW);
u32 size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}