u-boot/drivers/mtd/nand/raw/mxic_nand.c

604 lines
15 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Macronix International Co., Ltd.
*
* Author:
* Zhengxun Li <zhengxunli@mxic.com.tw>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <malloc.h>
#include <nand.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <dm/device_compat.h>
#include <linux/bug.h>
#include <linux/errno.h>
#include <linux/iopoll.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/delay.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
#define MXIC_NFC_MAX_CLK_HZ 50000000
#define IRQ_TIMEOUT 1000
struct mxic_nand_ctrl {
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
struct nand_chip nand_chip;
};
/*
* struct mxic_nfc_command_format - Defines NAND flash command format
* @start_cmd: First cycle command (Start command)
* @end_cmd: Second cycle command (Last command)
* @addr_len: Number of address cycles required to send the address
* @read: Direction of command
*/
struct mxic_nfc_command_format {
int start_cmd;
int end_cmd;
u8 addr_len;
bool read;
};
/* The NAND flash operations command format */
static const struct mxic_nfc_command_format mxic_nand_commands[] = {
{NAND_CMD_READ0, NAND_CMD_READSTART, 5, 1 },
{NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART, 2, 1 },
{NAND_CMD_READID, NAND_CMD_NONE, 1, 1 },
{NAND_CMD_STATUS, NAND_CMD_NONE, 0, 1 },
{NAND_CMD_SEQIN, NAND_CMD_NONE, 5, 0 },
{NAND_CMD_PAGEPROG, NAND_CMD_NONE, 0, 0 },
{NAND_CMD_CACHEDPROG, NAND_CMD_NONE, 0, 0 },
{NAND_CMD_RNDIN, NAND_CMD_NONE, 2, 0 },
{NAND_CMD_ERASE1, NAND_CMD_NONE, 3, 0 },
{NAND_CMD_ERASE2, NAND_CMD_NONE, 0, 0 },
{NAND_CMD_RESET, NAND_CMD_NONE, 0, 0 },
{NAND_CMD_PARAM, NAND_CMD_NONE, 1, 1 },
{NAND_CMD_GET_FEATURES, NAND_CMD_NONE, 1, 1 },
{NAND_CMD_SET_FEATURES, NAND_CMD_NONE, 1, 0 },
{NAND_CMD_NONE, NAND_CMD_NONE, 0, 0 },
};
static int mxic_nfc_clk_enable(struct mxic_nand_ctrl *nfc)
{
int ret;
ret = clk_prepare_enable(nfc->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(nfc->send_clk);
return ret;
}
static void mxic_nfc_clk_disable(struct mxic_nand_ctrl *nfc)
{
clk_disable_unprepare(nfc->send_clk);
clk_disable_unprepare(nfc->send_dly_clk);
}
static void mxic_nfc_set_input_delay(struct mxic_nand_ctrl *nfc, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
nfc->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
nfc->regs + IDLY_CODE(1));
}
static int mxic_nfc_clk_setup(struct mxic_nand_ctrl *nfc, unsigned long freq)
{
int ret;
ret = clk_set_rate(nfc->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(nfc->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_nfc_set_input_delay(nfc, 0xf);
return 0;
}
static int mxic_nfc_set_freq(struct mxic_nand_ctrl *nfc, unsigned long freq)
{
int ret;
if (freq > MXIC_NFC_MAX_CLK_HZ)
freq = MXIC_NFC_MAX_CLK_HZ;
mxic_nfc_clk_disable(nfc);
ret = mxic_nfc_clk_setup(nfc, freq);
if (ret)
return ret;
ret = mxic_nfc_clk_enable(nfc);
if (ret)
return ret;
return 0;
}
static void mxic_nfc_hw_init(struct mxic_nand_ctrl *nfc)
{
writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(0, nfc->regs + LRD_CFG);
writel(0, nfc->regs + LRD_CTRL);
writel(0x0, nfc->regs + HC_EN);
}
static void mxic_nfc_cs_enable(struct mxic_nand_ctrl *nfc)
{
writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
nfc->regs + HC_CFG);
writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static void mxic_nfc_cs_disable(struct mxic_nand_ctrl *nfc)
{
writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static int mxic_nfc_data_xfer(struct mxic_nand_ctrl *nfc, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 1000000);
if (ret)
return ret;
writel(data, nfc->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 1000000);
if (ret)
return ret;
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 1000000);
if (ret)
return ret;
data = readl(nfc->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
WARN_ON(readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static uint8_t mxic_nfc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
u8 data;
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, NULL, &data, 1);
return data;
}
static void mxic_nfc_read_buf(struct mtd_info *mtd, uint8_t *rxbuf, int rlen)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, NULL, rxbuf, rlen);
}
static void mxic_nfc_write_buf(struct mtd_info *mtd, const uint8_t *txbuf,
int wlen)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
writel(wlen, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, txbuf, NULL, wlen);
}
static void mxic_nfc_cmd_function(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
const struct mxic_nfc_command_format *cmd = NULL;
u32 sts;
u8 index, addr[5];
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Get the command format */
for (index = 0; index < ARRAY_SIZE(mxic_nand_commands); index++)
if (command == mxic_nand_commands[index].start_cmd)
break;
cmd = &mxic_nand_commands[index];
if (!(command == NAND_CMD_PAGEPROG ||
command == NAND_CMD_CACHEDPROG ||
command == NAND_CMD_ERASE2))
mxic_nfc_cs_disable(nfc);
mxic_nfc_cs_enable(nfc);
if (column != -1) {
addr[0] = column;
addr[1] = column >> 8;
if (page_addr != -1) {
addr[2] = page_addr;
addr[3] = page_addr >> 8;
addr[4] = page_addr >> 16;
}
} else if (page_addr != -1) {
addr[0] = page_addr;
addr[1] = page_addr >> 8;
addr[2] = page_addr >> 16;
}
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) | OP_CMD_BYTES(0),
nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, &cmd->start_cmd, NULL, 1);
if (cmd->addr_len) {
writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_ADDR_BYTES(cmd->addr_len), nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, &addr, NULL, cmd->addr_len);
}
if (cmd->end_cmd != NAND_CMD_NONE) {
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
mxic_nfc_data_xfer(nfc, &cmd->end_cmd, NULL, 1);
}
readl_poll_timeout(nfc->regs + INT_STS, sts, sts & INT_RDY_PIN,
1000000);
if (command == NAND_CMD_PAGEPROG ||
command == NAND_CMD_CACHEDPROG ||
command == NAND_CMD_ERASE2 ||
command == NAND_CMD_RESET) {
mxic_nfc_cs_disable(nfc);
}
}
static int mxic_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
const struct nand_data_interface *conf)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxic_nand_ctrl *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
unsigned long freq;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
freq = 1000000000 / (sdr->tRC_min / 1000);
ret = mxic_nfc_set_freq(nfc, freq);
if (ret)
WARN_ON("Set freq failed\n");
if (sdr->tRC_min < 30000)
writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
return 0;
}
/* Dummy implementation: we don't support multiple chips */
static void mxic_nfc_select_chip(struct mtd_info *mtd, int chipnr)
{
switch (chipnr) {
case -1:
case 0:
break;
default:
BUG();
}
}
static int mxic_nfc_probe(struct udevice *dev)
{
struct mxic_nand_ctrl *nfc = dev_get_priv(dev);
struct nand_chip *nand_chip = &nfc->nand_chip;
struct mtd_info *mtd;
ofnode child;
int err;
nfc->regs = (void *)dev_read_addr(dev);
nfc->send_clk = devm_clk_get(dev, "send");
if (IS_ERR(nfc->send_clk))
return PTR_ERR(nfc->send_clk);
nfc->send_dly_clk = devm_clk_get(dev, "send_dly");
if (IS_ERR(nfc->send_dly_clk))
return PTR_ERR(nfc->send_dly_clk);
mtd = nand_to_mtd(nand_chip);
ofnode_for_each_subnode(child, dev_ofnode(dev))
nand_set_flash_node(nand_chip, child);
nand_set_controller_data(nand_chip, nfc);
nand_chip->select_chip = mxic_nfc_select_chip;
nand_chip->setup_data_interface = mxic_nfc_setup_data_interface;
nand_chip->cmdfunc = mxic_nfc_cmd_function;
nand_chip->read_byte = mxic_nfc_read_byte;
nand_chip->read_buf = mxic_nfc_read_buf;
nand_chip->write_buf = mxic_nfc_write_buf;
mxic_nfc_hw_init(nfc);
err = nand_scan(mtd, 1);
if (err)
return err;
err = nand_register(0, mtd);
if (err) {
dev_err(dev, "Failed to register MTD: %d\n", err);
return err;
}
return 0;
}
static const struct udevice_id mxic_nfc_of_ids[] = {
{ .compatible = "mxic,multi-itfc-v009-nand-controller" },
{ /* Sentinel */ }
};
U_BOOT_DRIVER(mxic_nfc) = {
.name = "mxic_nfc",
.id = UCLASS_MTD,
.of_match = mxic_nfc_of_ids,
.probe = mxic_nfc_probe,
.priv_auto = sizeof(struct mxic_nand_ctrl),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(mxic_nfc), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name,
ret);
}