u-boot/doc/board/st/stm32mp1.rst
Patrick Delaunay b94b275b0a doc: st: stm32mp1: add STM32MP13x support
Add in U-Boot documentation the quick instruction to
setup the STMicroelectronics STM32MP13x boards.

Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com>
2022-06-17 10:41:16 +02:00

821 lines
No EOL
28 KiB
ReStructuredText

.. SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
.. sectionauthor:: Patrick Delaunay <patrick.delaunay@foss.st.com>
STM32MP1xx boards
=================
This is a quick instruction for setup STMicroelectronics STM32MP1xx boards.
Further information can be found in STMicroelectronics STM32 WIKI_.
Supported devices
-----------------
U-Boot supports all the STMicroelectronics MPU with the associated boards
- STMP32MP15x SoCs:
- STM32MP157
- STM32MP153
- STM32MP151
- STMP32MP13x SoCs:
- STM32MP135
- STM32MP133
- STM32MP131
Everything is supported in Linux but U-Boot is limited to the boot device:
1. UART
2. SD card/MMC controller (SDMMC)
3. NAND controller (FMC)
4. NOR controller (QSPI)
5. USB controller (OTG DWC2)
6. Ethernet controller
And the necessary drivers
1. I2C
2. STPMIC1 (PMIC and regulator)
3. Clock, Reset, Sysreset
4. Fuse (BSEC)
5. OP-TEE
6. ETH
7. USB host
8. WATCHDOG
9. RNG
10. RTC
STM32MP15x
``````````
The STM32MP15x is a Cortex-A7 MPU aimed at various applications.
It features:
- Dual core Cortex-A7 application core (Single on STM32MP151)
- 2D/3D image composition with GPU (only on STM32MP157)
- Standard memories interface support
- Standard connectivity, widely inherited from the STM32 MCU family
- Comprehensive security support
- Cortex M4 coprocessor
Each line comes with a security option (cryptography & secure boot) and
a Cortex-A frequency option:
- A : Cortex-A7 @ 650 MHz
- C : Secure Boot + HW Crypto + Cortex-A7 @ 650 MHz
- D : Cortex-A7 @ 800 MHz
- F : Secure Boot + HW Crypto + Cortex-A7 @ 800 MHz
Currently the following boards are supported:
+ stm32mp157a-dk1.dts
+ stm32mp157c-dk2.dts
+ stm32mp157c-ed1.dts
+ stm32mp157c-ev1.dts
+ stm32mp15xx-dhcor-avenger96.dts
STM32MP13x
``````````
The STM32MP13x is a single Cortex-A7 MPU aimed at various applications.
Currently the following boards are supported:
+ stm32mp135f-dk.dts
Boot Sequences
--------------
2 boot configurations are supported with:
+----------+------------------------+-------------------------+--------------+
| **ROM** | **FSBL** | **SSBL** | **OS** |
+ **code** +------------------------+-------------------------+--------------+
| | First Stage Bootloader | Second Stage Bootloader | Linux Kernel |
+ +------------------------+-------------------------+--------------+
| | embedded RAM | DDR |
+----------+------------------------+-------------------------+--------------+
| TrustZone| secure monitor |
+----------+------------------------+-------------------------+--------------+
The trusted boot chain is recommended with:
- FSBL = **TF-A BL2**
- Secure monitor = **OP-TEE**
- SSBL = **U-Boot**
It is the only supported boot chain for STM32MP13x family.
The **Trusted** boot chain with TF-A_
`````````````````````````````````````
defconfig_file :
+ **stm32mp15_defconfig** and **stm32mp13_defconfig** (for TF-A_ with FIP support)
+ **stm32mp15_trusted_defconfig** (for TF-A_ without FIP support)
+-------------+--------------------------+------------+-------+
| ROM code | FSBL | SSBL | OS |
+ +--------------------------+------------+-------+
| |Trusted Firmware-A (TF-A_)| U-Boot | Linux |
+-------------+--------------------------+------------+-------+
| TrustZone |secure monitor = SPMin or OP-TEE_ |
+-------------+--------------------------+------------+-------+
TF-A_ and OP-TEE_ are 2 separate projects, with their git repository;
they are compiled separately.
TF-A_ (BL2) initialize the DDR and loads the next stage binaries from a FIP file:
+ BL32: a secure monitor BL32 = SPMin provided by TF-A_ or OP-TEE_ :
performs a full initialization of Secure peripherals and provides service
to normal world
+ BL33: a non-trusted firmware = U-Boot, running in normal world and uses
the secure monitor to access to secure resources.
+ HW_CONFIG: The hardware configuration file = the U-Boot device tree
The **Basic** boot chain with SPL (for STM32MP15x)
``````````````````````````````````````````````````
defconfig_file :
+ **stm32mp15_basic_defconfig**
+-------------+------------+------------+-------+
| ROM code | FSBL | SSBL | OS |
+ +------------+------------+-------+
| |U-Boot SPL | U-Boot | Linux |
+-------------+------------+------------+-------+
| TrustZone | | PSCI from U-Boot |
+-------------+------------+------------+-------+
SPL has limited security initialization.
U-Boot is running in secure mode and provide a secure monitor to the kernel
with only PSCI support (Power State Coordination Interface defined by ARM).
.. warning:: This alternate **basic** boot chain with SPL is not supported/promoted by STMicroelectronics to make product.
Device Tree
-----------
All the STM32MP15x and STM32MP13x boards supported by U-Boot use the same generic board
stm32mp1 which supports all the bootable devices.
Each STMicroelectronics board is only configured with the associated device tree.
STM32MP15x device Tree Selection
````````````````````````````````
The supported device trees for STM32MP15x (stm32mp15_trusted_defconfig and stm32mp15_basic_defconfig) are:
+ ev1: eval board with pmic stpmic1 (ev1 = mother board + daughter ed1)
+ stm32mp157c-ev1
+ ed1: daughter board with pmic stpmic1
+ stm32mp157c-ed1
+ dk1: Discovery board
+ stm32mp157a-dk1
+ dk2: Discovery board = dk1 with a BT/WiFI combo and a DSI panel
+ stm32mp157c-dk2
+ avenger96: Avenger96 board from Arrow Electronics based on DH Elec. DHCOR SoM
+ stm32mp15xx-dhcor-avenger96
STM32MP13x device Tree Selection
````````````````````````````````
The supported device trees for STM32MP13x (stm32mp13_defconfig) are:
+ dk: Discovery board
+ stm32mp135f-dk
Build Procedure
---------------
1. Install the required tools for U-Boot
* install package needed in U-Boot makefile
(libssl-dev, swig, libpython-dev...)
* install ARMv7 toolchain for 32bit Cortex-A (from Linaro,
from SDK for STM32MP15x, or any crosstoolchains from your distribution)
(you can use any gcc cross compiler compatible with U-Boot)
2. Set the cross compiler::
# export CROSS_COMPILE=/path/to/toolchain/arm-linux-gnueabi-
3. Select the output directory (optional)::
# export KBUILD_OUTPUT=/path/to/output
for example: use one output directory for each configuration::
# export KBUILD_OUTPUT=stm32mp13
# export KBUILD_OUTPUT=stm32mp15
# export KBUILD_OUTPUT=stm32mp15_trusted
# export KBUILD_OUTPUT=stm32mp15_basic
you can build outside of code directory::
# export KBUILD_OUTPUT=../build/stm32mp15
4. Configure U-Boot::
# make <defconfig_file>
with <defconfig_file>:
- For **trusted** boot mode :
- For STM32MP13x: **stm32mp13_defconfig**
- For STM32MP15x: **stm32mp15_defconfig** or stm32mp15_trusted_defconfig
- For STM32MP15x basic boot mode: stm32mp15_basic_defconfig
5. Configure the device-tree and build the U-Boot image::
# make DEVICE_TREE=<name> all
Examples:
a) trusted boot with FIP on STM32MP15x ev1::
# export KBUILD_OUTPUT=stm32mp15
# make stm32mp15_defconfig
# make DEVICE_TREE=stm32mp157c-ev1 all
b) trusted boot on STM32MP13x discovery board::
# export KBUILD_OUTPUT=stm32mp13
# make stm32mp13_defconfig
# make DEVICE_TREE=stm32mp135f-dk all
DEVICE_TEE selection is optional as stm32mp135f-dk is the default board of the defconfig::
# make stm32mp13_defconfig
# make all
c) basic boot on STM32MP15x ev1::
# export KBUILD_OUTPUT=stm32mp15_basic
# make stm32mp15_basic_defconfig
# make DEVICE_TREE=stm32mp157c-ev1 all
d) basic boot on STM32MP15x ed1::
# export KBUILD_OUTPUT=stm32mp15_basic
# make stm32mp15_basic_defconfig
# make DEVICE_TREE=stm32mp157c-ed1 all
e) basic boot on STM32MP15x dk1::
# export KBUILD_OUTPUT=stm32mp15_basic
# make stm32mp15_basic_defconfig
# make DEVICE_TREE=stm32mp157a-dk1 all
f) basic boot on STM32MP15x avenger96::
# export KBUILD_OUTPUT=stm32mp15_basic
# make stm32mp15_basic_defconfig
# make DEVICE_TREE=stm32mp15xx-dhcor-avenger96 all
6. U-Boot Output files
So in the output directory (selected by KBUILD_OUTPUT),
you can found the needed U-Boot files:
- stm32mp13_defconfig = **u-boot-nodtb.bin** and **u-boot.dtb**
- stm32mp15_defconfig = **u-boot-nodtb.bin** and **u-boot.dtb**
- stm32mp15_trusted_defconfig = u-boot.stm32
- stm32mp15_basic_defconfig
- FSBL = spl/u-boot-spl.stm32
- SSBL = u-boot.img (without CONFIG_SPL_LOAD_FIT) or
u-boot.itb (with CONFIG_SPL_LOAD_FIT=y)
7. TF-A_ compilation
This step is required only for **Trusted** boot (stm32mp15_defconfig and
stm32mp15_trusted_defconfig); see OP-TEE_ and TF-A_ documentation for build
commands.
- For TF-A_ with FIP support: **stm32mp15_defconfig**
- with OP-TEE_ support, compile the OP-TEE to generate the binary included
in FIP
- after TF-A compilation, the used files are:
- TF-A_ BL2 => FSBL = **tf-a.stm32**
- FIP => **fip.bin**
FIP file includes the 2 files given in arguments of TF-A_ compilation:
- BL33=u-boot-nodtb.bin
- BL33_CFG=u-boot.dtb
You can also update a existing FIP after U-boot compilation with fiptool,
a tool provided by TF-A_::
# fiptool update --nt-fw u-boot-nodtb.bin --hw-config u-boot.dtb fip-stm32mp157c-ev1.bin
- For TF-A_ without FIP support : **stm32mp15_trusted_defconfig**
SPMin is used and the used files are:
- FSBL = **tf-a.stm32** (provided by TF-A_ compilation, contening BL2 and
BL32 = SPMin)
- SSBL = **u-boot.stm32** used instead of fip.bin in next chapters
8. The bootloaders files
+ The **ROM code** expects FSBL binaries with STM32 image header =
tf-a.stm32 or u-boot-spl.stm32
According the FSBL / the boot mode:
+ **TF-A** expect a FIP binary = fip.bin, including the OS monitor (SPMin or
OP-TEE_) and the U-Boot binary + device tree
or, without FIP support, binaries with STM32 image header: U-Boot
= u-boot.stm32 and eventually OP-TEE files (tee-header.stm32, tee-pageable.stm32,
tee-pager.stm32)
+ **SPL** expects SSBL = U-Boot with uImage header = u-boot.img
or FIT = u-boot.itb.
Switch Setting for Boot Mode
----------------------------
You can select the boot mode, on the board with one switch, to select
the boot pin values = BOOT0, BOOT1, BOOT2
+-------------+---------+---------+---------+
|*Boot Mode* | *BOOT2* | *BOOT1* | *BOOT0* |
+=============+=========+=========+=========+
| Recovery | 0 | 0 | 0 |
+-------------+---------+---------+---------+
| NOR | 0 | 0 | 1 |
+-------------+---------+---------+---------+
| eMMC | 0 | 1 | 0 |
+-------------+---------+---------+---------+
| NAND | 0 | 1 | 1 |
+-------------+---------+---------+---------+
| Reserved | 1 | 0 | 0 |
+-------------+---------+---------+---------+
| SD-Card | 1 | 0 | 1 |
+-------------+---------+---------+---------+
| Recovery | 1 | 1 | 0 |
+-------------+---------+---------+---------+
| SPI-NAND | 1 | 1 | 1 |
+-------------+---------+---------+---------+
- on the STM32MP15x **daughter board ed1 = MB1263** with the switch SW1
- on STM32MP15x **Avenger96** with switch S3 (NOR and SPI-NAND are not applicable)
- on board STM32MP15x **DK1/DK2** with the switch SW1 = BOOT0, BOOT2
with only 2 pins available (BOOT1 is forced to 0 and NOR not supported),
the possible value becomes:
+-------------+---------+---------+
|*Boot Mode* | *BOOT2* | *BOOT0* |
+=============+=========+=========+
| Recovery | 0 | 0 |
+-------------+---------+---------+
| NOR (NA)| 0 | 1 |
+-------------+---------+---------+
| Reserved | 1 | 0 |
+-------------+---------+---------+
| SD-Card | 1 | 1 |
+-------------+---------+---------+
Recovery is a boot from serial link (UART/USB) and it is used with
STM32CubeProgrammer tool to load executable in RAM and to update the flash
devices available on the board (NOR/NAND/eMMC/SD card).
The communication between HOST and board is based on
- for UARTs : the uart protocol used with all MCU STM32
- for USB : based on USB DFU 1.1 (without the ST extensions used on MCU STM32)
Prepare an SD card
------------------
The minimal requirements for STMP32MP15x and STM32MP13x boot up to U-Boot are:
- GPT partitioning (with gdisk or with sgdisk)
- 2 fsbl partitions, named "fsbl1" and "fsbl2", size at least 256KiB
- one partition named "fip" for FIP or U-Boot (TF-A_ search the "fip"
partition and SPL search the 3th partition, because
CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION=3)
The 2 fsbl partitions have the same content and are present to guarantee a
fail-safe update of FSBL; fsbl2 can be omitted if this ROM code feature is
not required.
Without FIP support in TF-A_, the 3rd partition "fip" for u-boot.stm32 must
be named "ssbl".
Then the minimal GPT partition is:
For TF-A_ with FIP support:
+-------+--------+---------+------------------------+
| *Num* | *Name* | *Size* | *Content* |
+=======+========+=========+========================+
| 1 | fsbl1 | 256 KiB | TF-A_ BL2 (tf-a.stm32) |
+-------+--------+---------+------------------------+
| 2 | fsbl2 | 256 KiB | TF-A_ BL2 (tf-a.stm32) |
+-------+--------+---------+------------------------+
| 3 | fip | 4MB | fip.bin |
+-------+--------+---------+------------------------+
| 4 | <any> | <any> | Rootfs |
+-------+--------+---------+------------------------+
or:
+-------+--------+---------+------------------------+------------------------+
| *Num* | *Name* | *Size* | *Trusted boot content* | *Basic boot content* |
+=======+========+=========+========================+========================+
| 1 | fsbl1 | 256 KiB | TF-A_ BL2 (tf-a.stm32) | SPL (u-boot-spl.stm32) |
+-------+--------+---------+------------------------+------------------------+
| 2 | fsbl2 | 256 KiB | TF-A_ BL2 (tf-a.stm32) | SPL (u-boot-spl.stm32) |
+-------+--------+---------+------------------------+------------------------+
| 3 | ssbl | 2MB | U-Boot (u-boot.stm32) | U-Boot (u-boot.img) |
+-------+--------+---------+------------------------+------------------------+
| 4 | <any> | <any> | Rootfs |
+-------+--------+---------+------------------------+------------------------+
And the 4th partition (Rootfs) is marked bootable with a file extlinux.conf
following the Generic Distribution feature (doc/README.distro for use).
The size of fip or ssbl partition must be enough for the associated binary file,
4MB and 2MB are default values.
According the used card reader select the correct block device
(for example /dev/sdx or /dev/mmcblk0), in the next example, it is /dev/mmcblk0
For example:
a) remove previous formatting::
# sgdisk -o /dev/<SD card dev>
b) create minimal image for FIP
For FIP support in TF-A_::
# sgdisk --resize-table=128 -a 1 \
-n 1:34:545 -c 1:fsbl1 \
-n 2:546:1057 -c 2:fsbl2 \
-n 3:1058:9249 -c 3:fip \
-n 4:9250: -c 4:rootfs -A 4:set:2 \
-p /dev/<SD card dev>
With gpt table with 128 entries an the partition 4 marked bootable (bit 2).
For basic boot mode or without FIP support in TF-A_::
# sgdisk --resize-table=128 -a 1 \
-n 1:34:545 -c 1:fsbl1 \
-n 2:546:1057 -c 2:fsbl2 \
-n 3:1058:5153 -c 3:ssbl \
-n 4:5154: -c 4:rootfs -A 4:set:2 \
-p /dev/<SD card dev>
c) copy the FSBL (2 times) and SSBL file on the correct partition.
in this example in partition 1 to 3
for trusted boot: ::
# dd if=tf-a.stm32 of=/dev/mmcblk0p1
# dd if=tf-a.stm32 of=/dev/mmcblk0p2
# dd if=fip.bin of=/dev/mmcblk0p3
OR
dd if=u-boot.stm32 of=/dev/mmcblk0p3 # Without FIT support
for basic boot mode : <SD card dev> = /dev/mmcblk0::
# dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
# dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
# dd if=u-boot.img of=/dev/mmcblk0p3 # Without CONFIG_SPL_LOAD_FIT
OR
dd if=u-boot.itb of=/dev/mmcblk0p3 # With CONFIG_SPL_LOAD_FIT=y
To boot from SD card, select BootPinMode = 1 0 1 and reset.
Prepare eMMC
------------
You can use U-Boot to copy binary in eMMC.
In the next example, you need to boot from SD card and the images
(tf-a.stm32, fip.bin / u-boot-spl.stm32, u-boot.img for systems without
CONFIG_SPL_LOAD_FIT or u-boot.itb for systems with CONFIG_SPL_LOAD_FIT=y) are
presents on SD card (mmc 0) in ext4 partition 4 (bootfs)
To boot from SD card, select BootPinMode = 1 0 1 and reset.
Then you update the eMMC with the next U-Boot command :
a) prepare GPT on eMMC,
example with 3 partitions, fip, bootfs and roots::
# setenv emmc_part "name=fip,size=4MiB;name=bootfs,type=linux,bootable,size=64MiB;name=rootfs,type=linux,size=512"
# gpt write mmc 1 ${emmc_part}
b) copy FSBL, TF-A_ or SPL, on first eMMC boot partition
(SPL max size is 256kB, with LBA 512, 0x200)::
# ext4load mmc 0:4 0xC0000000 tf-a.stm32
or
# ext4load mmc 0:4 0xC0000000 u-boot-spl.stm32
# mmc dev 1
# mmc partconf 1 1 1 1
# mmc write ${fileaddr} 0 200
# mmc partconf 1 1 1 0
c) copy SSBL, FIP or U-Boot binary, in first GPT partition of eMMC::
# ext4load mmc 0:4 0xC0000000 fip.bin
or
# ext4load mmc 0:4 0xC0000000 u-boot.img # Without CONFIG_SPL_LOAD_FIT
or
# ext4load mmc 0:4 0xC0000000 u-boot.itb # With CONFIG_SPL_LOAD_FIT=y
# mmc dev 1
# part start mmc 1 1 partstart
# mmc write ${fileaddr} ${partstart} ${filesize}
To boot from eMMC, select BootPinMode = 0 1 0 and reset.
MAC Address
-----------
Please read doc/README.enetaddr for the implementation guidelines for mac id
usage. Basically, environment has precedence over board specific storage.
For STMicroelectronics board, it is retrieved in:
- STM32MP15x OTP:
- OTP_57[31:0] = MAC_ADDR[31:0]
- OTP_58[15:0] = MAC_ADDR[47:32]
- STM32MP13x OTP:
- OTP_57[31:0] = MAC_ADDR0[31:0]
- OTP_58[15:0] = MAC_ADDR0[47:32]
- OTP_58[31:16] = MAC_ADDR1[15:0]
- OTP_59[31:0] = MAC_ADDR1[47:16]
To program a MAC address on virgin STM32MP15x OTP words above, you can use the fuse command
on bank 0 to access to internal OTP and lock them:
In the next example we are using the 2 OTPs used on STM32MP15x.
Prerequisite: check if a MAC address isn't yet programmed in OTP
1) check OTP: their value must be equal to 0::
STM32MP> fuse sense 0 57 2
Sensing bank 0:
Word 0x00000039: 00000000 00000000
2) check environment variable::
STM32MP> env print ethaddr
## Error: "ethaddr" not defined
3) check lock status of fuse 57 & 58 (at 0x39, 0=unlocked, 1=locked)::
STM32MP> fuse sense 0 0x10000039 2
Sensing bank 0:
Word 0x10000039: 00000000 00000000
Example to set mac address "12:34:56:78:9a:bc"
1) Write OTP::
STM32MP> fuse prog -y 0 57 0x78563412 0x0000bc9a
2) Read OTP::
STM32MP> fuse sense 0 57 2
Sensing bank 0:
Word 0x00000039: 78563412 0000bc9a
3) Lock OTP::
STM32MP> fuse prog 0 0x10000039 1 1
STM32MP> fuse sense 0 0x10000039 2
Sensing bank 0:
Word 0x10000039: 00000001 00000001
4) next REBOOT, in the trace::
### Setting environment from OTP MAC address = "12:34:56:78:9a:bc"
5) check env update::
STM32MP> env print ethaddr
ethaddr=12:34:56:78:9a:bc
.. warning:: This command can't be executed twice on the same board as
OTP are protected. It is already done for the board
provided by STMicroelectronics.
Coprocessor firmware on STM32MP15x
----------------------------------
U-Boot can boot the coprocessor before the kernel (coprocessor early boot).
a) Manuallly by using rproc commands (update the bootcmd)
Configurations::
# env set name_copro "rproc-m4-fw.elf"
# env set dev_copro 0
# env set loadaddr_copro 0xC1000000
Load binary from bootfs partition (number 4) on SD card (mmc 0)::
# ext4load mmc 0:4 ${loadaddr_copro} ${name_copro}
=> ${filesize} variable is updated with the size of the loaded file.
Start M4 firmware with remote proc command::
# rproc init
# rproc load ${dev_copro} ${loadaddr_copro} ${filesize}
# rproc start ${dev_copro}"00270033
b) Automatically by using FIT feature and generic DISTRO bootcmd
see examples in the board stm32mp1 directory: fit_copro_kernel_dtb.its
Generate FIT including kernel + device tree + M4 firmware with cfg with M4
boot::
$> mkimage -f fit_copro_kernel_dtb.its fit_copro_kernel_dtb.itb
Then using DISTRO configuration file: see extlinux.conf to select the correct
configuration:
- stm32mp157c-ev1-m4
- stm32mp157c-dk2-m4
DFU support
-----------
The DFU is supported on ST board.
The env variable dfu_alt_info is automatically build, and all
the memory present on the ST boards are exported.
The dfu mode is started by the command::
STM32MP> dfu 0
On EV1 board, booting from SD card, without OP-TEE_::
STM32MP> dfu 0 list
DFU alt settings list:
dev: RAM alt: 0 name: uImage layout: RAM_ADDR
dev: RAM alt: 1 name: devicetree.dtb layout: RAM_ADDR
dev: RAM alt: 2 name: uramdisk.image.gz layout: RAM_ADDR
dev: eMMC alt: 3 name: mmc0_fsbl1 layout: RAW_ADDR
dev: eMMC alt: 4 name: mmc0_fsbl2 layout: RAW_ADDR
dev: eMMC alt: 5 name: mmc0_fip layout: RAW_ADDR
dev: eMMC alt: 6 name: mmc0_bootfs layout: RAW_ADDR
dev: eMMC alt: 7 name: mmc0_vendorfs layout: RAW_ADDR
dev: eMMC alt: 8 name: mmc0_rootfs layout: RAW_ADDR
dev: eMMC alt: 9 name: mmc0_userfs layout: RAW_ADDR
dev: eMMC alt: 10 name: mmc1_boot1 layout: RAW_ADDR
dev: eMMC alt: 11 name: mmc1_boot2 layout: RAW_ADDR
dev: eMMC alt: 12 name: mmc1_fip layout: RAW_ADDR
dev: eMMC alt: 13 name: mmc1_bootfs layout: RAW_ADDR
dev: eMMC alt: 14 name: mmc1_vendorfs layout: RAW_ADDR
dev: eMMC alt: 15 name: mmc1_rootfs layout: RAW_ADDR
dev: eMMC alt: 16 name: mmc1_userfs layout: RAW_ADDR
dev: MTD alt: 17 name: nor0 layout: RAW_ADDR
dev: MTD alt: 18 name: nor1 layout: RAW_ADDR
dev: MTD alt: 19 name: nand0 layout: RAW_ADDR
dev: VIRT alt: 20 name: OTP layout: RAW_ADDR
dev: VIRT alt: 21 name: PMIC layout: RAW_ADDR
All the supported device are exported for dfu-util tool::
$> dfu-util -l
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=21, name="PMIC", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=20, name="OTP", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=19, name="nand0", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=18, name="nor1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=17, name="nor0", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=16, name="mmc1_userfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=15, name="mmc1_rootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=14, name="mmc1_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=13, name="mmc1_bootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=12, name="mmc1_fip", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=11, name="mmc1_boot2", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=10, name="mmc1_boot1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=9, name="mmc0_userfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=8, name="mmc0_rootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=7, name="mmc0_vendorfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=6, name="mmc0_bootfs", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=5, name="mmc0_fip", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=4, name="mmc0_fsbl2", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=3, name="mmc0_fsbl1", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=2, name="uramdisk.image.gz", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=1, name="devicetree.dtb", serial="002700333338511934383330"
Found DFU: [0483:df11] ver=9999, devnum=99, cfg=1, intf=0, alt=0, name="uImage", serial="002700333338511934383330"
You can update the boot device:
- SD card (mmc0)::
$> dfu-util -d 0483:5720 -a 3 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 4 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 5 -D fip-stm32mp157c-ev1.bin
$> dfu-util -d 0483:5720 -a 6 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 7 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 8 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 9 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4
- EMMC (mmc1)::
$> dfu-util -d 0483:5720 -a 10 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 11 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 12 -D fip-stm32mp157c-ev1.bin
$> dfu-util -d 0483:5720 -a 13 -D st-image-bootfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 14 -D st-image-vendorfs-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 15 -D st-image-weston-openstlinux-weston-stm32mp1.ext4
$> dfu-util -d 0483:5720 -a 16 -D st-image-userfs-openstlinux-weston-stm32mp1.ext4
- you can also dump the OTP and the PMIC NVM with::
$> dfu-util -d 0483:5720 -a 19 -U otp.bin
$> dfu-util -d 0483:5720 -a 20 -U pmic.bin
When the board is booting for nor0 or nand0,
only the MTD partition on the boot devices are available, for example:
- NOR (nor0 = alt 20, nor1 = alt 26) & NAND (nand0 = alt 27) :
$> dfu-util -d 0483:5720 -a 21 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 22 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 23 -D fip-stm32mp157c-ev1.bin
$> dfu-util -d 0483:5720 -a 28 -D st-image-weston-openstlinux-weston-stm32mp1_nand_4_256_multivolume.ubi
- NAND (nand0 = alt 21)::
$> dfu-util -d 0483:5720 -a 22 -D tf-a-stm32mp157c-ev1.stm32
$> dfu-util -d 0483:5720 -a 23 -D fip-stm32mp157c-ev1.bin
$> dfu-util -d 0483:5720 -a 24 -D fip-stm32mp157c-ev1.bin
$> dfu-util -d 0483:5720 -a 25 -D st-image-weston-openstlinux-weston-stm32mp1_nand_4_256_multivolume.ubi
References
----------
.. _WIKI:
STM32 Arm® Cortex®-based MPUs user guide
+ https://wiki.st.com/
+ https://wiki.st.com/stm32mpu/wiki/Main_Page
.. _TF-A:
TF-A = The Trusted Firmware-A project provides a reference implementation of
secure world software for Armv7-A and Armv8-A class processors
+ https://www.trustedfirmware.org/projects/tf-a/
+ https://trustedfirmware-a.readthedocs.io/en/latest/
+ https://trustedfirmware-a.readthedocs.io/en/latest/plat/stm32mp1.html
+ https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
.. _OP-TEE:
OP-TEE = an open source Trusted Execution Environment (TEE) implementing the
Arm TrustZone technology
+ https://www.op-tee.org/
+ https://optee.readthedocs.io/en/latest/
+ https://optee.readthedocs.io/en/latest/building/devices/stm32mp1.html
+ https://github.com/OP-TEE/optee_os