soc_xilinx_versal driver allows identification of family & revision
of versal SoC. This driver is selected by CONFIG_SOC_XILINX_VERSAL.
Probe this driver using platdata U_BOOT_DEVICE structure which is
defined at mach-versal/cpu.c.
Add this config to xilinx_versal_virt_defconfig &
xilinx_versal_mini_ospi_defconfig file to select this driver.
Signed-off-by: T Karthik Reddy <t.karthik.reddy@xilinx.com>
Reviewed-by: Ashok Reddy Soma <ashok.reddy.soma@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Move this out of the common header and include it only where needed. In
a number of cases this requires adding "struct udevice;" to avoid adding
another large header or in other cases replacing / adding missing header
files that had been pulled in, very indirectly. Finally, we have a few
cases where we did not need to include <asm/global_data.h> at all, so
remove that include.
Signed-off-by: Simon Glass <sjg@chromium.org>
Signed-off-by: Tom Rini <trini@konsulko.com>
Move this header out of the common header. Network support is used in
quite a few places but it still does not warrant blanket inclusion.
Note that this net.h header itself has quite a lot in it. It could be
split into the driver-mode support, functions, structures, checksumming,
etc.
Signed-off-by: Simon Glass <sjg@chromium.org>
As a preparation for turning reserve_mmu into an arch-specific variant,
introduce arm_reserve_mmu on ARM. It implements the default routine for
reserving memory for MMU TLB and needs to be weakly defined in order to allow
for machines to override it.
Without this decoupling, after introducing arch_reserve_mmu, there would be two
weak definitions for it, one in common/board_f.c and one in
arch/arm/lib/cache.c.
Signed-off-by: Ovidiu Panait <ovpanait@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Similar change was done in past by commit 3b644a3c2f
("arm64: zynqmp: Provide a config to not map DDR region in MMU table").
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
versal_pm_request() and invoke_smc() are almost the same. Only one
difference is that versal_pm_request is adding PM_SIP_SVC offset to api_id.
The patch is moving platform implementation to firmware driver code for
synchronization.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Reviewed-by: Luca Ceresoli <luca@lucaceresoli.net>
Move the exisiting function of getting board dtb from versal to a common
Xilinx folder.
Signed-off-by: Ibai Erkiaga <ibai.erkiaga-elorza@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This patch adds clock driver support for Versal platform. The clock driver
queries and performs clock operations using PLM firmware by communicating
with it using SMC calls.
Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This patch provides an option to enable/disable OCM and TCM memory into MMU
table with corresponding memory attributes.
The same change was done for ZynqMP by commit 189bec47ab
("arm64: zynqmp: Provide a Kconfig option to define OCM and TCM in MMU")
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Code reads DT and setup MMU table based on memory node. This will ensure
that only DT needs to be changed.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
This patch adds new config option which is used for
reserving a specific memory for MMU Table and in this
case we are using TCM for that purpose.
Signed-off-by: Siva Durga Prasad Paladugu <siva.durga.paladugu@xilinx.com>
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Virtual QEMU board is generating DTB self and putting it to
VERSAL_QEMU_DTB_ADDR address.
Board is using CONFIG_OF_BOARD which ensures that u-boot is aligned with
board created by QEMU.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>
Xilinx is introducing Versal, an adaptive compute acceleration platform
(ACAP), built on 7nm FinFET process technology. Versal ACAPs combine
Scalar Processing Engines, Adaptable Hardware Engines, and Intelligent
Engines with leading-edge memory and interfacing technologies to deliver
powerful heterogeneous acceleration for any application. The Versal AI
Core series has five devices, offering 128 to 400 AI Engines. The series
includes dual-core Arm Cortex™-A72 application processors, dual-core Arm
Cortex-R5 real-time processors, 256KB of on-chip memory with ECC, more
than 1,900 DSP engines optimized for high-precision floating point with
low latency.
The patch is adding necessary infrastructure in place without enabling
platform which is done in separate patch.
Signed-off-by: Michal Simek <michal.simek@xilinx.com>