u-boot/arch/arm/mach-imx/imx8m/soc.c

1614 lines
39 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017-2019, 2021 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <event.h>
#include <init.h>
#include <log.h>
#include <asm/arch/imx-regs.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/hab.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/syscounter.h>
#include <asm/ptrace.h>
#include <asm/armv8/mmu.h>
#include <dm/uclass.h>
#include <dm/device.h>
#include <efi_loader.h>
#include <env.h>
#include <env_internal.h>
#include <errno.h>
#include <fdt_support.h>
#include <fsl_wdog.h>
#include <imx_sip.h>
#include <linux/bitops.h>
DECLARE_GLOBAL_DATA_PTR;
#if defined(CONFIG_IMX_HAB)
struct imx_sec_config_fuse_t const imx_sec_config_fuse = {
.bank = 1,
.word = 3,
};
#endif
int timer_init(void)
{
#ifdef CONFIG_SPL_BUILD
struct sctr_regs *sctr = (struct sctr_regs *)SYSCNT_CTRL_BASE_ADDR;
unsigned long freq = readl(&sctr->cntfid0);
/* Update with accurate clock frequency */
asm volatile("msr cntfrq_el0, %0" : : "r" (freq) : "memory");
clrsetbits_le32(&sctr->cntcr, SC_CNTCR_FREQ0 | SC_CNTCR_FREQ1,
SC_CNTCR_FREQ0 | SC_CNTCR_ENABLE | SC_CNTCR_HDBG);
#endif
gd->arch.tbl = 0;
gd->arch.tbu = 0;
return 0;
}
void enable_tzc380(void)
{
struct iomuxc_gpr_base_regs *gpr =
(struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR;
/* Enable TZASC and lock setting */
setbits_le32(&gpr->gpr[10], GPR_TZASC_EN);
setbits_le32(&gpr->gpr[10], GPR_TZASC_EN_LOCK);
/*
* According to TRM, TZASC_ID_SWAP_BYPASS should be set in
* order to avoid AXI Bus errors when GPU is in use
*/
setbits_le32(&gpr->gpr[10], GPR_TZASC_ID_SWAP_BYPASS);
/*
* imx8mn and imx8mp implements the lock bit for
* TZASC_ID_SWAP_BYPASS, enable it to lock settings
*/
setbits_le32(&gpr->gpr[10], GPR_TZASC_ID_SWAP_BYPASS_LOCK);
/*
* set Region 0 attribute to allow secure and non-secure
* read/write permission. Found some masters like usb dwc3
* controllers can't work with secure memory.
*/
writel(0xf0000000, TZASC_BASE_ADDR + 0x108);
}
void set_wdog_reset(struct wdog_regs *wdog)
{
/*
* Output WDOG_B signal to reset external pmic or POR_B decided by
* the board design. Without external reset, the peripherals/DDR/
* PMIC are not reset, that may cause system working abnormal.
* WDZST bit is write-once only bit. Align this bit in kernel,
* otherwise kernel code will have no chance to set this bit.
*/
setbits_le16(&wdog->wcr, WDOG_WDT_MASK | WDOG_WDZST_MASK);
}
static struct mm_region imx8m_mem_map[] = {
{
/* ROM */
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0x100000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* CAAM */
.virt = 0x100000UL,
.phys = 0x100000UL,
.size = 0x8000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* OCRAM_S */
.virt = 0x180000UL,
.phys = 0x180000UL,
.size = 0x8000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* TCM */
.virt = 0x7C0000UL,
.phys = 0x7C0000UL,
.size = 0x80000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* OCRAM */
.virt = 0x900000UL,
.phys = 0x900000UL,
.size = 0x200000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* AIPS */
.virt = 0xB00000UL,
.phys = 0xB00000UL,
.size = 0x3f500000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* DRAM1 */
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = PHYS_SDRAM_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
#ifdef PHYS_SDRAM_2_SIZE
}, {
/* DRAM2 */
.virt = 0x100000000UL,
.phys = 0x100000000UL,
.size = PHYS_SDRAM_2_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
#endif
}, {
/* empty entrie to split table entry 5 if needed when TEEs are used */
0,
}, {
/* List terminator */
0,
}
};
struct mm_region *mem_map = imx8m_mem_map;
static unsigned int imx8m_find_dram_entry_in_mem_map(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx8m_mem_map); i++)
if (imx8m_mem_map[i].phys == CFG_SYS_SDRAM_BASE)
return i;
hang(); /* Entry not found, this must never happen. */
}
void enable_caches(void)
{
/* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch
* If OPTEE does not run, still update the MMU table according to dram banks structure
* to set correct dram size from board_phys_sdram_size
*/
int i = 0;
/*
* please make sure that entry initial value matches
* imx8m_mem_map for DRAM1
*/
int entry = imx8m_find_dram_entry_in_mem_map();
u64 attrs = imx8m_mem_map[entry].attrs;
while (i < CONFIG_NR_DRAM_BANKS &&
entry < ARRAY_SIZE(imx8m_mem_map)) {
if (gd->bd->bi_dram[i].start == 0)
break;
imx8m_mem_map[entry].phys = gd->bd->bi_dram[i].start;
imx8m_mem_map[entry].virt = gd->bd->bi_dram[i].start;
imx8m_mem_map[entry].size = gd->bd->bi_dram[i].size;
imx8m_mem_map[entry].attrs = attrs;
debug("Added memory mapping (%d): %llx %llx\n", entry,
imx8m_mem_map[entry].phys, imx8m_mem_map[entry].size);
i++; entry++;
}
icache_enable();
dcache_enable();
}
__weak int board_phys_sdram_size(phys_size_t *size)
{
if (!size)
return -EINVAL;
*size = PHYS_SDRAM_SIZE;
#ifdef PHYS_SDRAM_2_SIZE
*size += PHYS_SDRAM_2_SIZE;
#endif
return 0;
}
int dram_init(void)
{
phys_size_t sdram_size;
int ret;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* rom_pointer[1] contains the size of TEE occupies */
if (rom_pointer[1])
gd->ram_size = sdram_size - rom_pointer[1];
else
gd->ram_size = sdram_size;
return 0;
}
int dram_init_banksize(void)
{
int bank = 0;
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size, sdram_b2_size;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0xc0000000) {
sdram_b1_size = 0xc0000000;
sdram_b2_size = sdram_size - 0xc0000000;
} else {
sdram_b1_size = sdram_size;
sdram_b2_size = 0;
}
gd->bd->bi_dram[bank].start = PHYS_SDRAM;
if (rom_pointer[1]) {
phys_addr_t optee_start = (phys_addr_t)rom_pointer[0];
phys_size_t optee_size = (size_t)rom_pointer[1];
gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start;
if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_b1_size)) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough\n");
return -1;
}
gd->bd->bi_dram[bank].start = optee_start + optee_size;
gd->bd->bi_dram[bank].size = PHYS_SDRAM +
sdram_b1_size - gd->bd->bi_dram[bank].start;
}
} else {
gd->bd->bi_dram[bank].size = sdram_b1_size;
}
if (sdram_b2_size) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough for SDRAM_2\n");
return -1;
}
gd->bd->bi_dram[bank].start = 0x100000000UL;
gd->bd->bi_dram[bank].size = sdram_b2_size;
}
return 0;
}
phys_size_t get_effective_memsize(void)
{
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size;
ret = board_phys_sdram_size(&sdram_size);
if (!ret) {
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0xc0000000) {
sdram_b1_size = 0xc0000000;
} else {
sdram_b1_size = sdram_size;
}
if (rom_pointer[1]) {
/* We will relocate u-boot to Top of dram1. Tee position has two cases:
* 1. At the top of dram1, Then return the size removed optee size.
* 2. In the middle of dram1, return the size of dram1.
*/
if ((rom_pointer[0] + rom_pointer[1]) == (PHYS_SDRAM + sdram_b1_size))
return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM);
}
return sdram_b1_size;
} else {
return PHYS_SDRAM_SIZE;
}
}
phys_size_t board_get_usable_ram_top(phys_size_t total_size)
{
ulong top_addr;
/*
* Some IPs have their accessible address space restricted by
* the interconnect. Let's make sure U-Boot only ever uses the
* space below the 4G address boundary (which is 3GiB big),
* even when the effective available memory is bigger.
*/
top_addr = clamp_val((u64)PHYS_SDRAM + gd->ram_size, 0, 0xffffffff);
/*
* rom_pointer[0] stores the TEE memory start address.
* rom_pointer[1] stores the size TEE uses.
* We need to reserve the memory region for TEE.
*/
if (rom_pointer[0] && rom_pointer[1] && top_addr > rom_pointer[0])
top_addr = rom_pointer[0];
return top_addr;
}
static u32 get_cpu_variant_type(u32 type)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
u32 value = readl(&fuse->tester4);
if (type == MXC_CPU_IMX8MQ) {
if ((value & 0x3) == 0x2)
return MXC_CPU_IMX8MD;
else if (value & 0x200000)
return MXC_CPU_IMX8MQL;
} else if (type == MXC_CPU_IMX8MM) {
switch (value & 0x3) {
case 2:
if (value & 0x1c0000)
return MXC_CPU_IMX8MMDL;
else
return MXC_CPU_IMX8MMD;
case 3:
if (value & 0x1c0000)
return MXC_CPU_IMX8MMSL;
else
return MXC_CPU_IMX8MMS;
default:
if (value & 0x1c0000)
return MXC_CPU_IMX8MML;
break;
}
} else if (type == MXC_CPU_IMX8MN) {
switch (value & 0x3) {
case 2:
if (value & 0x1000000) {
if (value & 0x10000000) /* MIPI DSI */
return MXC_CPU_IMX8MNUD;
else
return MXC_CPU_IMX8MNDL;
} else {
return MXC_CPU_IMX8MND;
}
case 3:
if (value & 0x1000000) {
if (value & 0x10000000) /* MIPI DSI */
return MXC_CPU_IMX8MNUS;
else
return MXC_CPU_IMX8MNSL;
} else {
return MXC_CPU_IMX8MNS;
}
default:
if (value & 0x1000000) {
if (value & 0x10000000) /* MIPI DSI */
return MXC_CPU_IMX8MNUQ;
else
return MXC_CPU_IMX8MNL;
}
break;
}
} else if (type == MXC_CPU_IMX8MP) {
u32 value0 = readl(&fuse->tester3);
u32 flag = 0;
if ((value0 & 0xc0000) == 0x80000)
return MXC_CPU_IMX8MPD;
/* vpu disabled */
if ((value0 & 0x43000000) == 0x43000000)
flag = 1;
/* npu disabled*/
if ((value & 0x8) == 0x8)
flag |= BIT(1);
/* isp disabled */
if ((value & 0x3) == 0x3)
flag |= BIT(2);
/* gpu disabled */
if ((value & 0xc0) == 0xc0)
flag |= BIT(3);
/* lvds disabled */
if ((value & 0x180000) == 0x180000)
flag |= BIT(4);
/* mipi dsi disabled */
if ((value & 0x60000) == 0x60000)
flag |= BIT(5);
switch (flag) {
case 0x3f:
return MXC_CPU_IMX8MPUL;
case 7:
return MXC_CPU_IMX8MPL;
case 2:
return MXC_CPU_IMX8MP6;
default:
break;
}
}
return type;
}
u32 get_cpu_rev(void)
{
struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
u32 reg = readl(&ana_pll->digprog);
u32 type = (reg >> 16) & 0xff;
u32 major_low = (reg >> 8) & 0xff;
u32 rom_version;
reg &= 0xff;
/* iMX8MP */
if (major_low == 0x43) {
type = get_cpu_variant_type(MXC_CPU_IMX8MP);
} else if (major_low == 0x42) {
/* iMX8MN */
type = get_cpu_variant_type(MXC_CPU_IMX8MN);
} else if (major_low == 0x41) {
type = get_cpu_variant_type(MXC_CPU_IMX8MM);
} else {
if (reg == CHIP_REV_1_0) {
/*
* For B0 chip, the DIGPROG is not updated,
* it is still TO1.0. we have to check ROM
* version or OCOTP_READ_FUSE_DATA.
* 0xff0055aa is magic number for B1.
*/
if (readl((void __iomem *)(OCOTP_BASE_ADDR + 0x40)) == 0xff0055aa) {
/*
* B2 uses same DIGPROG and OCOTP_READ_FUSE_DATA value with B1,
* so have to check ROM to distinguish them
*/
rom_version = readl((void __iomem *)ROM_VERSION_B0);
rom_version &= 0xff;
if (rom_version == CHIP_REV_2_2)
reg = CHIP_REV_2_2;
else
reg = CHIP_REV_2_1;
} else {
rom_version =
readl((void __iomem *)ROM_VERSION_A0);
if (rom_version != CHIP_REV_1_0) {
rom_version = readl((void __iomem *)ROM_VERSION_B0);
rom_version &= 0xff;
if (rom_version == CHIP_REV_2_0)
reg = CHIP_REV_2_0;
}
}
}
type = get_cpu_variant_type(type);
}
return (type << 12) | reg;
}
static void imx_set_wdog_powerdown(bool enable)
{
struct wdog_regs *wdog1 = (struct wdog_regs *)WDOG1_BASE_ADDR;
struct wdog_regs *wdog2 = (struct wdog_regs *)WDOG2_BASE_ADDR;
struct wdog_regs *wdog3 = (struct wdog_regs *)WDOG3_BASE_ADDR;
/* Write to the PDE (Power Down Enable) bit */
writew(enable, &wdog1->wmcr);
writew(enable, &wdog2->wmcr);
writew(enable, &wdog3->wmcr);
}
static int imx8m_check_clock(void *ctx, struct event *event)
{
struct udevice *dev;
int ret;
if (CONFIG_IS_ENABLED(CLK)) {
ret = uclass_get_device_by_name(UCLASS_CLK,
"clock-controller@30380000",
&dev);
if (ret < 0) {
printf("Failed to find clock node. Check device tree\n");
return ret;
}
}
return 0;
}
EVENT_SPY(EVT_DM_POST_INIT, imx8m_check_clock);
static void imx8m_setup_snvs(void)
{
/* Enable SNVS clock */
clock_enable(CCGR_SNVS, 1);
/* Initialize glitch detect */
writel(SNVS_LPPGDR_INIT, SNVS_BASE_ADDR + SNVS_LPLVDR);
/* Clear interrupt status */
writel(0xffffffff, SNVS_BASE_ADDR + SNVS_LPSR);
}
int arch_cpu_init(void)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
#if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF)
icache_enable();
#endif
/*
* ROM might disable clock for SCTR,
* enable the clock before timer_init.
*/
if (IS_ENABLED(CONFIG_SPL_BUILD))
clock_enable(CCGR_SCTR, 1);
/*
* Init timer at very early state, because sscg pll setting
* will use it
*/
timer_init();
if (IS_ENABLED(CONFIG_SPL_BUILD)) {
clock_init();
imx_set_wdog_powerdown(false);
if (is_imx8md() || is_imx8mmd() || is_imx8mmdl() || is_imx8mms() ||
is_imx8mmsl() || is_imx8mnd() || is_imx8mndl() || is_imx8mns() ||
is_imx8mnsl() || is_imx8mpd() || is_imx8mnud() || is_imx8mnus()) {
/* Power down cpu core 1, 2 and 3 for iMX8M Dual core or Single core */
struct pgc_reg *pgc_core1 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x840);
struct pgc_reg *pgc_core2 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x880);
struct pgc_reg *pgc_core3 = (struct pgc_reg *)(GPC_BASE_ADDR + 0x8C0);
struct gpc_reg *gpc = (struct gpc_reg *)GPC_BASE_ADDR;
writel(0x1, &pgc_core2->pgcr);
writel(0x1, &pgc_core3->pgcr);
if (is_imx8mms() || is_imx8mmsl() || is_imx8mns() || is_imx8mnsl() || is_imx8mnus()) {
writel(0x1, &pgc_core1->pgcr);
writel(0xE, &gpc->cpu_pgc_dn_trg);
} else {
writel(0xC, &gpc->cpu_pgc_dn_trg);
}
}
}
if (is_imx8mq()) {
clock_enable(CCGR_OCOTP, 1);
if (readl(&ocotp->ctrl) & 0x200)
writel(0x200, &ocotp->ctrl_clr);
}
imx8m_setup_snvs();
return 0;
}
#if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP)
struct rom_api *g_rom_api = (struct rom_api *)0x980;
#endif
#if defined(CONFIG_IMX8M)
#include <spl.h>
int spl_mmc_emmc_boot_partition(struct mmc *mmc)
{
u32 *rom_log_addr = (u32 *)0x9e0;
u32 *rom_log;
u8 event_id;
int i, part;
part = default_spl_mmc_emmc_boot_partition(mmc);
/* If the ROM event log pointer is not valid. */
if (*rom_log_addr < 0x900000 || *rom_log_addr >= 0xb00000 ||
*rom_log_addr & 0x3)
return part;
/* Parse the ROM event ID version 2 log */
rom_log = (u32 *)(uintptr_t)(*rom_log_addr);
for (i = 0; i < 128; i++) {
event_id = rom_log[i] >> 24;
switch (event_id) {
case 0x00: /* End of list */
return part;
/* Log entries with 1 parameter, skip 1 */
case 0x80: /* Start to perform the device initialization */
case 0x81: /* The boot device initialization completes */
case 0x8f: /* The boot device initialization fails */
case 0x90: /* Start to read data from boot device */
case 0x91: /* Reading data from boot device completes */
case 0x9f: /* Reading data from boot device fails */
i += 1;
continue;
/* Log entries with 2 parameters, skip 2 */
case 0xa0: /* Image authentication result */
case 0xc0: /* Jump to the boot image soon */
i += 2;
continue;
/* Boot from the secondary boot image */
case 0x51:
/*
* Swap the eMMC boot partitions in case there was a
* fallback event (i.e. primary image was corrupted
* and that corruption was recognized by the BootROM),
* so the SPL loads the rest of the U-Boot from the
* correct eMMC boot partition, since the BootROM
* leaves the boot partition set to the corrupted one.
*/
if (part == 1)
part = 2;
else if (part == 2)
part = 1;
continue;
default:
continue;
}
}
return part;
}
#endif
bool is_usb_boot(void)
{
return get_boot_device() == USB_BOOT;
}
#ifdef CONFIG_OF_SYSTEM_SETUP
bool check_fdt_new_path(void *blob)
{
const char *soc_path = "/soc@0";
int nodeoff;
nodeoff = fdt_path_offset(blob, soc_path);
if (nodeoff < 0)
return false;
return true;
}
static int disable_fdt_nodes(void *blob, const char *const nodes_path[], int size_array)
{
int i = 0;
int rc;
int nodeoff;
const char *status = "disabled";
for (i = 0; i < size_array; i++) {
nodeoff = fdt_path_offset(blob, nodes_path[i]);
if (nodeoff < 0)
continue; /* Not found, skip it */
printf("Found %s node\n", nodes_path[i]);
add_status:
rc = fdt_setprop(blob, nodeoff, "status", status, strlen(status) + 1);
if (rc) {
if (rc == -FDT_ERR_NOSPACE) {
rc = fdt_increase_size(blob, 512);
if (!rc)
goto add_status;
}
printf("Unable to update property %s:%s, err=%s\n",
nodes_path[i], "status", fdt_strerror(rc));
} else {
printf("Modify %s:%s disabled\n",
nodes_path[i], "status");
}
}
return 0;
}
#ifdef CONFIG_IMX8MQ
bool check_dcss_fused(void)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
u32 value = readl(&fuse->tester4);
if (value & 0x4000000)
return true;
return false;
}
static int disable_mipi_dsi_nodes(void *blob)
{
static const char * const nodes_path[] = {
"/mipi_dsi@30A00000",
"/mipi_dsi_bridge@30A00000",
"/dsi_phy@30A00300",
"/soc@0/bus@30800000/mipi_dsi@30a00000",
"/soc@0/bus@30800000/dphy@30a00300",
"/soc@0/bus@30800000/mipi-dsi@30a00000",
};
return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path));
}
static int disable_dcss_nodes(void *blob)
{
static const char * const nodes_path[] = {
"/dcss@0x32e00000",
"/dcss@32e00000",
"/hdmi@32c00000",
"/hdmi_cec@32c33800",
"/hdmi_drm@32c00000",
"/display-subsystem",
"/sound-hdmi",
"/sound-hdmi-arc",
"/soc@0/bus@32c00000/display-controller@32e00000",
"/soc@0/bus@32c00000/hdmi@32c00000",
};
return disable_fdt_nodes(blob, nodes_path, ARRAY_SIZE(nodes_path));
}
static int check_mipi_dsi_nodes(void *blob)
{
static const char * const lcdif_path[] = {
"/lcdif@30320000",
"/soc@0/bus@30000000/lcdif@30320000",
"/soc@0/bus@30000000/lcd-controller@30320000"
};
static const char * const mipi_dsi_path[] = {
"/mipi_dsi@30A00000",
"/soc@0/bus@30800000/mipi_dsi@30a00000"
};
static const char * const lcdif_ep_path[] = {
"/lcdif@30320000/port@0/mipi-dsi-endpoint",
"/soc@0/bus@30000000/lcdif@30320000/port@0/endpoint",
"/soc@0/bus@30000000/lcd-controller@30320000/port@0/endpoint"
};
static const char * const mipi_dsi_ep_path[] = {
"/mipi_dsi@30A00000/port@1/endpoint",
"/soc@0/bus@30800000/mipi_dsi@30a00000/ports/port@0/endpoint",
"/soc@0/bus@30800000/mipi-dsi@30a00000/ports/port@0/endpoint@0"
};
int lookup_node;
int nodeoff;
bool new_path = check_fdt_new_path(blob);
int i = new_path ? 1 : 0;
nodeoff = fdt_path_offset(blob, lcdif_path[i]);
if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff)) {
/*
* If can't find lcdif node or lcdif node is disabled,
* then disable all mipi dsi, since they only can input
* from DCSS
*/
return disable_mipi_dsi_nodes(blob);
}
nodeoff = fdt_path_offset(blob, mipi_dsi_path[i]);
if (nodeoff < 0 || !fdtdec_get_is_enabled(blob, nodeoff))
return 0;
nodeoff = fdt_path_offset(blob, lcdif_ep_path[i]);
if (nodeoff < 0) {
/*
* If can't find lcdif endpoint, then disable all mipi dsi,
* since they only can input from DCSS
*/
return disable_mipi_dsi_nodes(blob);
}
lookup_node = fdtdec_lookup_phandle(blob, nodeoff, "remote-endpoint");
nodeoff = fdt_path_offset(blob, mipi_dsi_ep_path[i]);
if (nodeoff > 0 && nodeoff == lookup_node)
return 0;
return disable_mipi_dsi_nodes(blob);
}
#endif
int disable_vpu_nodes(void *blob)
{
static const char * const nodes_path_8mq[] = {
"/vpu@38300000",
"/soc@0/vpu@38300000"
};
static const char * const nodes_path_8mm[] = {
"/vpu_g1@38300000",
"/vpu_g2@38310000",
"/vpu_h1@38320000"
};
static const char * const nodes_path_8mp[] = {
"/vpu_g1@38300000",
"/vpu_g2@38310000",
"/vpu_vc8000e@38320000"
};
if (is_imx8mq())
return disable_fdt_nodes(blob, nodes_path_8mq, ARRAY_SIZE(nodes_path_8mq));
else if (is_imx8mm())
return disable_fdt_nodes(blob, nodes_path_8mm, ARRAY_SIZE(nodes_path_8mm));
else if (is_imx8mp())
return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp));
else
return -EPERM;
}
#ifdef CONFIG_IMX8MN_LOW_DRIVE_MODE
static int low_drive_gpu_freq(void *blob)
{
static const char *nodes_path_8mn[] = {
"/gpu@38000000",
"/soc@0/gpu@38000000"
};
int nodeoff, cnt, i;
u32 assignedclks[7];
nodeoff = fdt_path_offset(blob, nodes_path_8mn[0]);
if (nodeoff < 0)
return nodeoff;
cnt = fdtdec_get_int_array_count(blob, nodeoff, "assigned-clock-rates", assignedclks, 7);
if (cnt < 0)
return cnt;
if (cnt != 7)
printf("Warning: %s, assigned-clock-rates count %d\n", nodes_path_8mn[0], cnt);
assignedclks[cnt - 1] = 200000000;
assignedclks[cnt - 2] = 200000000;
for (i = 0; i < cnt; i++) {
debug("<%u>, ", assignedclks[i]);
assignedclks[i] = cpu_to_fdt32(assignedclks[i]);
}
debug("\n");
return fdt_setprop(blob, nodeoff, "assigned-clock-rates", &assignedclks, sizeof(assignedclks));
}
#endif
static bool check_remote_endpoint(void *blob, const char *ep1, const char *ep2)
{
int lookup_node;
int nodeoff;
nodeoff = fdt_path_offset(blob, ep1);
if (nodeoff) {
lookup_node = fdtdec_lookup_phandle(blob, nodeoff, "remote-endpoint");
nodeoff = fdt_path_offset(blob, ep2);
if (nodeoff > 0 && nodeoff == lookup_node)
return true;
}
return false;
}
int disable_dsi_lcdif_nodes(void *blob)
{
int ret;
static const char * const dsi_path_8mp[] = {
"/soc@0/bus@32c00000/mipi_dsi@32e60000"
};
static const char * const lcdif_path_8mp[] = {
"/soc@0/bus@32c00000/lcd-controller@32e80000"
};
static const char * const lcdif_ep_path_8mp[] = {
"/soc@0/bus@32c00000/lcd-controller@32e80000/port@0/endpoint"
};
static const char * const dsi_ep_path_8mp[] = {
"/soc@0/bus@32c00000/mipi_dsi@32e60000/port@0/endpoint"
};
ret = disable_fdt_nodes(blob, dsi_path_8mp, ARRAY_SIZE(dsi_path_8mp));
if (ret)
return ret;
if (check_remote_endpoint(blob, dsi_ep_path_8mp[0], lcdif_ep_path_8mp[0])) {
/* Disable lcdif node */
return disable_fdt_nodes(blob, lcdif_path_8mp, ARRAY_SIZE(lcdif_path_8mp));
}
return 0;
}
int disable_lvds_lcdif_nodes(void *blob)
{
int ret, i;
static const char * const ldb_path_8mp[] = {
"/soc@0/bus@32c00000/ldb@32ec005c",
"/soc@0/bus@32c00000/phy@32ec0128"
};
static const char * const lcdif_path_8mp[] = {
"/soc@0/bus@32c00000/lcd-controller@32e90000"
};
static const char * const lcdif_ep_path_8mp[] = {
"/soc@0/bus@32c00000/lcd-controller@32e90000/port@0/endpoint@0",
"/soc@0/bus@32c00000/lcd-controller@32e90000/port@0/endpoint@1"
};
static const char * const ldb_ep_path_8mp[] = {
"/soc@0/bus@32c00000/ldb@32ec005c/lvds-channel@0/port@0/endpoint",
"/soc@0/bus@32c00000/ldb@32ec005c/lvds-channel@1/port@0/endpoint"
};
ret = disable_fdt_nodes(blob, ldb_path_8mp, ARRAY_SIZE(ldb_path_8mp));
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(ldb_ep_path_8mp); i++) {
if (check_remote_endpoint(blob, ldb_ep_path_8mp[i], lcdif_ep_path_8mp[i])) {
/* Disable lcdif node */
return disable_fdt_nodes(blob, lcdif_path_8mp, ARRAY_SIZE(lcdif_path_8mp));
}
}
return 0;
}
int disable_gpu_nodes(void *blob)
{
static const char * const nodes_path_8mn[] = {
"/gpu@38000000",
"/soc@/gpu@38000000"
};
static const char * const nodes_path_8mp[] = {
"/gpu3d@38000000",
"/gpu2d@38008000"
};
if (is_imx8mp())
return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp));
else
return disable_fdt_nodes(blob, nodes_path_8mn, ARRAY_SIZE(nodes_path_8mn));
}
int disable_npu_nodes(void *blob)
{
static const char * const nodes_path_8mp[] = {
"/vipsi@38500000"
};
return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp));
}
int disable_isp_nodes(void *blob)
{
static const char * const nodes_path_8mp[] = {
"/soc@0/bus@32c00000/camera/isp@32e10000",
"/soc@0/bus@32c00000/camera/isp@32e20000"
};
return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp));
}
int disable_dsp_nodes(void *blob)
{
static const char * const nodes_path_8mp[] = {
"/dsp@3b6e8000"
};
return disable_fdt_nodes(blob, nodes_path_8mp, ARRAY_SIZE(nodes_path_8mp));
}
static void disable_thermal_cpu_nodes(void *blob, u32 disabled_cores)
{
static const char * const thermal_path[] = {
"/thermal-zones/cpu-thermal/cooling-maps/map0"
};
int nodeoff, cnt, i, ret, j;
u32 cooling_dev[12];
for (i = 0; i < ARRAY_SIZE(thermal_path); i++) {
nodeoff = fdt_path_offset(blob, thermal_path[i]);
if (nodeoff < 0)
continue; /* Not found, skip it */
cnt = fdtdec_get_int_array_count(blob, nodeoff, "cooling-device", cooling_dev, 12);
if (cnt < 0)
continue;
if (cnt != 12)
printf("Warning: %s, cooling-device count %d\n", thermal_path[i], cnt);
for (j = 0; j < cnt; j++)
cooling_dev[j] = cpu_to_fdt32(cooling_dev[j]);
ret = fdt_setprop(blob, nodeoff, "cooling-device", &cooling_dev,
sizeof(u32) * (12 - disabled_cores * 3));
if (ret < 0) {
printf("Warning: %s, cooling-device setprop failed %d\n",
thermal_path[i], ret);
continue;
}
printf("Update node %s, cooling-device prop\n", thermal_path[i]);
}
}
static void disable_pmu_cpu_nodes(void *blob, u32 disabled_cores)
{
static const char * const pmu_path[] = {
"/pmu"
};
int nodeoff, cnt, i, ret, j;
u32 irq_affinity[4];
for (i = 0; i < ARRAY_SIZE(pmu_path); i++) {
nodeoff = fdt_path_offset(blob, pmu_path[i]);
if (nodeoff < 0)
continue; /* Not found, skip it */
cnt = fdtdec_get_int_array_count(blob, nodeoff, "interrupt-affinity",
irq_affinity, 4);
if (cnt < 0)
continue;
if (cnt != 4)
printf("Warning: %s, interrupt-affinity count %d\n", pmu_path[i], cnt);
for (j = 0; j < cnt; j++)
irq_affinity[j] = cpu_to_fdt32(irq_affinity[j]);
ret = fdt_setprop(blob, nodeoff, "interrupt-affinity", &irq_affinity,
sizeof(u32) * (4 - disabled_cores));
if (ret < 0) {
printf("Warning: %s, interrupt-affinity setprop failed %d\n",
pmu_path[i], ret);
continue;
}
printf("Update node %s, interrupt-affinity prop\n", pmu_path[i]);
}
}
static int disable_cpu_nodes(void *blob, u32 disabled_cores)
{
static const char * const nodes_path[] = {
"/cpus/cpu@1",
"/cpus/cpu@2",
"/cpus/cpu@3",
};
u32 i = 0;
int rc;
int nodeoff;
if (disabled_cores > 3)
return -EINVAL;
i = 3 - disabled_cores;
for (; i < 3; i++) {
nodeoff = fdt_path_offset(blob, nodes_path[i]);
if (nodeoff < 0)
continue; /* Not found, skip it */
debug("Found %s node\n", nodes_path[i]);
rc = fdt_del_node(blob, nodeoff);
if (rc < 0) {
printf("Unable to delete node %s, err=%s\n",
nodes_path[i], fdt_strerror(rc));
} else {
printf("Delete node %s\n", nodes_path[i]);
}
}
disable_thermal_cpu_nodes(blob, disabled_cores);
disable_pmu_cpu_nodes(blob, disabled_cores);
return 0;
}
static int cleanup_nodes_for_efi(void *blob)
{
static const char * const path[][2] = {
{ "/soc@0/bus@32c00000/usb@32e40000", "extcon" },
{ "/soc@0/bus@32c00000/usb@32e50000", "extcon" },
{ "/soc@0/bus@30800000/ethernet@30be0000", "phy-reset-gpios" },
{ "/soc@0/bus@30800000/ethernet@30bf0000", "phy-reset-gpios" }
};
int nodeoff, i, rc;
for (i = 0; i < ARRAY_SIZE(path); i++) {
nodeoff = fdt_path_offset(blob, path[i][0]);
if (nodeoff < 0)
continue; /* Not found, skip it */
debug("Found %s node\n", path[i][0]);
rc = fdt_delprop(blob, nodeoff, path[i][1]);
if (rc == -FDT_ERR_NOTFOUND)
continue;
if (rc) {
printf("Unable to update property %s:%s, err=%s\n",
path[i][0], path[i][1], fdt_strerror(rc));
return rc;
}
printf("Remove %s:%s\n", path[i][0], path[i][1]);
}
return 0;
}
static int fixup_thermal_trips(void *blob, const char *name)
{
int minc, maxc;
int node, trip;
node = fdt_path_offset(blob, "/thermal-zones");
if (node < 0)
return node;
node = fdt_subnode_offset(blob, node, name);
if (node < 0)
return node;
node = fdt_subnode_offset(blob, node, "trips");
if (node < 0)
return node;
get_cpu_temp_grade(&minc, &maxc);
fdt_for_each_subnode(trip, blob, node) {
const char *type;
int temp, ret;
type = fdt_getprop(blob, trip, "type", NULL);
if (!type)
continue;
temp = 0;
if (!strcmp(type, "critical"))
temp = 1000 * maxc;
else if (!strcmp(type, "passive"))
temp = 1000 * (maxc - 10);
if (temp) {
ret = fdt_setprop_u32(blob, trip, "temperature", temp);
if (ret)
return ret;
}
}
return 0;
}
int ft_system_setup(void *blob, struct bd_info *bd)
{
#ifdef CONFIG_IMX8MQ
int i = 0;
int rc;
int nodeoff;
if (get_boot_device() == USB_BOOT) {
disable_dcss_nodes(blob);
bool new_path = check_fdt_new_path(blob);
int v = new_path ? 1 : 0;
static const char * const usb_dwc3_path[] = {
"/usb@38100000/dwc3",
"/soc@0/usb@38100000"
};
nodeoff = fdt_path_offset(blob, usb_dwc3_path[v]);
if (nodeoff >= 0) {
const char *speed = "high-speed";
printf("Found %s node\n", usb_dwc3_path[v]);
usb_modify_speed:
rc = fdt_setprop(blob, nodeoff, "maximum-speed", speed, strlen(speed) + 1);
if (rc) {
if (rc == -FDT_ERR_NOSPACE) {
rc = fdt_increase_size(blob, 512);
if (!rc)
goto usb_modify_speed;
}
printf("Unable to set property %s:%s, err=%s\n",
usb_dwc3_path[v], "maximum-speed", fdt_strerror(rc));
} else {
printf("Modify %s:%s = %s\n",
usb_dwc3_path[v], "maximum-speed", speed);
}
} else {
printf("Can't found %s node\n", usb_dwc3_path[v]);
}
}
/* Disable the CPU idle for A0 chip since the HW does not support it */
if (is_soc_rev(CHIP_REV_1_0)) {
static const char * const nodes_path[] = {
"/cpus/cpu@0",
"/cpus/cpu@1",
"/cpus/cpu@2",
"/cpus/cpu@3",
};
for (i = 0; i < ARRAY_SIZE(nodes_path); i++) {
nodeoff = fdt_path_offset(blob, nodes_path[i]);
if (nodeoff < 0)
continue; /* Not found, skip it */
debug("Found %s node\n", nodes_path[i]);
rc = fdt_delprop(blob, nodeoff, "cpu-idle-states");
if (rc == -FDT_ERR_NOTFOUND)
continue;
if (rc) {
printf("Unable to update property %s:%s, err=%s\n",
nodes_path[i], "status", fdt_strerror(rc));
return rc;
}
debug("Remove %s:%s\n", nodes_path[i],
"cpu-idle-states");
}
}
if (is_imx8mql()) {
disable_vpu_nodes(blob);
if (check_dcss_fused()) {
printf("DCSS is fused\n");
disable_dcss_nodes(blob);
check_mipi_dsi_nodes(blob);
}
}
if (is_imx8md())
disable_cpu_nodes(blob, 2);
#elif defined(CONFIG_IMX8MM)
if (is_imx8mml() || is_imx8mmdl() || is_imx8mmsl())
disable_vpu_nodes(blob);
if (is_imx8mmd() || is_imx8mmdl())
disable_cpu_nodes(blob, 2);
else if (is_imx8mms() || is_imx8mmsl())
disable_cpu_nodes(blob, 3);
#elif defined(CONFIG_IMX8MN)
if (is_imx8mnl() || is_imx8mndl() || is_imx8mnsl())
disable_gpu_nodes(blob);
#ifdef CONFIG_IMX8MN_LOW_DRIVE_MODE
else {
int ldm_gpu = low_drive_gpu_freq(blob);
if (ldm_gpu < 0)
printf("Update GPU node assigned-clock-rates failed\n");
else
printf("Update GPU node assigned-clock-rates ok\n");
}
#endif
if (is_imx8mnd() || is_imx8mndl() || is_imx8mnud())
disable_cpu_nodes(blob, 2);
else if (is_imx8mns() || is_imx8mnsl() || is_imx8mnus())
disable_cpu_nodes(blob, 3);
#elif defined(CONFIG_IMX8MP)
if (is_imx8mpul()) {
/* Disable GPU */
disable_gpu_nodes(blob);
/* Disable DSI */
disable_dsi_lcdif_nodes(blob);
/* Disable LVDS */
disable_lvds_lcdif_nodes(blob);
}
if (is_imx8mpul() || is_imx8mpl())
disable_vpu_nodes(blob);
if (is_imx8mpul() || is_imx8mpl() || is_imx8mp6())
disable_npu_nodes(blob);
if (is_imx8mpul() || is_imx8mpl())
disable_isp_nodes(blob);
if (is_imx8mpul() || is_imx8mpl() || is_imx8mp6())
disable_dsp_nodes(blob);
if (is_imx8mpd())
disable_cpu_nodes(blob, 2);
#endif
cleanup_nodes_for_efi(blob);
if (fixup_thermal_trips(blob, "cpu-thermal"))
printf("Failed to update cpu-thermal trip(s)");
if (IS_ENABLED(CONFIG_IMX8MP) &&
fixup_thermal_trips(blob, "soc-thermal"))
printf("Failed to update soc-thermal trip(s)");
return 0;
}
#endif
#ifdef CONFIG_OF_BOARD_FIXUP
#ifndef CONFIG_SPL_BUILD
int board_fix_fdt(void *fdt)
{
if (is_imx8mpul()) {
int i = 0;
int nodeoff, ret;
const char *status = "disabled";
static const char * const dsi_nodes[] = {
"/soc@0/bus@32c00000/mipi_dsi@32e60000",
"/soc@0/bus@32c00000/lcd-controller@32e80000",
"/dsi-host"
};
for (i = 0; i < ARRAY_SIZE(dsi_nodes); i++) {
nodeoff = fdt_path_offset(fdt, dsi_nodes[i]);
if (nodeoff > 0) {
set_status:
ret = fdt_setprop(fdt, nodeoff, "status", status,
strlen(status) + 1);
if (ret == -FDT_ERR_NOSPACE) {
ret = fdt_increase_size(fdt, 512);
if (!ret)
goto set_status;
}
}
}
}
return 0;
}
#endif
#endif
#if !CONFIG_IS_ENABLED(SYSRESET)
void reset_cpu(void)
{
struct watchdog_regs *wdog = (struct watchdog_regs *)WDOG1_BASE_ADDR;
/* Clear WDA to trigger WDOG_B immediately */
writew((SET_WCR_WT(1) | WCR_WDT | WCR_WDE | WCR_SRS), &wdog->wcr);
while (1) {
/*
* spin for .5 seconds before reset
*/
}
}
#endif
#if defined(CONFIG_ARCH_MISC_INIT)
int arch_misc_init(void)
{
if (IS_ENABLED(CONFIG_FSL_CAAM)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(caam_jr), &dev);
if (ret)
printf("Failed to initialize caam_jr: %d\n", ret);
}
return 0;
}
#endif
void imx_tmu_arch_init(void *reg_base)
{
if (is_imx8mm() || is_imx8mn()) {
/* Load TCALIV and TASR from fuses */
struct ocotp_regs *ocotp =
(struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[3];
struct fuse_bank3_regs *fuse =
(struct fuse_bank3_regs *)bank->fuse_regs;
u32 tca_rt, tca_hr, tca_en;
u32 buf_vref, buf_slope;
tca_rt = fuse->ana0 & 0xFF;
tca_hr = (fuse->ana0 & 0xFF00) >> 8;
tca_en = (fuse->ana0 & 0x2000000) >> 25;
buf_vref = (fuse->ana0 & 0x1F00000) >> 20;
buf_slope = (fuse->ana0 & 0xF0000) >> 16;
writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28);
writel((tca_en << 31) | (tca_hr << 16) | tca_rt,
(ulong)reg_base + 0x30);
}
#ifdef CONFIG_IMX8MP
/* Load TCALIV0/1/m40 and TRIM from fuses */
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[38];
struct fuse_bank38_regs *fuse =
(struct fuse_bank38_regs *)bank->fuse_regs;
struct fuse_bank *bank2 = &ocotp->bank[39];
struct fuse_bank39_regs *fuse2 =
(struct fuse_bank39_regs *)bank2->fuse_regs;
u32 buf_vref, buf_slope, bjt_cur, vlsb, bgr;
u32 reg;
u32 tca40[2], tca25[2], tca105[2];
/* For blank sample */
if (!fuse->ana_trim2 && !fuse->ana_trim3 &&
!fuse->ana_trim4 && !fuse2->ana_trim5) {
/* Use a default 25C binary codes */
tca25[0] = 1596;
tca25[1] = 1596;
writel(tca25[0], (ulong)reg_base + 0x30);
writel(tca25[1], (ulong)reg_base + 0x34);
return;
}
buf_vref = (fuse->ana_trim2 & 0xc0) >> 6;
buf_slope = (fuse->ana_trim2 & 0xF00) >> 8;
bjt_cur = (fuse->ana_trim2 & 0xF000) >> 12;
bgr = (fuse->ana_trim2 & 0xF0000) >> 16;
vlsb = (fuse->ana_trim2 & 0xF00000) >> 20;
writel(buf_vref | (buf_slope << 16), (ulong)reg_base + 0x28);
reg = (bgr << 28) | (bjt_cur << 20) | (vlsb << 12) | (1 << 7);
writel(reg, (ulong)reg_base + 0x3c);
tca40[0] = (fuse->ana_trim3 & 0xFFF0000) >> 16;
tca25[0] = (fuse->ana_trim3 & 0xF0000000) >> 28;
tca25[0] |= ((fuse->ana_trim4 & 0xFF) << 4);
tca105[0] = (fuse->ana_trim4 & 0xFFF00) >> 8;
tca40[1] = (fuse->ana_trim4 & 0xFFF00000) >> 20;
tca25[1] = fuse2->ana_trim5 & 0xFFF;
tca105[1] = (fuse2->ana_trim5 & 0xFFF000) >> 12;
/* use 25c for 1p calibration */
writel(tca25[0] | (tca105[0] << 16), (ulong)reg_base + 0x30);
writel(tca25[1] | (tca105[1] << 16), (ulong)reg_base + 0x34);
writel(tca40[0] | (tca40[1] << 16), (ulong)reg_base + 0x38);
#endif
}
#if defined(CONFIG_SPL_BUILD)
#if defined(CONFIG_IMX8MQ) || defined(CONFIG_IMX8MM) || defined(CONFIG_IMX8MN)
bool serror_need_skip = true;
void do_error(struct pt_regs *pt_regs)
{
/*
* If stack is still in ROM reserved OCRAM not switch to SPL,
* it is the ROM SError
*/
ulong sp;
asm volatile("mov %0, sp" : "=r"(sp) : );
if (serror_need_skip && sp < 0x910000 && sp >= 0x900000) {
/* Check for ERR050342, imx8mq HDCP enabled parts */
if (is_imx8mq() && !(readl(OCOTP_BASE_ADDR + 0x450) & 0x08000000)) {
serror_need_skip = false;
return; /* Do nothing skip the SError in ROM */
}
/* Check for ERR050350, field return mode for imx8mq, mm and mn */
if (readl(OCOTP_BASE_ADDR + 0x630) & 0x1) {
serror_need_skip = false;
return; /* Do nothing skip the SError in ROM */
}
}
efi_restore_gd();
printf("\"Error\" handler, esr 0x%08lx\n", pt_regs->esr);
show_regs(pt_regs);
panic("Resetting CPU ...\n");
}
#endif
#endif
#if defined(CONFIG_IMX8MN) || defined(CONFIG_IMX8MP)
enum env_location arch_env_get_location(enum env_operation op, int prio)
{
enum boot_device dev = get_boot_device();
if (prio)
return ENVL_UNKNOWN;
switch (dev) {
case USB_BOOT:
if (IS_ENABLED(CONFIG_ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
if (IS_ENABLED(CONFIG_ENV_IS_IN_NAND))
return ENVL_NAND;
if (IS_ENABLED(CONFIG_ENV_IS_IN_MMC))
return ENVL_MMC;
if (IS_ENABLED(CONFIG_ENV_IS_NOWHERE))
return ENVL_NOWHERE;
return ENVL_UNKNOWN;
case QSPI_BOOT:
case SPI_NOR_BOOT:
if (IS_ENABLED(CONFIG_ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
return ENVL_NOWHERE;
case NAND_BOOT:
if (IS_ENABLED(CONFIG_ENV_IS_IN_NAND))
return ENVL_NAND;
return ENVL_NOWHERE;
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
if (IS_ENABLED(CONFIG_ENV_IS_IN_MMC))
return ENVL_MMC;
else if (IS_ENABLED(CONFIG_ENV_IS_IN_EXT4))
return ENVL_EXT4;
else if (IS_ENABLED(CONFIG_ENV_IS_IN_FAT))
return ENVL_FAT;
return ENVL_NOWHERE;
default:
return ENVL_NOWHERE;
}
}
#endif
#ifdef CONFIG_IMX_BOOTAUX
const struct rproc_att hostmap[] = {
/* aux core , host core, size */
{ 0x00000000, 0x007e0000, 0x00020000 },
/* OCRAM_S */
{ 0x00180000, 0x00180000, 0x00008000 },
/* OCRAM */
{ 0x00900000, 0x00900000, 0x00020000 },
/* OCRAM */
{ 0x00920000, 0x00920000, 0x00020000 },
/* QSPI Code - alias */
{ 0x08000000, 0x08000000, 0x08000000 },
/* DDR (Code) - alias */
{ 0x10000000, 0x80000000, 0x0FFE0000 },
/* TCML */
{ 0x1FFE0000, 0x007E0000, 0x00040000 },
/* OCRAM_S */
{ 0x20180000, 0x00180000, 0x00008000 },
/* OCRAM */
{ 0x20200000, 0x00900000, 0x00040000 },
/* DDR (Data) */
{ 0x40000000, 0x40000000, 0x80000000 },
{ /* sentinel */ }
};
#endif