u-boot/drivers/ram/k3-ddrss/lpddr4_j721e.c
Bryan Brattlof ee31be429b ram: k3-ddrss: add auto-generated macros for am62a support
The new 32bit DDR controller for TI's am62a family of SoCs shares much
of the same functionality with the existing 16bit (am64) and 32bit
(j721e) controllers, so this patch reorganizes the existing
auto-generated macros for the 16bit and 32bit controllers to make room
for the macros for the am62a's controller

This patch consists mostly of header/macro renames and additions with a
new Kconfig option (K3_AM62A_DDRSS) allowing us to select these new
macros during compilation.

Signed-off-by: Bryan Brattlof <bb@ti.com>
2022-12-09 14:10:28 -05:00

299 lines
8.7 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/*
* Cadence DDR Driver
*
* Copyright (C) 2012-2022 Cadence Design Systems, Inc.
* Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/
*/
#include <errno.h>
#include "cps_drv_lpddr4.h"
#include "lpddr4_ctl_regs.h"
#include "lpddr4_if.h"
#include "lpddr4.h"
#include "lpddr4_structs_if.h"
static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound);
u32 lpddr4_enablepiinitiator(const lpddr4_privatedata *pd)
{
u32 result = 0U;
u32 regval = 0U;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_SET(LPDDR4__PI_INIT_LVL_EN__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)));
regval = CPS_FLD_SET(LPDDR4__PI_NORMAL_LVL_SEQ__FLD, regval);
CPS_REG_WRITE((&(ctlregbase->LPDDR4__PI_INIT_LVL_EN__REG)), regval);
return result;
}
u32 lpddr4_getctlinterruptmask(const lpddr4_privatedata *pd, u64 *mask)
{
u32 result = 0U;
u32 lowermask = 0U;
result = lpddr4_getctlinterruptmasksf(pd, mask);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lowermask = (u32)(CPS_FLD_READ(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG))));
*mask = (u64)(CPS_FLD_READ(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG))));
*mask = (u64)((*mask << WORD_SHIFT) | lowermask);
}
return result;
}
u32 lpddr4_setctlinterruptmask(const lpddr4_privatedata *pd, const u64 *mask)
{
u32 result;
u32 regval = 0;
const u64 ui64one = 1ULL;
const u32 ui32irqcount = (u32)LPDDR4_INTR_LOR_BITS + 1U;
result = lpddr4_setctlinterruptmasksf(pd, mask);
if ((result == (u32)0) && (ui32irqcount < 64U)) {
if (*mask >= (ui64one << ui32irqcount))
result = (u32)EINVAL;
}
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = (u32)(*mask & WORD_MASK);
regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_0__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_0__REG)), regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_0__REG), regval);
regval = (u32)((*mask >> WORD_SHIFT) & WORD_MASK);
regval = CPS_FLD_WRITE(LPDDR4__INT_MASK_1__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__INT_MASK_1__REG)), regval);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_MASK_1__REG), regval);
}
return result;
}
u32 lpddr4_checkctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr, bool *irqstatus)
{
u32 result;
u32 ctlirqstatus = 0;
u32 fieldshift = 0;
result = LPDDR4_INTR_CheckCtlIntSF(pd, intr, irqstatus);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if ((u32)intr >= (u32)WORD_SHIFT) {
ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_1__REG));
fieldshift = (u32)intr - ((u32)WORD_SHIFT);
} else {
ctlirqstatus = CPS_REG_READ(&(ctlregbase->LPDDR4__INT_STATUS_0__REG));
fieldshift = (u32)intr;
}
if (fieldshift < WORD_SHIFT) {
if (((ctlirqstatus >> fieldshift) & LPDDR4_BIT_MASK) > 0U)
*irqstatus = true;
else
*irqstatus = false;
}
}
return result;
}
u32 lpddr4_ackctlinterrupt(const lpddr4_privatedata *pd, lpddr4_intr_ctlinterrupt intr)
{
u32 result = 0;
u32 regval = 0;
u32 localinterrupt = (u32)intr;
result = LPDDR4_INTR_AckCtlIntSF(pd, intr);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (localinterrupt > WORD_SHIFT) {
localinterrupt = (localinterrupt - (u32)WORD_SHIFT);
regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_1__REG), regval);
} else {
regval = ((u32)LPDDR4_BIT_MASK << localinterrupt);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__INT_ACK_0__REG), regval);
}
}
return result;
}
void lpddr4_checkwrlvlerror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errfoundptr)
{
u32 regval;
u32 errbitmask = 0U;
u32 snum;
volatile u32 *regaddress;
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_WRLVL_ERROR_OBS_0__REG));
errbitmask = (LPDDR4_BIT_MASK << 1) | (LPDDR4_BIT_MASK);
for (snum = 0U; snum < DSLICE_NUM; snum++) {
regval = CPS_REG_READ(regaddress);
if ((regval & errbitmask) != 0U) {
debuginfo->wrlvlerror = CDN_TRUE;
*errfoundptr = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
static void lpddr4_setrxoffseterror(lpddr4_ctlregs *ctlregbase, lpddr4_debuginfo *debuginfo, bool *errorfound)
{
volatile u32 *regaddress;
u32 snum = 0U;
u32 errbitmask = 0U;
u32 regval = 0U;
if (*errorfound == (bool)false) {
regaddress = (volatile u32 *)(&(ctlregbase->LPDDR4__PHY_RX_CAL_LOCK_OBS_0__REG));
errbitmask = (RX_CAL_DONE) | (NIBBLE_MASK);
for (snum = (u32)0U; snum < DSLICE_NUM; snum++) {
regval = CPS_FLD_READ(LPDDR4__PHY_RX_CAL_LOCK_OBS_0__FLD, CPS_REG_READ(regaddress));
if ((regval & errbitmask) != RX_CAL_DONE) {
debuginfo->rxoffseterror = (u8)true;
*errorfound = true;
}
regaddress = lpddr4_addoffset(regaddress, (u32)SLICE_WIDTH);
}
}
}
u32 lpddr4_getdebuginitinfo(const lpddr4_privatedata *pd, lpddr4_debuginfo *debuginfo)
{
u32 result = 0U;
bool errorfound = false;
result = lpddr4_getdebuginitinfosf(pd, debuginfo);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
lpddr4_seterrors(ctlregbase, debuginfo, (u8 *)&errorfound);
lpddr4_setsettings(ctlregbase, errorfound);
lpddr4_setrxoffseterror(ctlregbase, debuginfo, &errorfound);
errorfound = (bool)lpddr4_checklvlerrors(pd, debuginfo, errorfound);
}
if (errorfound == (bool)true)
result = (u32)EPROTO;
return result;
}
u32 lpddr4_geteccenable(const lpddr4_privatedata *pd, lpddr4_eccenable *eccparam)
{
u32 result = 0U;
u32 fldval = 0U;
result = lpddr4_geteccenablesf(pd, eccparam);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
fldval = CPS_FLD_READ(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)));
switch (fldval) {
case 3:
*eccparam = LPDDR4_ECC_ERR_DETECT_CORRECT;
break;
case 2:
*eccparam = LPDDR4_ECC_ERR_DETECT;
break;
case 1:
*eccparam = LPDDR4_ECC_ENABLED;
break;
default:
*eccparam = LPDDR4_ECC_DISABLED;
break;
}
}
return result;
}
u32 lpddr4_seteccenable(const lpddr4_privatedata *pd, const lpddr4_eccenable *eccparam)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_seteccenablesf(pd, eccparam);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = CPS_FLD_WRITE(LPDDR4__ECC_ENABLE__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__ECC_ENABLE__REG)), *eccparam);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__ECC_ENABLE__REG), regval);
}
return result;
}
u32 lpddr4_getreducmode(const lpddr4_privatedata *pd, lpddr4_reducmode *mode)
{
u32 result = 0U;
result = lpddr4_getreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
if (CPS_FLD_READ(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG))) == 0U)
*mode = LPDDR4_REDUC_ON;
else
*mode = LPDDR4_REDUC_OFF;
}
return result;
}
u32 lpddr4_setreducmode(const lpddr4_privatedata *pd, const lpddr4_reducmode *mode)
{
u32 result = 0U;
u32 regval = 0U;
result = lpddr4_setreducmodesf(pd, mode);
if (result == (u32)0) {
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
regval = (u32)CPS_FLD_WRITE(LPDDR4__REDUC__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__REDUC__REG)), *mode);
CPS_REG_WRITE(&(ctlregbase->LPDDR4__REDUC__REG), regval);
}
return result;
}
u32 lpddr4_checkmmrreaderror(const lpddr4_privatedata *pd, u64 *mmrvalue, u8 *mrrstatus)
{
u32 lowerdata;
lpddr4_ctlregs *ctlregbase = (lpddr4_ctlregs *)pd->ctlbase;
u32 result = (u32)0;
if (lpddr4_pollctlirq(pd, LPDDR4_INTR_MRR_ERROR, 100) == 0U) {
*mrrstatus = (u8)CPS_FLD_READ(LPDDR4__MRR_ERROR_STATUS__FLD, CPS_REG_READ(&(ctlregbase->LPDDR4__MRR_ERROR_STATUS__REG)));
*mmrvalue = (u64)0;
result = (u32)EIO;
} else {
*mrrstatus = (u8)0;
lowerdata = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_0__REG));
*mmrvalue = CPS_REG_READ(&(ctlregbase->LPDDR4__PERIPHERAL_MRR_DATA_1__REG));
*mmrvalue = (u64)((*mmrvalue << WORD_SHIFT) | lowerdata);
result = lpddr4_ackctlinterrupt(pd, LPDDR4_INTR_MR_READ_DONE);
}
return result;
}
u32 lpddr4_getdslicemask(u32 dslicenum, u32 arrayoffset)
{
u32 rwmask = 0U;
switch (dslicenum) {
case 0:
if (arrayoffset < DSLICE0_REG_COUNT)
rwmask = g_lpddr4_data_slice_0_rw_mask[arrayoffset];
break;
case 1:
if (arrayoffset < DSLICE1_REG_COUNT)
rwmask = g_lpddr4_data_slice_1_rw_mask[arrayoffset];
break;
case 2:
if (arrayoffset < DSLICE2_REG_COUNT)
rwmask = g_lpddr4_data_slice_2_rw_mask[arrayoffset];
break;
default:
if (arrayoffset < DSLICE3_REG_COUNT)
rwmask = g_lpddr4_data_slice_3_rw_mask[arrayoffset];
break;
}
return rwmask;
}