mirror of
https://github.com/AsahiLinux/u-boot
synced 2024-12-22 03:03:05 +00:00
8092d1dd41
VHV_Enable GPIO is required to enable during eFuse programming on Armada SoCs not from 3700 family. Add support for enabling and disabling VHV pin via GPIO during eFuse programming, when specified. All details are in Marvell AN-389: ARMADA VHV Power document (Doc. No. MV-S302545-00 Rev. C, August 2, 2016). Note that due to HW Errata 3.6 eFuse erroneous burning (Ref #: HWE-3718342) VHV power must be disabled while core voltage is off to prevent erroneous eFuse programming. This is specified in Marvell ARMADA 380/385/388 Functional Errata, Guidelines, and Restrictions document (Doc. No. MV-S501377-00 Rev. D, December 1, 2016). Signed-off-by: Pali Rohár <pali@kernel.org>
372 lines
7.4 KiB
C
372 lines
7.4 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2015-2016 Reinhard Pfau <reinhard.pfau@gdsys.cc>
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <common.h>
|
|
#include <errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm/arch/cpu.h>
|
|
#include <asm/arch/efuse.h>
|
|
#include <asm/arch/soc.h>
|
|
#include <asm/gpio.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mbus.h>
|
|
|
|
#if defined(CONFIG_MVEBU_EFUSE_FAKE)
|
|
#define DRY_RUN
|
|
#else
|
|
#undef DRY_RUN
|
|
#endif
|
|
|
|
#define MBUS_EFUSE_BASE 0xF6000000
|
|
#define MBUS_EFUSE_SIZE BIT(20)
|
|
|
|
#define MVEBU_EFUSE_CONTROL (MVEBU_REGISTER(0xE4008))
|
|
|
|
enum {
|
|
MVEBU_EFUSE_CTRL_PROGRAM_ENABLE = (1 << 31),
|
|
MVEBU_EFUSE_LD1_SELECT = (1 << 6),
|
|
};
|
|
|
|
struct mvebu_hd_efuse {
|
|
u32 bits_31_0;
|
|
u32 bits_63_32;
|
|
u32 bit64;
|
|
u32 reserved0;
|
|
};
|
|
|
|
#ifndef DRY_RUN
|
|
static struct mvebu_hd_efuse *efuses =
|
|
(struct mvebu_hd_efuse *)(MBUS_EFUSE_BASE + 0xF9000);
|
|
static u32 *ld_efuses = (void *)MBUS_EFUSE_BASE + 0xF8F00;
|
|
#else
|
|
static struct mvebu_hd_efuse efuses[EFUSE_LINE_MAX + 1];
|
|
static u32 ld_efuses[EFUSE_LD_WORDS];
|
|
#endif
|
|
|
|
static int efuse_initialised;
|
|
|
|
static struct mvebu_hd_efuse *get_efuse_line(int nr)
|
|
{
|
|
if (nr < 0 || nr > 63 || !efuse_initialised)
|
|
return NULL;
|
|
|
|
return efuses + nr;
|
|
}
|
|
|
|
#ifndef DRY_RUN
|
|
static int vhv_gpio;
|
|
#endif
|
|
|
|
static int enable_efuse_program(void)
|
|
{
|
|
#ifndef DRY_RUN
|
|
if (CONFIG_MVEBU_EFUSE_VHV_GPIO[0]) {
|
|
if (gpio_lookup_name(CONFIG_MVEBU_EFUSE_VHV_GPIO, NULL, NULL, &vhv_gpio)) {
|
|
printf("Error: VHV gpio lookup failed\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
if (gpio_request(vhv_gpio, CONFIG_MVEBU_EFUSE_VHV_GPIO)) {
|
|
printf("Error: VHV gpio request failed\n");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
if (gpio_direction_output(vhv_gpio,
|
|
IS_ENABLED(CONFIG_MVEBU_EFUSE_VHV_GPIO_ACTIVE_LOW) ? 0 : 1)) {
|
|
printf("Error: VHV gpio enable failed\n");
|
|
return -EINVAL;
|
|
}
|
|
mdelay(5); /* Wait for the VHV power to stabilize */
|
|
}
|
|
|
|
setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void disable_efuse_program(void)
|
|
{
|
|
#ifndef DRY_RUN
|
|
clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_CTRL_PROGRAM_ENABLE);
|
|
|
|
if (CONFIG_MVEBU_EFUSE_VHV_GPIO[0]) {
|
|
if (gpio_direction_output(vhv_gpio,
|
|
IS_ENABLED(CONFIG_MVEBU_EFUSE_VHV_GPIO_ACTIVE_LOW) ? 1 : 0))
|
|
printf("Error: VHV gpio disable failed\n");
|
|
gpio_free(vhv_gpio);
|
|
vhv_gpio = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int do_prog_efuse(struct mvebu_hd_efuse *efuse,
|
|
struct efuse_val *new_val, u32 mask0, u32 mask1)
|
|
{
|
|
struct efuse_val val;
|
|
|
|
val.dwords.d[0] = readl(&efuse->bits_31_0);
|
|
val.dwords.d[1] = readl(&efuse->bits_63_32);
|
|
val.lock = readl(&efuse->bit64);
|
|
|
|
if (val.lock & 1)
|
|
return -EPERM;
|
|
|
|
val.dwords.d[0] |= (new_val->dwords.d[0] & mask0);
|
|
val.dwords.d[1] |= (new_val->dwords.d[1] & mask1);
|
|
val.lock |= new_val->lock;
|
|
|
|
writel(val.dwords.d[0], &efuse->bits_31_0);
|
|
mdelay(1);
|
|
writel(val.dwords.d[1], &efuse->bits_63_32);
|
|
mdelay(1);
|
|
writel(val.lock, &efuse->bit64);
|
|
mdelay(5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int prog_efuse(int nr, struct efuse_val *new_val, u32 mask0, u32 mask1)
|
|
{
|
|
struct mvebu_hd_efuse *efuse;
|
|
int res = 0;
|
|
|
|
res = mvebu_efuse_init_hw();
|
|
if (res)
|
|
return res;
|
|
|
|
efuse = get_efuse_line(nr);
|
|
if (!efuse)
|
|
return -ENODEV;
|
|
|
|
if (!new_val)
|
|
return -EINVAL;
|
|
|
|
/* only write a fuse line with lock bit */
|
|
if (!new_val->lock)
|
|
return -EINVAL;
|
|
|
|
/* according to specs ECC protection bits must be 0 on write */
|
|
if (new_val->bytes.d[7] & 0xFE)
|
|
return -EINVAL;
|
|
|
|
if (!new_val->dwords.d[0] && !new_val->dwords.d[1] && (mask0 | mask1))
|
|
return 0;
|
|
|
|
res = enable_efuse_program();
|
|
if (res)
|
|
return res;
|
|
|
|
res = do_prog_efuse(efuse, new_val, mask0, mask1);
|
|
|
|
disable_efuse_program();
|
|
|
|
return res;
|
|
}
|
|
|
|
int mvebu_prog_ld_efuse(int ld1, u32 word, u32 val)
|
|
{
|
|
int i, res;
|
|
u32 line[EFUSE_LD_WORDS];
|
|
|
|
res = mvebu_efuse_init_hw();
|
|
if (res)
|
|
return res;
|
|
|
|
mvebu_read_ld_efuse(ld1, line);
|
|
|
|
/* check if lock bit is already programmed */
|
|
if (line[EFUSE_LD_WORDS - 1])
|
|
return -EPERM;
|
|
|
|
/* check if word is valid */
|
|
if (word >= EFUSE_LD_WORDS)
|
|
return -EINVAL;
|
|
|
|
/* check if there is some bit for programming */
|
|
if (val == (line[word] & val))
|
|
return 0;
|
|
|
|
res = enable_efuse_program();
|
|
if (res)
|
|
return res;
|
|
|
|
mvebu_read_ld_efuse(ld1, line);
|
|
line[word] |= val;
|
|
|
|
for (i = 0; i < EFUSE_LD_WORDS; i++) {
|
|
writel(line[i], ld_efuses + i);
|
|
mdelay(1);
|
|
}
|
|
|
|
mdelay(5);
|
|
|
|
disable_efuse_program();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvebu_efuse_init_hw(void)
|
|
{
|
|
int ret;
|
|
|
|
if (efuse_initialised)
|
|
return 0;
|
|
|
|
ret = mvebu_mbus_add_window_by_id(
|
|
CPU_TARGET_SATA23_DFX, 0xA, MBUS_EFUSE_BASE, MBUS_EFUSE_SIZE);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
efuse_initialised = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mvebu_read_efuse(int nr, struct efuse_val *val)
|
|
{
|
|
struct mvebu_hd_efuse *efuse;
|
|
int res;
|
|
|
|
res = mvebu_efuse_init_hw();
|
|
if (res)
|
|
return res;
|
|
|
|
efuse = get_efuse_line(nr);
|
|
if (!efuse)
|
|
return -ENODEV;
|
|
|
|
if (!val)
|
|
return -EINVAL;
|
|
|
|
val->dwords.d[0] = readl(&efuse->bits_31_0);
|
|
val->dwords.d[1] = readl(&efuse->bits_63_32);
|
|
val->lock = readl(&efuse->bit64);
|
|
return 0;
|
|
}
|
|
|
|
void mvebu_read_ld_efuse(int ld1, u32 *line)
|
|
{
|
|
int i;
|
|
|
|
#ifndef DRY_RUN
|
|
if (ld1)
|
|
setbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_LD1_SELECT);
|
|
else
|
|
clrbits_le32(MVEBU_EFUSE_CONTROL, MVEBU_EFUSE_LD1_SELECT);
|
|
#endif
|
|
|
|
for (i = 0; i < EFUSE_LD_WORDS; i++)
|
|
line[i] = readl(ld_efuses + i);
|
|
}
|
|
|
|
int mvebu_write_efuse(int nr, struct efuse_val *val)
|
|
{
|
|
return prog_efuse(nr, val, ~0, ~0);
|
|
}
|
|
|
|
int mvebu_lock_efuse(int nr)
|
|
{
|
|
struct efuse_val val = {
|
|
.lock = 1,
|
|
};
|
|
|
|
return prog_efuse(nr, &val, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* wrapper funcs providing the fuse API
|
|
*
|
|
* we use the following mapping:
|
|
* "bank" -> eFuse line
|
|
* "word" -> 0: bits 0-31
|
|
* 1: bits 32-63
|
|
* 2: bit 64 (lock)
|
|
*/
|
|
|
|
static struct efuse_val prog_val;
|
|
static int valid_prog_words;
|
|
|
|
int fuse_read(u32 bank, u32 word, u32 *val)
|
|
{
|
|
struct efuse_val fuse_line;
|
|
u32 ld_line[EFUSE_LD_WORDS];
|
|
int res;
|
|
|
|
if ((bank == EFUSE_LD0_LINE || bank == EFUSE_LD1_LINE) && word < EFUSE_LD_WORDS) {
|
|
res = mvebu_efuse_init_hw();
|
|
if (res)
|
|
return res;
|
|
mvebu_read_ld_efuse(bank == EFUSE_LD1_LINE, ld_line);
|
|
*val = ld_line[word];
|
|
return 0;
|
|
}
|
|
|
|
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
|
|
return -EINVAL;
|
|
|
|
res = mvebu_read_efuse(bank, &fuse_line);
|
|
if (res)
|
|
return res;
|
|
|
|
if (word < 2)
|
|
*val = fuse_line.dwords.d[word];
|
|
else
|
|
*val = fuse_line.lock;
|
|
|
|
return res;
|
|
}
|
|
|
|
int fuse_sense(u32 bank, u32 word, u32 *val)
|
|
{
|
|
/* not supported */
|
|
return -ENOSYS;
|
|
}
|
|
|
|
int fuse_prog(u32 bank, u32 word, u32 val)
|
|
{
|
|
int res = 0;
|
|
|
|
if (bank == EFUSE_LD0_LINE || bank == EFUSE_LD1_LINE)
|
|
return mvebu_prog_ld_efuse(bank == EFUSE_LD1_LINE, word, val);
|
|
|
|
/*
|
|
* NOTE: Fuse line should be written as whole.
|
|
* So how can we do that with this API?
|
|
* For now: remember values for word == 0 and word == 1 and write the
|
|
* whole line when word == 2.
|
|
* This implies that we always require all 3 fuse prog cmds (one for
|
|
* for each word) to write a single fuse line.
|
|
* Exception is a single write to word 2 which will lock the fuse line.
|
|
*
|
|
* Hope that will be OK.
|
|
*/
|
|
|
|
if (bank < EFUSE_LINE_MIN || bank > EFUSE_LINE_MAX || word > 2)
|
|
return -EINVAL;
|
|
|
|
if (word < 2) {
|
|
prog_val.dwords.d[word] = val;
|
|
valid_prog_words |= (1 << word);
|
|
} else if ((valid_prog_words & 3) == 0 && val) {
|
|
res = mvebu_lock_efuse(bank);
|
|
valid_prog_words = 0;
|
|
} else if ((valid_prog_words & 3) != 3 || !val) {
|
|
res = -EINVAL;
|
|
} else {
|
|
prog_val.lock = val != 0;
|
|
res = mvebu_write_efuse(bank, &prog_val);
|
|
valid_prog_words = 0;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int fuse_override(u32 bank, u32 word, u32 val)
|
|
{
|
|
/* not supported */
|
|
return -ENOSYS;
|
|
}
|