On versal platform, enable apb linear mode for apb read and write
execute operations amd disable it when using dma reads. This is done by
xilinx_pm_request() secure calls when CONFIG_ZYNQMP_FIRMWARE is enabled,
else we use direct raw reads and writes in case of mini U-Boot.
Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com>
Signed-off-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Link: https://lore.kernel.org/r/20220512100535.16364-5-ashok.reddy.soma@xilinx.com
Signed-off-by: Michal Simek <michal.simek@amd.com>
When flash operated at non default mode like DDR, flash need to be reset
to operate in SDR mode to read flash ids by spi-nor framework. Reset the
flash to the default state before using the flash. This reset is handled
by a gpio driver, in case of mini U-Boot as gpio driver is disabled, we
do raw read and write access by the registers.
Versal platform utilizes spi calibration for read delay programming, so
incase by default read delay property is set in DT. We make sure not to
use read delay from DT by overwriting read_delay with -1.
Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com>
Signed-off-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Link: https://lore.kernel.org/r/20220512100535.16364-4-ashok.reddy.soma@xilinx.com
Signed-off-by: Michal Simek <michal.simek@amd.com>
soc_xilinx_versal driver allows identification of family & revision
of versal SoC. This driver is selected by CONFIG_SOC_XILINX_VERSAL.
Probe this driver using platdata U_BOOT_DEVICE structure which is
defined at mach-versal/cpu.c.
Add this config to xilinx_versal_virt_defconfig &
xilinx_versal_mini_ospi_defconfig file to select this driver.
Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com>
Reviewed-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Removes duplicated definition of PAYLOAD_ARG_CNT and define it in the
firmware driver. Additionally fixes payload buffer declarations without
macro usage
Signed-off-by: Ibai Erkiaga <ibai.erkiaga-elorza@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
The PM return payload size is defined as 4 bytes for Versal arquitecture
while the PM calls implemented both in the Versal clock driver and
ZynqMP firmware driver expects 5 bytes length.
Signed-off-by: Ibai Erkiaga <ibai.erkiaga-elorza@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
versal_pm_request() and invoke_smc() are almost the same. Only one
difference is that versal_pm_request is adding PM_SIP_SVC offset to api_id.
The patch is moving platform implementation to firmware driver code for
synchronization.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Luca Ceresoli <luca@lucaceresoli.net>
This patch adds clock driver support for Versal platform. The clock driver
queries and performs clock operations using PLM firmware by communicating
with it using SMC calls.
Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Code reads DT and setup MMU table based on memory node. This will ensure
that only DT needs to be changed.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Define board_late_init which performs bootmode detection
and prepares corresponding distro boot commaand sequence.
Also disable it for mini platforms because simply there is no need to have
it enabled.
But also disable it for virtual platform because Qemu is not modelling this
register space that's why travis testing would fail. This configuration
should be reverted when mainline Qemu is updated.
Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This patch adds new config option which is used for
reserving a specific memory for MMU Table and in this
case we are using TCM for that purpose.
Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Xilinx is introducing Versal, an adaptive compute acceleration platform
(ACAP), built on 7nm FinFET process technology. Versal ACAPs combine
Scalar Processing Engines, Adaptable Hardware Engines, and Intelligent
Engines with leading-edge memory and interfacing technologies to deliver
powerful heterogeneous acceleration for any application. The Versal AI
Core series has five devices, offering 128 to 400 AI Engines. The series
includes dual-core Arm Cortex™-A72 application processors, dual-core Arm
Cortex-R5 real-time processors, 256KB of on-chip memory with ECC, more
than 1,900 DSP engines optimized for high-precision floating point with
low latency.
The patch is adding necessary infrastructure in place without enabling
platform which is done in separate patch.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>