It was found that the L2 cache timings that we had before could cause
freezes and hangs. We should make things more robust with better
timings. Currently the production ChromeOS kernel applies these
timings, but it's nice to fixup firmware too (and upstream probably
won't take our kernel hacks).
This also provides a big cleanup of the L2 cache init code avoiding
some duplication. The way things used to work:
* low_power_start() was installed by the SPL (both at boot and resume
time) and left resident in iRAM for the kernel to use when bringing
up additional CPUs. It used configure_l2_ctlr() and
configure_l2_actlr() when it detected it was on an A15. This was
needed (despite the L2 cache registers being shared among all A15s)
because we might have been the first man in after the whole A15
cluster was shutdown.
* secondary_cores_configure() was called on at boot time and at resume
time. Strangely this called configure_l2_ctlr() but not
configure_l2_actlr() which was almost certainly wrong. Given that
we'll call both (see next bullet) later in the boot process it
didn't matter for normal boot, but I guess this is how L2 cache
settings got set on 5420/5800 (but not 5250?) at resume time.
* exynos5_set_l2cache_params() was called as part of cache enablement.
This should happen at boot time (normally in the SPL except for USB
boot where it happens in main U-Boot).
Note that the old code wasn't setting ECC/parity in the cache
enablement code but we happened to get it anyway because we'd call
secondary_cores_configure() at boot time. For resume time we'd get it
anyway when the 2nd A15 core came up.
Let's make this a whole lot simpler. Now we always set these
parameters in the same place for all boots and use the same code for
setting up secondary CPUs.
Intended net effects of this change (other than cleanup):
* Timings go from before:
data: 0 cycle setup, 3 cycles (0x2) latency
tag: 0 cycle setup, 3 cycles (0x2) latency
after:
data: 1 cycle setup, 4 cycles (0x3) latency
tag: 1 cycle setup, 4 cycles (0x3) latency
* L2ACTLR is properly initted on 5420/5800 in all cases.
One note is that we're still relying on luck to keep low_power_start()
working. The compiler is being nice and not storing anything on the
stack.
Another note is that on its own this patch won't help to fix cache
settings in an RW U-Boot update where we still have the RO SPL. The
plan for that is:
* Have RW U-Boot re-init the cache right before calling the kernel
(after it has turned the L2 cache off). This is why the functions
are in a header file instead of lowlevel_init.c.
* Have the kernel save the L2 cache settings of the boot CPU and apply
them to all other CPUs. We get a little lucky here because the old
code was using "|=" to modify the registers and all of the bits that
it's setting are also present in the new settings (!). That means
that when the 2nd CPU in the A15 cluster comes up it doesn't
actually mess up the settings of the 1st CPU in the A15 cluster. An
alternative option is to have the kernel write its own
low_power_start() code.
Signed-off-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
On warm reset, all cores jump to the low_power_start function because iRAM
data is retained and because while executing iROM code all cores find
the jump flag 0x02020028 set. In low_power_start, cores check the reset
status and if true they clear the jump flag and jump back to 0x0.
The A7 cores do jump to 0x0 but consider following instructions as a Thumb
instructions which in turn makes them loop inside the iROM code instead of
jumping to power_down_core.
This issue is fixed by replacing the "mov pc" instruction with a "bx"
instruction which switches state along with the jump to make the execution
unit consider the branch target as an ARM instruction.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
When compiled SPL for Thumb secondary cores failed to boot
at the kernel boot up. Only one core came up out of 4.
This was happening because the code relocated to the
address 0x02073000 by the primary core was an ARM asm
code which was executed by the secondary cores as if it
was a thumb code.
This patch fixes the issue of secondary cores considering
relocated code as Thumb instructions and not ARM instructions
by jumping to the relocated with the help of "bx" ARM instruction.
"bx" instruction changes the 5th bit of CPSR which allows
execution unit to consider the following instructions as ARM
instructions.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
This patch does 3 things:
1. Enables ECC by setting 21st bit of L2CTLR.
2. Restore data and tag RAM latencies to 3 cycles because iROM sets
0x3000400 L2CTLR value during switching.
3. Disable clean/evict push to external by setting 3rd bit of L2ACTLR.
We need to restore this here due to switching.
Signed-off-by: Abhilash Kesavan <a.kesavan@samsung.com>
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
L2 Auxiliary Control Register provides configuration
and control options for the L2 memory system. Bit 3
of L2ACTLR stands for clean/evict push to external.
Setting bit 3 disables clean/evict which is what
this patch intends to do.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
iROM logic provides undesired jump address for CPU2.
This patch adds a programmable susbstitute for a part of
iROM logic which wakes up cores and provides jump addresses.
This patch creates a logic to make all secondary cores jump
to a particular address which evades the possibility of CPU2
jumping to wrong address and create undesired results.
Logic of the workaround:
Step-1: iROM code checks value at address 0x2020028.
Step-2: If value is 0xc9cfcfcf, it jumps to the address (0x202000+CPUid*4),
else, it continues executing normally.
Step-3: Primary core puts secondary cores in WFE and store 0xc9cfcfcf in
0x2020028 and jump address (pointer to function low_power_start)
in (0x202000+CPUid*4).
Step-4: When secondary cores recieve event signal they jump to this address
and continue execution.
Signed-off-by: Kimoon Kim <kimoon.kim@samsung.com>
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
This patch adds code to shutdown secondary cores.
When U-boot comes up, all secondary cores appear powered on,
which is undesirable and causes side effects while
initializing these cores in kernel.
Secondary core power down happens in following steps:
Step-1: After Exynos power-on, primary core starts executing first.
Step-2: In iROM code every core has to check 2 flags i.e.
addresses 0x02020028 & 0x02020004.
Step-3: Initially 0x02020028 is 0 for all cores and 0x02020004 has a
jump address for primary core and 0 for all secondary cores.
Step-4: Therefore, primary core follows normal iROM execution and jumps
to BL1 eventually, whereas all secondary cores enter WFE.
Step-5: When primary core comes into function secondary_cores_configure,
it puts pointer to function power_down_core into 0x02020004
and provides DSB and SEV for all cores so that they may come out
of WFE and jump to power_down_core function.
Step-6: And ultimately because of power_down_core all
secondary cores shut-down.
Signed-off-by: Kimoon Kim <kimoon.kim@samsung.com>
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Porter is an entry level development board based on R-Car M2 SoC (R8A7791)
This commit supports the following peripherals:
- SCIF, I2C, Ethernet, QSPI, SD, USB Host
Signed-off-by: Vladimir Barinov <vladimir.barinov@cogentembedded.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Lager board has two SDHI port as SDHI0 and SDHI2.
This adds GPIO configuration and initialization function of SDHI, and
enables MMC command.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Alt board has two SDHI port.
This adds GPIO configuration and initialization function of SDHI, and
enables MMC command.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
Now CONFIG_SPL_BUILD is not defined in Kconfig, so
"!depends on SPL_BUILD" and "if !SPL_BUILD" are redundant.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
When Kconfig for U-boot was examined, one of the biggest issues was
how to support multiple images (Normal, SPL, TPL). There were
actually two options, "single .config" and "multiple .config".
After some discussions and thought experiments, I chose the latter,
i.e. to create ".config", "spl/.config", "tpl/.config" for Normal,
SPL, TPL, respectively.
It is true that the "multiple .config" strategy provided us the
maximum flexibility and helped to avoid duplicating CONFIGs among
Normal, SPL, TPL, but I have noticed some fatal problems:
[1] It is impossible to share CONFIG options across the images.
If you change the configuration of Main image, you often have to
adjust some SPL configurations correspondingly. Currently, we
cannot handle the dependencies between them. It means one of the
biggest advantages of Kconfig is lost.
[2] It is too painful to change both ".config" and "spl/.config".
Sunxi guys started to work around this problem by creating a new
configuration target. Commit cbdd9a9737 (sunxi: kconfig: Add
%_felconfig rule to enable FEL build of sunxi platforms.) added
"make *_felconfig" to enable CONFIG_SPL_FEL on both images.
Changing the configuration of multiple images in one command is a
generic demand. The current implementation cannot propose any
good solution about this.
[3] Kconfig files are getting ugly and difficult to understand.
Commit b724bd7d63 (dm: Kconfig: Move CONFIG_SYS_MALLOC_F_LEN to
Kconfig) has sprinkled "if !SPL_BUILD" over the Kconfig files.
[4] The build system got more complicated than it should be.
To adjust Linux-originated Kconfig to U-Boot, the helper script
"scripts/multiconfig.sh" was introduced. Writing a complicated
text processor is a shell script sometimes caused problems.
Now I believe the "single .config" will serve us better. With it,
all the problems above would go away. Instead, we will have to add
some CONFIG_SPL_* (and CONFIG_TPL_*) options such as CONFIG_SPL_DM,
but we will not have much. Anyway, this is what we do now in
scripts/Makefile.spl.
I admit my mistake with my apology and this commit switches to the
single .config configuration.
It is not so difficult to do that:
- Remove unnecessary processings from scripts/multiconfig.sh
This file will remain for a while to support the current defconfig
format. It will be removed after more cleanups are done.
- Adjust some makefiles and Kconfigs
- Add some entries to include/config_uncmd_spl.h and the new file
scripts/Makefile.uncmd_spl. Some CONFIG options that are not
supported on SPL must be disabled because one .config is shared
between SPL and U-Boot proper going forward. I know this is not
a beautiful solution and I think we can do better, but let's see
how much we will have to describe them.
- update doc/README.kconfig
More cleaning up patches will follow this.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
It is true that malloc is necessary for Driver Model before
relocation, but there is no good reason to reserve the malloc
space more than enough. The default value 0x400 works well.
Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
The RCPM FSM may not be reset after power-on, for example,
in the cases of cold boot and wakeup from deep sleep.
It causes cache coherency problem and may block deep sleep.
Therefore, reset them if they are not be reset.
Signed-off-by: Chenhui Zhao <chenhui.zhao@freescale.com>
Reviewed-by: York Sun <yorksun@freescale.com>
LS1021A's PCIe1 region begins 0x40_00000000; PCIe2 begins
0x48_00000000. In order to access PCIe device, we must create
TLB to map the 40bit physical address to 32bit virtual address.
This patch will enable MMU after DDR is available and creates MMU
table in DRAM to map all 4G space; then, re-use the reserved space
to map PCIe region. The following the mapping layout.
VA mapping:
------- <---- 0GB
| |
| |
|-------| <---- 0x24000000
|///////| ===> 192MB VA map for PCIe1 with offset 0x40_0000_0000
|-------| <---- 0x300000000
| |
|-------| <---- 0x34000000
|///////| ===> 192MB VA map for PCIe2 with offset 0x48_0000_0000
|-------| <---- 0x40000000
| |
|-------| <---- 0x80000000 DDR0 space start
|\\\\\\\|
|\\\\\\\| ===> 2GB VA map for 2GB DDR0 Memory space
|\\\\\\\|
------- <---- 4GB DDR0 space end
Signed-off-by: Minghuan Lian <Minghuan.Lian@freescale.com>
Reviewed-by: York Sun <yorksun@freescale.com>
The bcm2835 and bcm2836 are essentially identical, except:
- The CPU is an ARM1176 v.s. a quad-core Cortex-A7.
- The physical address of many IO controllers has moved.
Rather than introducing a whole new bcm2836 value for $(SOC) or $(ARCH),
update the existing bcm2835 code to handle the minor differences, and
plumb it into the ARMv7 CPU architecture.
Signed-off-by: Stephen Warren <swarren@wwwdotorg.org>
So that the CONFIG_SPL_FEL option is not needed anymore. And the regular
SPL binary, generated by the default u-boot build, is now also bootable
over USB in the FEL mode. The SPL still can boot from the SD card too.
A bunch of system registers need to be saved/restored in order to ensure
that the IRQ handler still works in the BROM FEL code after getting
control back from the SPL. This is done in the sunxi code instead of
abusing ifdefs in 'start.S'.
The decision whether to load the main u-boot binary from the SD card or
return to the FEL code in the BROM is done at runtime.
Signed-off-by: Siarhei Siamashka <siarhei.siamashka@gmail.com>
[hdegoede@redhat.com: Since we now restore various regs before returning to
the FEL BROM code we can drop the sunxi specific #ifdefs in start.S]
Acked-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Make sunxi's FEL code fit with the normal U-Boot boot sequence instead of
creating its own. There are some #ifdefs required in start.S. Future work
will hopefully remove these.
This series is available at u-boot-dm, branch sunxi-working.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
The link register value can be required on some boards (e.g. FEL mode on
sunxi) so use a branch instruction to jump to save_boot_params() instead
of a branch link.
This requires a branch back to save_boot_params_ret so adjust the users
to deal with this. For exynos just drop the function since it doesn't
do anything.
Signed-off-by: Simon Glass <sjg@chromium.org>
Acked-by: Siarhei Siamashka <siarhei.siamashka@gmail.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Move the dram helper functions to a separate C file, rather then having them
as inline helpers in dram.h. This saves 144 bytes in the .text segment for
sun6i builds.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
KS2 ddr3 initialization uses ddr3_size global variable before u-boot
relocation. Even if the variable is not being used after relocation,
writing to it corrupts relocation table.
This patch removes the global ddr3_size variable and uses local one
instead.
Signed-off-by: Vitaly Andrianov <vitalya@ti.com>
Tested-by: Nishanth Menon <nm@ti.com>
When EMAC is in the boot order, the boot ROM sets OPP50 and the
MAC clock is set to /2. SPL needs to change it to /5 for Ethernet
to generate the correct txclk. This patch sets it correctly.
Signed-off-by: Steve Kipisz <s-kipisz2@ti.com>
The value in SDRAM_REF_CTRL controls the delay time between
the initial rising edge of DDR_RESETn to rising edge of DDR_CKE
(JEDEC specs this as 500us). In order to achieve this, SDRAM_REF_CTRL
should be written with a value corresponding to 500us delay before
starting DDR initialization sequence, and configure proper
value at the end of sequence.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
DDR3 timing and latency paramenters were not configured
correctly for 666MHz. Fixing the timing and latency values
according to Data sheet.
This fixes the random crashes seen on DRA72-evm.
Signed-off-by: Angela Stegmaier <angelabaker@ti.com>
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Since we have src, div and pre-div mask bits defined corresponding
to peripherals, calculation of clock specific to I2C appears
redundant and confusing. Using clk_bit_info struct we can write
calculations generic to all peripherals which makes code easy to
understand and free from peripheral specific exceptions.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
We have assumed and kept mask bits for divider and pre-divider
as 0xf and 0xff, respectively. But these mask bits change from
one peripheral to another, and hence, need to be specified in
accordance with the peripherals.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Replacing SoC and peripheral specific function calls with generic
clock_get_periph_rate calls to get the peripheral clocks.
Also, removing dead code of peripheral and SoC specific function
implementations which was used earlier for fetching peripheral clocks.
This code is not being used anymore because of the introduction
of generic clock_get_periph_rate function.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
exynos5_get_periph_rate function reads incorrect div for
SDMMC2 & 3. It also reads prediv and does division only for
SDMMC0 & 2 when actually various other peripherals need that.
Adding changes to fix these mistakes in periph rate calculation.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
We planned to fetch peripheral rate through one generic API per
peripheral. These generic peripheral functions are in turn
expected to fetch apt values from a function refactored as
per SoC versions. This patch adds support for fetching peripheral
rates for Exynos5420 and Exynos5800.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Moving exynos5420_get_pll_clk function definition up in the
code to keep it together with rest of SoC_get_pll_clk functions.
This makes code more legible and also removes the need of
declaration when called before the position of definition in
code. Also, renaming exynos5420_get_pll_clk to
exynos542x_get_pll_clk because it is being used for both Exynos
5420 and 5800.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Apparently, members of clk_bit_info array do not map correctly
to the members of enum periph_id. This mapping got broken after
we changed periph_id(s) to reflect interrupt number instead of
their position in a sequence. This patch intends to fix above
mentioned issue.
Signed-off-by: Akshay Saraswat <akshay.s@samsung.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
Exynos5420 has different registers with other exynos5 SoCs to control
usb device phy, so need separated function to enable exynos5420 usb
device phy.
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
The most exynos used the "Ratio + 1" as div value.
And value at register is "Ratio".
So if want to set exact value, it needs to subtract one.
Value at register ("Ratio") = div - 1
Signed-off-by: Jaehoon Chung <jh80.chung@samsung.com>
Signed-off-by: Minkyu Kang <mk7.kang@samsung.com>
r8a7794 uses ARM SoC of CA7 base. If we want to use dcache on CA7, we
need to enable SMP bit of Auxiliary Control Register.
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro.iwamatsu.yj@renesas.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>
SILK is an entry level development board based on R-Car E2 SoC (R8A7794)
This commit supports the following peripherals:
- SCIF, I2C, Ethernet, QSPI, MMC, USB Host
Signed-off-by: Vladimir Barinov <vladimir.barinov@cogentembedded.com>
Reviewed-by: Tom Rini <trini@ti.com>
Signed-off-by: Nobuhiro Iwamatsu <iwamatsu@nigauri.org>