u-boot/board/trab/cmd_trab.c

880 lines
20 KiB
C
Raw Normal View History

/*
* (C) Copyright 2003
* Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#undef DEBUG
#include <common.h>
#include <command.h>
#include <asm/arch/s3c24x0_cpu.h>
#include <rtc.h>
/*
* TRAB board specific commands. Especially commands for burn-in and function
* test.
*/
#if defined(CONFIG_CMD_BSP)
/* limits for valid range of VCC5V in mV */
#define VCC5V_MIN 4500
#define VCC5V_MAX 5500
/*
* Test strings for EEPROM test. Length of string 2 must not exceed length of
* string 1. Otherwise a buffer overrun could occur!
*/
#define EEPROM_TEST_STRING_1 "0987654321 :tset a si siht"
#define EEPROM_TEST_STRING_2 "this is a test: 1234567890"
/*
* min/max limits for valid contact temperature during burn in test (in
* degree Centigrade * 100)
*/
#define MIN_CONTACT_TEMP -1000
#define MAX_CONTACT_TEMP +9000
/* blinking frequency of status LED */
#define LED_BLINK_FREQ 5
/* delay time between burn in cycles in seconds */
#ifndef BURN_IN_CYCLE_DELAY /* if not defined in include/configs/trab.h */
#define BURN_IN_CYCLE_DELAY 5
#endif
/* physical SRAM parameters */
#define SRAM_ADDR 0x02000000 /* GCS1 */
#define SRAM_SIZE 0x40000 /* 256 kByte */
/* CPLD-Register for controlling TRAB hardware functions */
#define CPLD_BUTTONS ((volatile unsigned long *)0x04020000)
#define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000)
#define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000)
#define CPLD_RS485_RE ((volatile unsigned long *)0x04028000)
/* I2C EEPROM device address */
#define I2C_EEPROM_DEV_ADDR 0x54
/* EEPROM address map */
#define EE_ADDR_TEST 192
#define EE_ADDR_MAX_CYCLES 256
#define EE_ADDR_STATUS 258
#define EE_ADDR_PASS_CYCLES 259
#define EE_ADDR_FIRST_ERROR_CYCLE 261
#define EE_ADDR_FIRST_ERROR_NUM 263
#define EE_ADDR_FIRST_ERROR_NAME 264
#define EE_ADDR_ACT_CYCLE 280
/* Bit definitions for ADCCON */
#define ADC_ENABLE_START 0x1
#define ADC_READ_START 0x2
#define ADC_STDBM 0x4
#define ADC_INP_AIN0 (0x0 << 3)
#define ADC_INP_AIN1 (0x1 << 3)
#define ADC_INP_AIN2 (0x2 << 3)
#define ADC_INP_AIN3 (0x3 << 3)
#define ADC_INP_AIN4 (0x4 << 3)
#define ADC_INP_AIN5 (0x5 << 3)
#define ADC_INP_AIN6 (0x6 << 3)
#define ADC_INP_AIN7 (0x7 << 3)
#define ADC_PRSCEN 0x4000
#define ADC_ECFLG 0x800
/* misc */
/* externals */
extern int memory_post_tests (unsigned long start, unsigned long size);
extern int i2c_write (uchar, uint, int , uchar* , int);
extern int i2c_read (uchar, uint, int , uchar* , int);
extern void tsc2000_reg_init (void);
extern s32 tsc2000_contact_temp (void);
extern void tsc2000_spi_init(void);
/* function declarations */
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
int i2c_read_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len);
int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
/* helper functions */
static void adc_init (void);
static int adc_read (unsigned int channel);
static int read_dip (void);
static int read_vcc5v (void);
static int test_dip (void);
static int test_vcc5v (void);
static int test_rotary_switch (void);
static int test_sram (void);
static int test_eeprom (void);
static int test_contact_temp (void);
static void led_set (unsigned int);
static void led_blink (void);
static void led_init (void);
static void sdelay (unsigned long seconds); /* delay in seconds */
static int dummy (void);
static int read_max_cycles(void);
static void test_function_table_init (void);
static void global_vars_init (void);
static int global_vars_write_to_eeprom (void);
/* globals */
u16 max_cycles;
u8 status;
u16 pass_cycles;
u16 first_error_cycle;
u8 first_error_num;
2006-06-26 08:54:52 +00:00
char first_error_name[16];
u16 act_cycle;
typedef struct test_function_s {
2006-06-26 08:54:52 +00:00
char *name;
int (*pf)(void);
} test_function_t;
/* max number of Burn In Functions */
#define BIF_MAX 6
/* table with burn in functions */
test_function_t test_function[BIF_MAX];
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int i;
int cycle_status;
if (argc > 1)
return cmd_usage(cmdtp);
led_init ();
global_vars_init ();
test_function_table_init ();
tsc2000_spi_init ();
if (global_vars_write_to_eeprom () != 0) {
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
return (1);
}
if (read_max_cycles () != 0) {
printf ("%s: error reading max_cycles from eeprom\n",
__FUNCTION__);
return (1);
}
if (max_cycles == 0) {
printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__);
return (1);
}
status = 0;
for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) {
cycle_status = 0;
/*
* avoid timestamp overflow problem after about 68 minutes of
* udelay() time.
*/
reset_timer_masked ();
for (i = 0; i < BIF_MAX; i++) {
/* call test function */
if ((*test_function[i].pf)() != 0) {
printf ("error in %s test\n",
test_function[i].name);
/* is it the first error? */
if (status == 0) {
status = 1;
first_error_cycle = act_cycle;
/* do not use error_num 0 */
first_error_num = i+1;
strncpy (first_error_name,
test_function[i].name,
sizeof (first_error_name));
led_set (0);
}
cycle_status = 1;
}
}
/* were all tests of actual cycle OK? */
if (cycle_status == 0)
pass_cycles++;
/* set status LED if no error is occoured since yet */
if (status == 0)
led_set (1);
printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle);
/* pause between cycles */
sdelay (BURN_IN_CYCLE_DELAY);
}
if (global_vars_write_to_eeprom () != 0) {
led_set (0);
printf ("%s: error writing global_vars to eeprom\n",
__FUNCTION__);
status = 1;
}
if (status == 0) {
led_blink (); /* endless loop!! */
return (0);
} else {
led_set (0);
return (1);
}
}
U_BOOT_CMD(
burn_in, 1, 1, do_burn_in,
"start burn-in test application on TRAB",
"\n"
" - start burn-in test application\n"
" The burn-in test could took a while to finish!\n"
" The content of the onboard EEPROM is modified!"
);
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int i, dip;
if (argc > 1)
return cmd_usage(cmdtp);
if ((dip = read_dip ()) == -1)
return 1;
for (i = 0; i < 4; i++) {
if ((dip & (1 << i)) == 0)
printf("0");
else
printf("1");
}
printf("\n");
return 0;
}
U_BOOT_CMD(
dip, 1, 1, do_dip,
"read dip switch on TRAB",
"\n"
" - read state of dip switch (S1) on TRAB board\n"
" read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\""
);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int vcc5v;
if (argc > 1)
return cmd_usage(cmdtp);
if ((vcc5v = read_vcc5v ()) == -1)
return (1);
printf ("%d", (vcc5v / 1000));
printf (".%d", (vcc5v % 1000) / 100);
printf ("%d V\n", (vcc5v % 100) / 10) ;
return 0;
}
U_BOOT_CMD(
vcc5v, 1, 1, do_vcc5v,
"read VCC5V on TRAB",
"\n"
" - read actual value of voltage VCC5V"
);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int contact_temp;
if (argc > 1)
return cmd_usage(cmdtp);
tsc2000_spi_init ();
contact_temp = tsc2000_contact_temp();
printf ("%d degree C * 100\n", contact_temp) ;
return 0;
}
U_BOOT_CMD(
c_temp, 1, 1, do_contact_temp,
"read contact temperature on TRAB",
""
" - reads the onboard temperature (=contact temperature)\n"
);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
if (argc > 1)
return cmd_usage(cmdtp);
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1))
return (1);
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2))
return (1);
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2))
return (1);
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1))
return (1);
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
2006-06-26 08:54:52 +00:00
1, (unsigned char*)first_error_name,
sizeof (first_error_name)))
return (1);
if (read_max_cycles () != 0)
return (1);
printf ("max_cycles = %d\n", max_cycles);
printf ("status = %d\n", status);
printf ("pass_cycles = %d\n", pass_cycles);
printf ("first_error_cycle = %d\n", first_error_cycle);
printf ("first_error_num = %d\n", first_error_num);
printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name),
first_error_name);
return 0;
}
U_BOOT_CMD(
bis, 1, 1, do_burn_in_status,
"print burn in status on TRAB",
"\n"
" - prints the status variables of the last burn in test\n"
" stored in the onboard EEPROM on TRAB board"
);
static int read_dip (void)
{
unsigned int result = 0;
int adc_val;
int i;
/***********************************************************
DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3):
SW1 - AIN4
SW2 - AIN5
SW3 - AIN6
SW4 - AIN7
"On" DIP switch position short-circuits the voltage from
the input channel (i.e. '0' conversion result means "on").
*************************************************************/
for (i = 7; i > 3; i--) {
if ((adc_val = adc_read (i)) == -1) {
printf ("%s: Channel %d could not be read\n",
__FUNCTION__, i);
return (-1);
}
/*
* Input voltage (switch open) is 1.8 V.
* (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736
* Set trigger at halve that value.
*/
if (adc_val < 368)
result |= (1 << (i-4));
}
return (result);
}
static int read_vcc5v (void)
{
s32 result;
/* VCC5V is connected to channel 2 */
if ((result = adc_read (2)) == -1) {
printf ("%s: VCC5V could not be read\n", __FUNCTION__);
return (-1);
}
/*
* Calculate voltage value. Split in two parts because there is no
* floating point support. VCC5V is connected over an resistor divider:
* VCC5V=ADCval*2,5V/1023*(10K+30K)/10K.
*/
result = result * 10 * 1000 / 1023; /* result in mV */
return (result);
}
static int test_dip (void)
{
static int first_run = 1;
static int first_dip;
if (first_run) {
if ((first_dip = read_dip ()) == -1) {
return (1);
}
first_run = 0;
debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip);
}
if (first_dip != read_dip ()) {
return (1);
} else {
return (0);
}
}
static int test_vcc5v (void)
{
int vcc5v;
if ((vcc5v = read_vcc5v ()) == -1) {
return (1);
}
if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) {
printf ("%s: vcc5v[V/100]=%d\n", __FUNCTION__, vcc5v);
return (1);
} else {
return (0);
}
}
static int test_rotary_switch (void)
{
static int first_run = 1;
static int first_rs;
if (first_run) {
/*
* clear bits in CPLD, because they have random values after
* power-up or reset.
*/
*CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17);
first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7);
first_run = 0;
debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs);
}
if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) {
return (1);
} else {
return (0);
}
}
static int test_sram (void)
{
return (memory_post_tests (SRAM_ADDR, SRAM_SIZE));
}
static int test_eeprom (void)
{
unsigned char temp[sizeof (EEPROM_TEST_STRING_1)];
int result = 0;
/* write test string 1, read back and verify */
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
2006-06-26 08:54:52 +00:00
(unsigned char*)EEPROM_TEST_STRING_1,
sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_1))) {
return (1);
}
2006-06-26 08:54:52 +00:00
if (strcmp ((char *)temp, EEPROM_TEST_STRING_1) != 0) {
result = 1;
printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp);
}
/* write test string 2, read back and verify */
if (result == 0) {
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
2006-06-26 08:54:52 +00:00
(unsigned char*)EEPROM_TEST_STRING_2,
sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
temp, sizeof (EEPROM_TEST_STRING_2))) {
return (1);
}
2006-06-26 08:54:52 +00:00
if (strcmp ((char *)temp, EEPROM_TEST_STRING_2) != 0) {
result = 1;
printf ("%s: error; read str = \"%s\"\n",
__FUNCTION__, temp);
}
}
return (result);
}
static int test_contact_temp (void)
{
int contact_temp;
contact_temp = tsc2000_contact_temp ();
if ((contact_temp < MIN_CONTACT_TEMP)
|| (contact_temp > MAX_CONTACT_TEMP))
return (1);
else
return (0);
}
int i2c_write_multiple (uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_write (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not write to i2c device %d"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
#if 0
printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
"%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i,
alen, buffer, i, buffer+i, buffer+i);
#endif
udelay (30000);
}
return (0);
}
int i2c_read_multiple ( uchar chip, uint addr, int alen,
uchar *buffer, int len)
{
int i;
if (alen != 1) {
printf ("%s: addr len other than 1 not supported\n",
__FUNCTION__);
return (1);
}
for (i = 0; i < len; i++) {
if (i2c_read (chip, addr+i, alen, buffer+i, 1)) {
printf ("%s: could not read from i2c device %#x"
", addr %d\n", __FUNCTION__, chip, addr);
return (1);
}
}
return (0);
}
static int adc_read (unsigned int channel)
{
int j = 1000; /* timeout value for wait loop in us */
int result;
struct s3c2400_adc *padc;
padc = s3c2400_get_base_adc();
channel &= 0x7;
adc_init ();
padc->ADCCON &= ~ADC_STDBM; /* select normal mode */
padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */
padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START);
while (j--) {
if ((padc->ADCCON & ADC_ENABLE_START) == 0)
break;
udelay (1);
}
if (j == 0) {
printf("%s: ADC timeout\n", __FUNCTION__);
padc->ADCCON |= ADC_STDBM; /* select standby mode */
return -1;
}
result = padc->ADCDAT & 0x3FF;
padc->ADCCON |= ADC_STDBM; /* select standby mode */
debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__,
(padc->ADCCON >> 3) & 0x7, result);
/*
* Wait for ADC to be ready for next conversion. This delay value was
* estimated, because the datasheet does not specify a value.
*/
udelay (1000);
return (result);
}
static void adc_init (void)
{
struct s3c2400_adc *padc;
padc = s3c2400_get_base_adc();
padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */
padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */
/*
* Wait some time to avoid problem with very first call of
* adc_read(). Without this delay, sometimes the first read
* adc value is 0. Perhaps because the adjustment of prescaler
* takes some clock cycles?
*/
udelay (1000);
return;
}
static void led_set (unsigned int state)
{
struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio();
led_init ();
switch (state) {
case 0: /* turn LED off */
gpio->PADAT |= (1 << 12);
break;
case 1: /* turn LED on */
gpio->PADAT &= ~(1 << 12);
break;
default:
2004-10-17 21:12:06 +00:00
break;
}
}
static void led_blink (void)
{
led_init ();
/* blink LED. This function does not return! */
while (1) {
reset_timer_masked ();
led_set (1);
udelay (1000000 / LED_BLINK_FREQ / 2);
led_set (0);
udelay (1000000 / LED_BLINK_FREQ / 2);
}
}
static void led_init (void)
{
struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio();
/* configure GPA12 as output and set to High -> LED off */
gpio->PACON &= ~(1 << 12);
gpio->PADAT |= (1 << 12);
}
static void sdelay (unsigned long seconds)
{
unsigned long i;
for (i = 0; i < seconds; i++) {
udelay (1000000);
}
}
static int global_vars_write_to_eeprom (void)
{
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
(unsigned char*) &status, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
(unsigned char*) &pass_cycles, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
1, (unsigned char*) &first_error_cycle, 2)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
1, (unsigned char*) &first_error_num, 1)) {
return (1);
}
if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
2006-06-26 08:54:52 +00:00
1, (unsigned char*) first_error_name,
sizeof(first_error_name))) {
return (1);
}
return (0);
}
static void global_vars_init (void)
{
status = 1; /* error */
pass_cycles = 0;
first_error_cycle = 0;
first_error_num = 0;
first_error_name[0] = '\0';
act_cycle = 0;
max_cycles = 0;
}
static void test_function_table_init (void)
{
int i;
for (i = 0; i < BIF_MAX; i++)
test_function[i].pf = dummy;
/*
* the length of "name" must not exceed 16, including the '\0'
* termination. See also the EEPROM address map.
*/
test_function[0].pf = test_dip;
test_function[0].name = "dip";
test_function[1].pf = test_vcc5v;
test_function[1].name = "vcc5v";
test_function[2].pf = test_rotary_switch;
test_function[2].name = "rotary_switch";
test_function[3].pf = test_sram;
test_function[3].name = "sram";
test_function[4].pf = test_eeprom;
test_function[4].name = "eeprom";
test_function[5].pf = test_contact_temp;
test_function[5].name = "contact_temp";
}
static int read_max_cycles (void)
{
if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1,
(unsigned char *) &max_cycles, 2) != 0) {
return (1);
}
return (0);
}
static int dummy(void)
{
return (0);
}
int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
int contact_temp;
int delay = 0;
#if defined(CONFIG_CMD_DATE)
struct rtc_time tm;
#endif
if (argc > 2)
return cmd_usage(cmdtp);
if (argc > 1)
delay = simple_strtoul(argv[1], NULL, 10);
tsc2000_spi_init ();
while (1) {
#if defined(CONFIG_CMD_DATE)
rtc_get (&tm);
printf ("%4d-%02d-%02d %2d:%02d:%02d - ",
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
#endif
contact_temp = tsc2000_contact_temp();
printf ("%d\n", contact_temp) ;
if (delay != 0)
/*
* reset timer to avoid timestamp overflow problem
* after about 68 minutes of udelay() time.
*/
reset_timer_masked ();
sdelay (delay);
}
return 0;
}
U_BOOT_CMD(
tlog, 2, 1, do_temp_log,
"log contact temperature [1/100 C] to console (endlessly)",
"delay\n"
" - contact temperature [1/100 C] is printed endlessly to console\n"
" <delay> specifies the seconds to wait between two measurements\n"
" For each measurment a timestamp is printeted"
);
#endif