ddr: altera: Restructure Stratix 10 SDRAM driver

Restructure Stratix 10 SDRAM driver. Move common code to separate
file, in preparation to support SDRAM driver for Agilex.

Signed-off-by: Ley Foon Tan <ley.foon.tan@intel.com>
Reviewed-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
This commit is contained in:
Ley Foon Tan 2019-11-27 15:55:26 +08:00 committed by Marek Vasut
parent a6e5b06bea
commit 733cc6cbcc
5 changed files with 493 additions and 443 deletions

View file

@ -9,5 +9,5 @@
ifdef CONFIG_$(SPL_)ALTERA_SDRAM
obj-$(CONFIG_TARGET_SOCFPGA_GEN5) += sdram_gen5.o sequencer.o
obj-$(CONFIG_TARGET_SOCFPGA_ARRIA10) += sdram_arria10.o
obj-$(CONFIG_TARGET_SOCFPGA_STRATIX10) += sdram_s10.o
obj-$(CONFIG_TARGET_SOCFPGA_STRATIX10) += sdram_soc64.o sdram_s10.o
endif

View file

@ -15,28 +15,14 @@
#include "sdram_s10.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/io.h>
#include <linux/sizes.h>
struct altera_sdram_priv {
struct ram_info info;
struct reset_ctl_bulk resets;
};
struct altera_sdram_platdata {
void __iomem *hmc;
void __iomem *ddr_sch;
void __iomem *iomhc;
};
DECLARE_GLOBAL_DATA_PTR;
#define DDR_CONFIG(A, B, C, R) (((A) << 24) | ((B) << 16) | ((C) << 8) | (R))
#define PGTABLE_OFF 0x4000
/* The followring are the supported configurations */
u32 ddr_config[] = {
/* DDR_CONFIG(Address order,Bank,Column,Row) */
@ -63,28 +49,6 @@ u32 ddr_config[] = {
DDR_CONFIG(1, 4, 10, 17),
};
static u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
static u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
static u32 hmc_ecc_writel(struct altera_sdram_platdata *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
static u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int match_ddr_conf(u32 ddr_conf)
{
int i;
@ -96,193 +60,12 @@ int match_ddr_conf(u32 ddr_conf)
return 0;
}
static int emif_clear(struct altera_sdram_platdata *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
static int emif_reset(struct altera_sdram_platdata *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
static int poll_hmc_clock_status(void)
{
return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() +
SYSMGR_SOC64_HMC_CLK),
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
static void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
static void sdram_init_ecc_bits(bd_t *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
WATCHDOG_RESET();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
static void sdram_size_check(bd_t *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
while (ram_check < bd->bi_dram[bank].size) {
ram_check += get_ram_size((void *)(start + ram_check),
(phys_size_t)SZ_1G);
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
static phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
/**
* sdram_mmr_init_full() - Function to initialize SDRAM MMR
*
* Initialize the SDRAM MMR.
*/
static int sdram_mmr_init_full(struct udevice *dev)
int sdram_mmr_init_full(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
struct altera_sdram_priv *priv = dev_get_priv(dev);
@ -535,80 +318,3 @@ static int sdram_mmr_init_full(struct udevice *dev)
return 0;
}
static int altera_sdram_ofdata_to_platdata(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
fdt_addr_t addr;
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.ofdata_to_platdata = altera_sdram_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct altera_sdram_platdata),
.probe = altera_sdram_probe,
.priv_auto_alloc_size = sizeof(struct altera_sdram_priv),
};

View file

@ -11,48 +11,6 @@
#define DDR_READ_LATENCY_DELAY 40
#define DDR_ACTIVATE_FAWBANK 0x1
/* ECC HMC registers */
#define DDRIOCTRL 0x8
#define DDRCALSTAT 0xc
#define DRAMADDRWIDTH 0xe0
#define ECCCTRL1 0x100
#define ECCCTRL2 0x104
#define ERRINTEN 0x110
#define ERRINTENS 0x114
#define INTMODE 0x11c
#define INTSTAT 0x120
#define AUTOWB_CORRADDR 0x138
#define ECC_REG2WRECCDATABUS 0x144
#define ECC_DIAGON 0x150
#define ECC_DECSTAT 0x154
#define HPSINTFCSEL 0x210
#define RSTHANDSHAKECTRL 0x214
#define RSTHANDSHAKESTAT 0x218
#define DDR_HMC_DDRIOCTRL_IOSIZE_MSK 0x00000003
#define DDR_HMC_DDRCALSTAT_CAL_MSK BIT(0)
#define DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK BIT(16)
#define DDR_HMC_ECCCTL_CNT_RST_SET_MSK BIT(8)
#define DDR_HMC_ECCCTL_ECC_EN_SET_MSK BIT(0)
#define DDR_HMC_ECCCTL2_RMW_EN_SET_MSK BIT(8)
#define DDR_HMC_ECCCTL2_AWB_EN_SET_MSK BIT(0)
#define DDR_HMC_ECC_DIAGON_ECCDIAGON_EN_SET_MSK BIT(16)
#define DDR_HMC_ECC_DIAGON_WRDIAGON_EN_SET_MSK BIT(0)
#define DDR_HMC_ERRINTEN_SERRINTEN_EN_SET_MSK BIT(0)
#define DDR_HMC_ERRINTEN_DERRINTEN_EN_SET_MSK BIT(1)
#define DDR_HMC_INTSTAT_SERRPENA_SET_MSK BIT(0)
#define DDR_HMC_INTSTAT_DERRPENA_SET_MSK BIT(1)
#define DDR_HMC_INTSTAT_ADDRMTCFLG_SET_MSK BIT(16)
#define DDR_HMC_INTMODE_INTMODE_SET_MSK BIT(0)
#define DDR_HMC_RSTHANDSHAKE_MASK 0x000000ff
#define DDR_HMC_CORE2SEQ_INT_REQ 0xF
#define DDR_HMC_SEQ2CORE_INT_RESP_MASK BIT(3)
#define DDR_HMC_HPSINTFCSEL_ENABLE_MASK 0x001f1f1f
#define DDR_HMC_ERRINTEN_INTMASK \
(DDR_HMC_ERRINTEN_SERRINTEN_EN_SET_MSK | \
DDR_HMC_ERRINTEN_DERRINTEN_EN_SET_MSK)
/* NOC DDR scheduler */
#define DDR_SCH_ID_COREID 0
#define DDR_SCH_ID_REVID 0x4
@ -79,110 +37,6 @@
#define DDR_SCH_DEVTODEV_BUSRDTOWR_OFF 2
#define DDR_SCH_DEVTODEV_BUSWRTORD_OFF 4
/* HMC MMR IO48 registers */
#define CTRLCFG0 0x28
#define CTRLCFG1 0x2c
#define DRAMTIMING0 0x50
#define CALTIMING0 0x7c
#define CALTIMING1 0x80
#define CALTIMING2 0x84
#define CALTIMING3 0x88
#define CALTIMING4 0x8c
#define CALTIMING9 0xa0
#define DRAMADDRW 0xa8
#define DRAMSTS 0xec
#define NIOSRESERVED0 0x110
#define NIOSRESERVED1 0x114
#define NIOSRESERVED2 0x118
#define DRAMADDRW_CFG_COL_ADDR_WIDTH(x) \
(((x) >> 0) & 0x1F)
#define DRAMADDRW_CFG_ROW_ADDR_WIDTH(x) \
(((x) >> 5) & 0x1F)
#define DRAMADDRW_CFG_BANK_ADDR_WIDTH(x) \
(((x) >> 10) & 0xF)
#define DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(x) \
(((x) >> 14) & 0x3)
#define DRAMADDRW_CFG_CS_ADDR_WIDTH(x) \
(((x) >> 16) & 0x7)
#define CTRLCFG0_CFG_MEMTYPE(x) \
(((x) >> 0) & 0xF)
#define CTRLCFG0_CFG_DIMM_TYPE(x) \
(((x) >> 4) & 0x7)
#define CTRLCFG0_CFG_AC_POS(x) \
(((x) >> 7) & 0x3)
#define CTRLCFG0_CFG_CTRL_BURST_LEN(x) \
(((x) >> 9) & 0x1F)
#define CTRLCFG1_CFG_DBC3_BURST_LEN(x) \
(((x) >> 0) & 0x1F)
#define CTRLCFG1_CFG_ADDR_ORDER(x) \
(((x) >> 5) & 0x3)
#define CTRLCFG1_CFG_CTRL_EN_ECC(x) \
(((x) >> 7) & 0x1)
#define DRAMTIMING0_CFG_TCL(x) \
(((x) >> 0) & 0x7F)
#define CALTIMING0_CFG_ACT_TO_RDWR(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_PCH(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_ACT(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_ACT_DB(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD_DC(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD_DB(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING1_CFG_RD_TO_WR(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING1_CFG_RD_TO_WR_DC(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING2_CFG_RD_TO_WR_DB(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING2_CFG_RD_TO_WR_PCH(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING2_CFG_RD_AP_TO_VALID(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING2_CFG_WR_TO_WR(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING2_CFG_WR_TO_WR_DC(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING3_CFG_WR_TO_WR_DB(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD_DC(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD_DB(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING3_CFG_WR_TO_PCH(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING4_CFG_WR_AP_TO_VALID(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING4_CFG_PCH_TO_VALID(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING4_CFG_PCH_ALL_TO_VALID(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING4_CFG_ARF_TO_VALID(x) \
(((x) >> 18) & 0xFF)
#define CALTIMING4_CFG_PDN_TO_VALID(x) \
(((x) >> 26) & 0x3F)
#define CALTIMING9_CFG_4_ACT_TO_ACT(x) \
(((x) >> 0) & 0xFF)
/* Firewall DDR scheduler MPFE */
#define FW_HMC_ADAPTOR_REG_ADDR 0xf8020004
#define FW_HMC_ADAPTOR_MPU_MASK BIT(0)
#include "sdram_soc64.h"
#endif /* _SDRAM_S10_H_ */

View file

@ -0,0 +1,304 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2016-2019 Intel Corporation <www.intel.com>
*
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <errno.h>
#include <div64.h>
#include <fdtdec.h>
#include <ram.h>
#include <reset.h>
#include "sdram_soc64.h"
#include <wait_bit.h>
#include <asm/arch/firewall.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/io.h>
#include <linux/sizes.h>
#define PGTABLE_OFF 0x4000
u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->iomhc + reg);
}
u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg)
{
return readl(plat->hmc + reg);
}
u32 hmc_ecc_writel(struct altera_sdram_platdata *plat,
u32 data, u32 reg)
{
return writel(data, plat->hmc + reg);
}
u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data,
u32 reg)
{
return writel(data, plat->ddr_sch + reg);
}
int emif_clear(struct altera_sdram_platdata *plat)
{
hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL);
return wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_RSTHANDSHAKE_MASK,
false, 1000, false);
}
int emif_reset(struct altera_sdram_platdata *plat)
{
u32 c2s, s2c, ret;
c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK;
s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK;
debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, hmc_readl(plat, NIOSRESERVED0),
hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2),
hmc_readl(plat, DRAMSTS));
if (s2c && emif_clear(plat)) {
printf("DDR: emif_clear() failed\n");
return -1;
}
debug("DDR: Triggerring emif reset\n");
hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL);
/* if seq2core[3] = 0, we are good */
ret = wait_for_bit_le32((const void *)(plat->hmc +
RSTHANDSHAKESTAT),
DDR_HMC_SEQ2CORE_INT_RESP_MASK,
false, 1000, false);
if (ret) {
printf("DDR: failed to get ack from EMIF\n");
return ret;
}
ret = emif_clear(plat);
if (ret) {
printf("DDR: emif_clear() failed\n");
return ret;
}
debug("DDR: %s triggered successly\n", __func__);
return 0;
}
int poll_hmc_clock_status(void)
{
return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() +
SYSMGR_SOC64_HMC_CLK),
SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false);
}
void sdram_clear_mem(phys_addr_t addr, phys_size_t size)
{
phys_size_t i;
if (addr % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: address 0x%llx is not cacheline size aligned.\n",
addr);
hang();
}
if (size % CONFIG_SYS_CACHELINE_SIZE) {
printf("DDR: size 0x%llx is not multiple of cacheline size\n",
size);
hang();
}
/* Use DC ZVA instruction to clear memory to zeros by a cache line */
for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) {
asm volatile("dc zva, %0"
:
: "r"(addr)
: "memory");
addr += CONFIG_SYS_CACHELINE_SIZE;
}
}
void sdram_init_ecc_bits(bd_t *bd)
{
phys_size_t size, size_init;
phys_addr_t start_addr;
int bank = 0;
unsigned int start = get_timer(0);
icache_enable();
start_addr = bd->bi_dram[0].start;
size = bd->bi_dram[0].size;
/* Initialize small block for page table */
memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF);
gd->arch.tlb_addr = start_addr + PGTABLE_OFF;
gd->arch.tlb_size = PGTABLE_SIZE;
start_addr += PGTABLE_SIZE + PGTABLE_OFF;
size -= (PGTABLE_OFF + PGTABLE_SIZE);
dcache_enable();
while (1) {
while (size) {
size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size);
sdram_clear_mem(start_addr, size_init);
size -= size_init;
start_addr += size_init;
WATCHDOG_RESET();
}
bank++;
if (bank >= CONFIG_NR_DRAM_BANKS)
break;
start_addr = bd->bi_dram[bank].start;
size = bd->bi_dram[bank].size;
}
dcache_disable();
icache_disable();
printf("SDRAM-ECC: Initialized success with %d ms\n",
(unsigned int)get_timer(start));
}
void sdram_size_check(bd_t *bd)
{
phys_size_t total_ram_check = 0;
phys_size_t ram_check = 0;
phys_addr_t start = 0;
int bank;
/* Sanity check ensure correct SDRAM size specified */
debug("DDR: Running SDRAM size sanity check\n");
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
start = bd->bi_dram[bank].start;
while (ram_check < bd->bi_dram[bank].size) {
ram_check += get_ram_size((void *)(start + ram_check),
(phys_size_t)SZ_1G);
}
total_ram_check += ram_check;
ram_check = 0;
}
/* If the ram_size is 2GB smaller, we can assume the IO space is
* not mapped in. gd->ram_size is the actual size of the dram
* not the accessible size.
*/
if (total_ram_check != gd->ram_size) {
puts("DDR: SDRAM size check failed!\n");
hang();
}
debug("DDR: SDRAM size check passed!\n");
}
/**
* sdram_calculate_size() - Calculate SDRAM size
*
* Calculate SDRAM device size based on SDRAM controller parameters.
* Size is specified in bytes.
*/
phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat)
{
u32 dramaddrw = hmc_readl(plat, DRAMADDRW);
phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) +
DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw));
size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) &
DDR_HMC_DDRIOCTRL_IOSIZE_MSK));
return size;
}
static int altera_sdram_ofdata_to_platdata(struct udevice *dev)
{
struct altera_sdram_platdata *plat = dev->platdata;
fdt_addr_t addr;
addr = dev_read_addr_index(dev, 0);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->ddr_sch = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 1);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->iomhc = (void __iomem *)addr;
addr = dev_read_addr_index(dev, 2);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->hmc = (void __iomem *)addr;
return 0;
}
static int altera_sdram_probe(struct udevice *dev)
{
int ret;
struct altera_sdram_priv *priv = dev_get_priv(dev);
ret = reset_get_bulk(dev, &priv->resets);
if (ret) {
dev_err(dev, "Can't get reset: %d\n", ret);
return -ENODEV;
}
reset_deassert_bulk(&priv->resets);
if (sdram_mmr_init_full(dev) != 0) {
puts("SDRAM init failed.\n");
goto failed;
}
return 0;
failed:
reset_release_bulk(&priv->resets);
return -ENODEV;
}
static int altera_sdram_get_info(struct udevice *dev,
struct ram_info *info)
{
struct altera_sdram_priv *priv = dev_get_priv(dev);
info->base = priv->info.base;
info->size = priv->info.size;
return 0;
}
static struct ram_ops altera_sdram_ops = {
.get_info = altera_sdram_get_info,
};
static const struct udevice_id altera_sdram_ids[] = {
{ .compatible = "altr,sdr-ctl-s10" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(altera_sdram) = {
.name = "altr_sdr_ctl",
.id = UCLASS_RAM,
.of_match = altera_sdram_ids,
.ops = &altera_sdram_ops,
.ofdata_to_platdata = altera_sdram_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct altera_sdram_platdata),
.probe = altera_sdram_probe,
.priv_auto_alloc_size = sizeof(struct altera_sdram_priv),
};

View file

@ -0,0 +1,186 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2017-2019 Intel Corporation <www.intel.com>
*/
#ifndef _SDRAM_SOC64_H_
#define _SDRAM_SOC64_H_
#include <common.h>
#include <linux/sizes.h>
struct altera_sdram_priv {
struct ram_info info;
struct reset_ctl_bulk resets;
};
struct altera_sdram_platdata {
void __iomem *hmc;
void __iomem *ddr_sch;
void __iomem *iomhc;
};
/* ECC HMC registers */
#define DDRIOCTRL 0x8
#define DDRCALSTAT 0xc
#define DRAMADDRWIDTH 0xe0
#define ECCCTRL1 0x100
#define ECCCTRL2 0x104
#define ERRINTEN 0x110
#define ERRINTENS 0x114
#define INTMODE 0x11c
#define INTSTAT 0x120
#define AUTOWB_CORRADDR 0x138
#define ECC_REG2WRECCDATABUS 0x144
#define ECC_DIAGON 0x150
#define ECC_DECSTAT 0x154
#define HPSINTFCSEL 0x210
#define RSTHANDSHAKECTRL 0x214
#define RSTHANDSHAKESTAT 0x218
#define DDR_HMC_DDRIOCTRL_IOSIZE_MSK 0x00000003
#define DDR_HMC_DDRCALSTAT_CAL_MSK BIT(0)
#define DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK BIT(16)
#define DDR_HMC_ECCCTL_CNT_RST_SET_MSK BIT(8)
#define DDR_HMC_ECCCTL_ECC_EN_SET_MSK BIT(0)
#define DDR_HMC_ECCCTL2_RMW_EN_SET_MSK BIT(8)
#define DDR_HMC_ECCCTL2_AWB_EN_SET_MSK BIT(0)
#define DDR_HMC_ECC_DIAGON_ECCDIAGON_EN_SET_MSK BIT(16)
#define DDR_HMC_ECC_DIAGON_WRDIAGON_EN_SET_MSK BIT(0)
#define DDR_HMC_ERRINTEN_SERRINTEN_EN_SET_MSK BIT(0)
#define DDR_HMC_ERRINTEN_DERRINTEN_EN_SET_MSK BIT(1)
#define DDR_HMC_INTSTAT_SERRPENA_SET_MSK BIT(0)
#define DDR_HMC_INTSTAT_DERRPENA_SET_MSK BIT(1)
#define DDR_HMC_INTSTAT_ADDRMTCFLG_SET_MSK BIT(16)
#define DDR_HMC_INTMODE_INTMODE_SET_MSK BIT(0)
#define DDR_HMC_RSTHANDSHAKE_MASK 0x000000ff
#define DDR_HMC_CORE2SEQ_INT_REQ 0xF
#define DDR_HMC_SEQ2CORE_INT_RESP_MASK BIT(3)
#define DDR_HMC_HPSINTFCSEL_ENABLE_MASK 0x001f1f1f
#define DDR_HMC_ERRINTEN_INTMASK \
(DDR_HMC_ERRINTEN_SERRINTEN_EN_SET_MSK | \
DDR_HMC_ERRINTEN_DERRINTEN_EN_SET_MSK)
/* HMC MMR IO48 registers */
#define CTRLCFG0 0x28
#define CTRLCFG1 0x2c
#define DRAMTIMING0 0x50
#define CALTIMING0 0x7c
#define CALTIMING1 0x80
#define CALTIMING2 0x84
#define CALTIMING3 0x88
#define CALTIMING4 0x8c
#define CALTIMING9 0xa0
#define DRAMADDRW 0xa8
#define DRAMSTS 0xec
#define NIOSRESERVED0 0x110
#define NIOSRESERVED1 0x114
#define NIOSRESERVED2 0x118
#define DRAMADDRW_CFG_COL_ADDR_WIDTH(x) \
(((x) >> 0) & 0x1F)
#define DRAMADDRW_CFG_ROW_ADDR_WIDTH(x) \
(((x) >> 5) & 0x1F)
#define DRAMADDRW_CFG_BANK_ADDR_WIDTH(x) \
(((x) >> 10) & 0xF)
#define DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(x) \
(((x) >> 14) & 0x3)
#define DRAMADDRW_CFG_CS_ADDR_WIDTH(x) \
(((x) >> 16) & 0x7)
#define CTRLCFG0_CFG_MEMTYPE(x) \
(((x) >> 0) & 0xF)
#define CTRLCFG0_CFG_DIMM_TYPE(x) \
(((x) >> 4) & 0x7)
#define CTRLCFG0_CFG_AC_POS(x) \
(((x) >> 7) & 0x3)
#define CTRLCFG0_CFG_CTRL_BURST_LEN(x) \
(((x) >> 9) & 0x1F)
#define CTRLCFG1_CFG_DBC3_BURST_LEN(x) \
(((x) >> 0) & 0x1F)
#define CTRLCFG1_CFG_ADDR_ORDER(x) \
(((x) >> 5) & 0x3)
#define CTRLCFG1_CFG_CTRL_EN_ECC(x) \
(((x) >> 7) & 0x1)
#define DRAMTIMING0_CFG_TCL(x) \
(((x) >> 0) & 0x7F)
#define CALTIMING0_CFG_ACT_TO_RDWR(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_PCH(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_ACT(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING0_CFG_ACT_TO_ACT_DB(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD_DC(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING1_CFG_RD_TO_RD_DB(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING1_CFG_RD_TO_WR(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING1_CFG_RD_TO_WR_DC(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING2_CFG_RD_TO_WR_DB(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING2_CFG_RD_TO_WR_PCH(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING2_CFG_RD_AP_TO_VALID(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING2_CFG_WR_TO_WR(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING2_CFG_WR_TO_WR_DC(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING3_CFG_WR_TO_WR_DB(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD_DC(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING3_CFG_WR_TO_RD_DB(x) \
(((x) >> 18) & 0x3F)
#define CALTIMING3_CFG_WR_TO_PCH(x) \
(((x) >> 24) & 0x3F)
#define CALTIMING4_CFG_WR_AP_TO_VALID(x) \
(((x) >> 0) & 0x3F)
#define CALTIMING4_CFG_PCH_TO_VALID(x) \
(((x) >> 6) & 0x3F)
#define CALTIMING4_CFG_PCH_ALL_TO_VALID(x) \
(((x) >> 12) & 0x3F)
#define CALTIMING4_CFG_ARF_TO_VALID(x) \
(((x) >> 18) & 0xFF)
#define CALTIMING4_CFG_PDN_TO_VALID(x) \
(((x) >> 26) & 0x3F)
#define CALTIMING9_CFG_4_ACT_TO_ACT(x) \
(((x) >> 0) & 0xFF)
/* Firewall DDR scheduler MPFE */
#define FW_HMC_ADAPTOR_REG_ADDR 0xf8020004
#define FW_HMC_ADAPTOR_MPU_MASK BIT(0)
u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg);
u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg);
u32 hmc_ecc_writel(struct altera_sdram_platdata *plat,
u32 data, u32 reg);
u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data,
u32 reg);
int emif_clear(struct altera_sdram_platdata *plat);
int emif_reset(struct altera_sdram_platdata *plat);
int poll_hmc_clock_status(void);
void sdram_clear_mem(phys_addr_t addr, phys_size_t size);
void sdram_init_ecc_bits(bd_t *bd);
void sdram_size_check(bd_t *bd);
phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat);
int sdram_mmr_init_full(struct udevice *dev);
#endif /* _SDRAM_SOC64_H_ */