u-boot/drivers/net/e1000.c

3064 lines
93 KiB
C
Raw Normal View History

/**************************************************************************
Intel Pro 1000 for ppcboot/das-u-boot
Drivers are port from Intel's Linux driver e1000-4.3.15
and from Etherboot pro 1000 driver by mrakes at vivato dot net
tested on both gig copper and gig fiber boards
***************************************************************************/
/*******************************************************************************
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* Copyright (C) Archway Digital Solutions.
*
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
* 2/9/2002
*
* Copyright (C) Linux Networx.
* Massive upgrade to work with the new intel gigabit NICs.
* <ebiederman at lnxi dot com>
*/
#include "e1000.h"
#define TOUT_LOOP 100000
#undef virt_to_bus
#define virt_to_bus(x) ((unsigned long)x)
#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
#define mdelay(n) udelay((n)*1000)
#define E1000_DEFAULT_PBA 0x00000030
/* NIC specific static variables go here */
static char tx_pool[128 + 16];
static char rx_pool[128 + 16];
static char packet[2096];
static struct e1000_tx_desc *tx_base;
static struct e1000_rx_desc *rx_base;
static int tx_tail;
static int rx_tail, rx_last;
static struct pci_device_id supported[] = {
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER},
{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF},
};
/* Function forward declarations */
static int e1000_setup_link(struct eth_device *nic);
static int e1000_setup_fiber_link(struct eth_device *nic);
static int e1000_setup_copper_link(struct eth_device *nic);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_check_for_link(struct eth_device *nic);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
uint16_t * duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t * phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data);
static void e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg)))
#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg))
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\
writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))))
#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
readl((a)->hw_addr + E1000_##reg + ((offset) << 2)))
#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
#ifndef CONFIG_AP1000 /* remove for warnings */
/******************************************************************************
* Raises the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Shift data bits out to the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* data - data to send to the EEPROM
* count - number of bits to shift out
*****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
{
uint32_t eecd;
uint32_t mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
* by setting "DI" to "0" and then raising and then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Shift data bits in from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw)
{
uint32_t eecd;
uint32_t i;
uint16_t data;
/* In order to read a register from the EEPROM, we need to shift 16 bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the "DO"
* bit. During this "shifting in" process the "DI" bit should always be
* clear..
*/
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/******************************************************************************
* Prepares EEPROM for access
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
static void
e1000_setup_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
/* Clear SK and DI */
eecd &= ~(E1000_EECD_SK | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
/* Deselct EEPROM */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
/* Clock high */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
/* Clock low */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(50);
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
*****************************************************************************/
static int
e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data)
{
uint32_t eecd;
uint32_t i = 0;
int large_eeprom = FALSE;
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544) {
eecd = E1000_READ_REG(hw, EECD);
if (eecd & E1000_EECD_SIZE)
large_eeprom = TRUE;
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
i++;
udelay(10);
eecd = E1000_READ_REG(hw, EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
}
/* Prepare the EEPROM for reading */
e1000_setup_eeprom(hw);
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3);
e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6);
/* Read the data */
*data = e1000_shift_in_ee_bits(hw);
/* End this read operation */
e1000_standby_eeprom(hw);
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
return 0;
}
#if 0
static void
e1000_eeprom_cleanup(struct e1000_hw *hw)
{
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
}
static uint16_t
e1000_wait_eeprom_done(struct e1000_hw *hw)
{
uint32_t eecd;
uint32_t i;
e1000_standby_eeprom(hw);
for (i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD);
if (eecd & E1000_EECD_DO)
return (TRUE);
udelay(5);
}
return (FALSE);
}
static int
e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data)
{
uint32_t eecd;
int large_eeprom = FALSE;
int i = 0;
/* Request EEPROM Access */
if (hw->mac_type > e1000_82544) {
eecd = E1000_READ_REG(hw, EECD);
if (eecd & E1000_EECD_SIZE)
large_eeprom = TRUE;
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
return FALSE;
}
}
e1000_setup_eeprom(hw);
e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5);
e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
e1000_standby_eeprom(hw);
e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3);
e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6);
e1000_shift_out_ee_bits(hw, Data, 16);
if (!e1000_wait_eeprom_done(hw)) {
return FALSE;
}
e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5);
e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4);
e1000_eeprom_cleanup(hw);
/* Stop requesting EEPROM access */
if (hw->mac_type > e1000_82544) {
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
i = 0;
eecd = E1000_READ_REG(hw, EECD);
while (((eecd & E1000_EECD_GNT)) && (i < 500)) {
i++;
udelay(10);
eecd = E1000_READ_REG(hw, EECD);
}
if ((eecd & E1000_EECD_GNT)) {
DEBUGOUT("Could not release EEPROM grant\n");
}
return TRUE;
}
#endif
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*****************************************************************************/
static int
e1000_validate_eeprom_checksum(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC();
for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
if (checksum == (uint16_t) EEPROM_SUM) {
return 0;
} else {
DEBUGOUT("EEPROM Checksum Invalid\n");
return -E1000_ERR_EEPROM;
}
}
#endif /* #ifndef CONFIG_AP1000 */
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* nic - Struct containing variables accessed by shared code
*****************************************************************************/
static int
e1000_read_mac_addr(struct eth_device *nic)
{
#ifndef CONFIG_AP1000
struct e1000_hw *hw = nic->priv;
uint16_t offset;
uint16_t eeprom_data;
int i;
DEBUGFUNC();
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
nic->enetaddr[i] = eeprom_data & 0xff;
nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
}
if ((hw->mac_type == e1000_82546) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
/* Invert the last bit if this is the second device */
nic->enetaddr[5] += 1;
}
#ifdef CONFIG_E1000_FALLBACK_MAC
if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) {
unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC;
memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE);
}
#endif
#else
/*
* The AP1000's e1000 has no eeprom; the MAC address is stored in the
* environment variables. Currently this does not support the addition
* of a PMC e1000 card, which is certainly a possibility, so this should
* be updated to properly use the env variable only for the onboard e1000
*/
int ii;
char *s, *e;
DEBUGFUNC();
s = getenv ("ethaddr");
if (s == NULL) {
return -E1000_ERR_EEPROM;
} else {
for(ii = 0; ii < 6; ii++) {
nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0;
if (s){
s = (*e) ? e + 1 : e;
}
}
}
#endif
return 0;
}
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
static void
e1000_init_rx_addrs(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t i;
uint32_t addr_low;
uint32_t addr_high;
DEBUGFUNC();
/* Setup the receive address. */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
addr_low = (nic->enetaddr[0] |
(nic->enetaddr[1] << 8) |
(nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24));
addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV);
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int
e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC();
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI_LF:
hw->mac_type = e1000_82541_rev_2;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
void
e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
uint32_t icr;
uint32_t manc;
DEBUGFUNC();
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = FALSE;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
mdelay(10);
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
ctrl = E1000_READ_REG(hw, CTRL);
#if 0
if (hw->mac_type > e1000_82543)
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
else
#endif
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
/* Force a reload from the EEPROM if necessary */
if (hw->mac_type < e1000_82540) {
/* Wait for reset to complete */
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* Wait for EEPROM reload */
mdelay(2);
} else {
/* Wait for EEPROM reload (it happens automatically) */
mdelay(4);
/* Dissable HW ARPs on ASF enabled adapters */
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
if (hw->mac_type == e1000_82542_rev2_0) {
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*****************************************************************************/
static int
e1000_init_hw(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t ctrl, status;
uint32_t i;
int32_t ret_val;
uint16_t pcix_cmd_word;
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
e1000_bus_type bus_type = e1000_bus_type_unknown;
DEBUGFUNC();
#if 0
/* Initialize Identification LED */
ret_val = e1000_id_led_init(hw);
if (ret_val < 0) {
DEBUGOUT("Error Initializing Identification LED\n");
return ret_val;
}
#endif
/* Set the Media Type and exit with error if it is not valid. */
if (hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = FALSE;
} else {
hw->media_type = e1000_media_type_copper;
}
} else {
/* This is an 82542 (fiber only) */
hw->media_type = e1000_media_type_fiber;
}
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw);
mdelay(5);
}
/* Setup the receive address. This involves initializing all of the Receive
* Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(nic);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if (hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
mdelay(1);
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
for (i = 0; i < E1000_MC_TBL_SIZE; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
#if 0
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives.
*/
if (hw->dma_fairness) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
#endif
if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
}
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
if (bus_type == e1000_bus_type_pcix) {
pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
&pcix_cmd_word);
pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
cmd_mmrbc =
(pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc =
(pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
pcix_cmd_word);
}
}
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(nic);
/* Set the transmit descriptor write-back policy */
if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl =
(ctrl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
#if 0
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs(hw);
#endif
return ret_val;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_link(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t ctrl_ext;
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC();
#ifndef CONFIG_AP1000
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
#else
/* we have to hardcode the proper value for our hardware. */
/* this value is for the 82540EM pci card used for prototyping, and it works. */
eeprom_data = 0xb220;
#endif
if (hw->fc == e1000_fc_default) {
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
hw->fc = e1000_fc_full;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~e1000_fc_rx_pause);
hw->original_fc = hw->fc;
DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_fiber) ?
e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic);
if (ret_val < 0) {
return ret_val;
}
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT
("Initializing the Flow Control address, type and timer regs\n");
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if (!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL,
(hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
}
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_fiber_link(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal;
int32_t ret_val;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal,
ctrl);
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
E1000_WRITE_REG(hw, TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
hw->txcw = txcw;
mdelay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
*/
if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == (LINK_UP_TIMEOUT / 10)) {
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if we
* detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
ret_val = e1000_check_for_link(nic);
if (ret_val < 0) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
DEBUGOUT("Valid Link Found\n");
}
} else {
DEBUGOUT("No Signal Detected\n");
return -E1000_ERR_NOLINK;
}
return 0;
}
/******************************************************************************
* Detects which PHY is present and the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_setup_copper_link(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t ctrl;
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
DEBUGFUNC();
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
} else {
ctrl |=
(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
e1000_phy_hw_reset(hw);
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
if (ret_val < 0) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
DEBUGOUT("Phy ID = %x \n", hw->phy_id);
/* Enable CRS on TX. This must be set for half-duplex operation. */
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
#if 0
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
#else
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
#endif
#if 0
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
#else
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
#endif
if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
phy_data |= M88E1000_EPSCR_TX_CLK_25;
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
if (ret_val < 0) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Options:
* autoneg = 1 (default)
* PHY will advertise value(s) parsed from
* autoneg_advertised and fc
* autoneg = 0
* PHY will be set to 10H, 10F, 100H, or 100F
* depending on value parsed from forced_speed_duplex.
*/
/* Is autoneg enabled? This is enabled by default or by software override.
* If so, call e1000_phy_setup_autoneg routine to parse the
* autoneg_advertised and fc options. If autoneg is NOT enabled, then the
* user should have provided a speed/duplex override. If so, then call
* e1000_phy_force_speed_duplex to parse and set this up.
*/
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val < 0) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
#if 0
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val < 0) {
DEBUGOUT
("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
#else
/* If we do not wait for autonegtation to complete I
* do not see a valid link status.
*/
ret_val = e1000_wait_autoneg(hw);
if (ret_val < 0) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
#endif
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for (i = 0; i < 10; i++) {
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_LINK_STATUS) {
/* We have link, so we need to finish the config process:
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
*/
if (hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val < 0) {
DEBUGOUT
("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
DEBUGOUT("Valid link established!!!\n");
return 0;
}
udelay(10);
}
DEBUGOUT("Unable to establish link!!!\n");
return -E1000_ERR_NOLINK;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC();
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Read the MII 1000Base-T Control Register (Address 9). */
if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT
("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
return 0;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void
e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl;
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t phy_data;
DEBUGFUNC();
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
static int
e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC();
/* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
return 0;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
static int
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC();
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) {
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (hw->media_type == e1000_media_type_copper) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error \n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
DEBUGOUT("PHY Read Error \n");
return -E1000_ERR_PHY;
}
if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
if (e1000_read_phy_reg
(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
DEBUGOUT("Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_tx_pause;
DEBUGOUT
("Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
{
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
else if (hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) {
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT
("Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
if (ret_val < 0) {
DEBUGOUT
("Error forcing flow control settings\n");
return ret_val;
}
} else {
DEBUGOUT
("Copper PHY and Auto Neg has not completed.\r\n");
}
}
return 0;
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by shared code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
static int
e1000_check_for_link(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
uint32_t rxcw;
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t signal;
int32_t ret_val;
uint16_t phy_data;
uint16_t lp_capability;
DEBUGFUNC();
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal
*/
ctrl = E1000_READ_REG(hw, CTRL);
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
signal = E1000_CTRL_SWDPIN1;
else
signal = 0;
status = E1000_READ_REG(hw, STATUS);
rxcw = E1000_READ_REG(hw, RXCW);
DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = FALSE;
} else {
/* No link detected */
return -E1000_ERR_NOLINK;
}
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if (hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
if (ret_val < 0) {
DEBUGOUT
("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed. First, we
* need to restore the desired flow control settings because we may
* have had to re-autoneg with a different link partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* parter capability register. We use the link partner capability to
* determine if TBI Compatibility needs to be turned on or off. If
* the link partner advertises any speed in addition to Gigabit, then
* we assume that they are GMII-based, and TBI compatibility is not
* needed. If no other speeds are advertised, we assume the link
* partner is TBI-based, and we turn on TBI Compatibility.
*/
if (hw->tbi_compatibility_en) {
if (e1000_read_phy_reg
(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
NWAY_LPAR_10T_FD_CAPS |
NWAY_LPAR_100TX_HD_CAPS |
NWAY_LPAR_100TX_FD_CAPS |
NWAY_LPAR_100T4_CAPS)) {
/* If our link partner advertises anything in addition to
* gigabit, we do not need to enable TBI compatibility.
*/
if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
hw->tbi_compatibility_on = FALSE;
}
} else {
/* If TBI compatibility is was previously off, turn it on. For
* compatibility with a TBI link partner, we will store bad
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
}
}
}
}
/* If we don't have link (auto-negotiation failed or link partner cannot
* auto-negotiate), the cable is plugged in (we have signal), and our
* link partner is not trying to auto-negotiate with us (we are receiving
* idles or data), we need to force link up. We also need to give
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(!(status & E1000_STATUS_LU)) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
(!(rxcw & E1000_RXCW_C))) {
if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
if (ret_val < 0) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
}
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable forced link in the
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
else if ((hw->media_type == e1000_media_type_fiber) &&
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT
("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
}
return 0;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
static void
e1000_get_speed_and_duplex(struct e1000_hw *hw,
uint16_t * speed, uint16_t * duplex)
{
uint32_t status;
DEBUGFUNC();
if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex\r\n");
}
} else {
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_wait_autoneg(struct e1000_hw *hw)
{
uint16_t i;
uint16_t phy_data;
DEBUGFUNC();
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
if (phy_data & MII_SR_AUTONEG_COMPLETE) {
DEBUGOUT("Auto-Neg complete.\n");
return 0;
}
mdelay(100);
}
DEBUGOUT("Auto-Neg timedout.\n");
return -E1000_ERR_TIMEOUT;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 2 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(2);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if (data & mask)
ctrl |= E1000_CTRL_MDIO;
else
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
udelay(2);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
if (ctrl & E1000_CTRL_MDIO)
data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int
e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (uint16_t) mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return 0;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < 64; i++) {
udelay(10);
mdic = E1000_READ_REG(hw, MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return 0;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static void
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
DEBUGFUNC();
DEBUGOUT("Resetting Phy...\n");
if (hw->mac_type > e1000_82543) {
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
mdelay(10);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
udelay(150);
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
static int
e1000_phy_reset(struct e1000_hw *hw)
{
uint16_t phy_data;
DEBUGFUNC();
if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
phy_data |= MII_CR_RESET;
if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) {
DEBUGOUT("PHY Write Error\n");
return -E1000_ERR_PHY;
}
udelay(1);
return 0;
}
static int e1000_set_phy_type (struct e1000_hw *hw)
{
DEBUGFUNC ();
if (hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
if (hw->mac_type == e1000_82541 ||
hw->mac_type == e1000_82541_rev_2) {
hw->phy_type = e1000_phy_igp;
break;
}
/* Fall Through */
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status;
uint16_t phy_id_high, phy_id_low;
int match = FALSE;
DEBUGFUNC();
/* Read the PHY ID Registers to identify which PHY is onboard. */
if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(2);
if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) {
DEBUGOUT("PHY Read Error\n");
return -E1000_ERR_PHY;
}
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
switch (hw->mac_type) {
case e1000_82543:
if (hw->phy_id == M88E1000_E_PHY_ID)
match = TRUE;
break;
case e1000_82544:
if (hw->phy_id == M88E1000_I_PHY_ID)
match = TRUE;
break;
case e1000_82540:
case e1000_82545:
case e1000_82546:
if (hw->phy_id == M88E1011_I_PHY_ID)
match = TRUE;
break;
case e1000_82541_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID)
match = TRUE;
break;
default:
DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
return 0;
}
DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int
e1000_sw_init(struct eth_device *nic, int cardnum)
{
struct e1000_hw *hw = (typeof(hw)) nic->priv;
int result;
/* PCI config space info */
pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
&hw->subsystem_vendor_id);
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
/* identify the MAC */
result = e1000_set_mac_type(hw);
if (result) {
E1000_ERR("Unknown MAC Type\n");
return result;
}
/* lan a vs. lan b settings */
if (hw->mac_type == e1000_82546)
/*this also works w/ multiple 82546 cards */
/*but not if they're intermingled /w other e1000s */
hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a;
else
hw->lan_loc = e1000_lan_a;
/* flow control settings */
hw->fc_high_water = E1000_FC_HIGH_THRESH;
hw->fc_low_water = E1000_FC_LOW_THRESH;
hw->fc_pause_time = E1000_FC_PAUSE_TIME;
hw->fc_send_xon = 1;
/* Media type - copper or fiber */
if (hw->mac_type >= e1000_82543) {
uint32_t status = E1000_READ_REG(hw, STATUS);
if (status & E1000_STATUS_TBIMODE) {
DEBUGOUT("fiber interface\n");
hw->media_type = e1000_media_type_fiber;
} else {
DEBUGOUT("copper interface\n");
hw->media_type = e1000_media_type_copper;
}
} else {
hw->media_type = e1000_media_type_fiber;
}
if (hw->mac_type < e1000_82543)
hw->report_tx_early = 0;
else
hw->report_tx_early = 1;
hw->tbi_compatibility_en = TRUE;
#if 0
hw->wait_autoneg_complete = FALSE;
hw->adaptive_ifs = TRUE;
/* Copper options */
if (hw->media_type == e1000_media_type_copper) {
hw->mdix = AUTO_ALL_MODES;
hw->disable_polarity_correction = FALSE;
}
#endif
return E1000_SUCCESS;
}
void
fill_rx(struct e1000_hw *hw)
{
struct e1000_rx_desc *rd;
rx_last = rx_tail;
rd = rx_base + rx_tail;
rx_tail = (rx_tail + 1) % 8;
memset(rd, 0, 16);
rd->buffer_addr = cpu_to_le64((u32) & packet);
E1000_WRITE_REG(hw, RDT, rx_tail);
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void
e1000_configure_tx(struct e1000_hw *hw)
{
unsigned long ptr;
unsigned long tctl;
unsigned long tipg;
ptr = (u32) tx_pool;
if (ptr & 0xf)
ptr = (ptr + 0x10) & (~0xf);
tx_base = (typeof(tx_base)) ptr;
E1000_WRITE_REG(hw, TDBAL, (u32) tx_base);
E1000_WRITE_REG(hw, TDBAH, 0);
E1000_WRITE_REG(hw, TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
tx_tail = 0;
/* Set the default values for the Tx Inter Packet Gap timer */
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
break;
default:
if (hw->media_type == e1000_media_type_fiber)
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
}
E1000_WRITE_REG(hw, TIPG, tipg);
#if 0
/* Set the Tx Interrupt Delay register */
E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
if (hw->mac_type >= e1000_82540)
E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
#endif
/* Program the Transmit Control Register */
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
E1000_WRITE_REG(hw, TCTL, tctl);
e1000_config_collision_dist(hw);
#if 0
/* Setup Transmit Descriptor Settings for this adapter */
adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE;
if (adapter->hw.report_tx_early == 1)
adapter->txd_cmd |= E1000_TXD_CMD_RS;
else
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
#endif
}
/**
* e1000_setup_rctl - configure the receive control register
* @adapter: Board private structure
**/
static void
e1000_setup_rctl(struct e1000_hw *hw)
{
uint32_t rctl;
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* |
(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
if (hw->tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
rctl &= ~(E1000_RCTL_SZ_4096);
#if 0
switch (adapter->rx_buffer_len) {
case E1000_RXBUFFER_2048:
default:
#endif
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
#if 0
break;
case E1000_RXBUFFER_4096:
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
case E1000_RXBUFFER_8192:
rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
case E1000_RXBUFFER_16384:
rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
break;
}
#endif
E1000_WRITE_REG(hw, RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void
e1000_configure_rx(struct e1000_hw *hw)
{
unsigned long ptr;
unsigned long rctl;
#if 0
unsigned long rxcsum;
#endif
rx_tail = 0;
/* make sure receives are disabled while setting up the descriptors */
rctl = E1000_READ_REG(hw, RCTL);
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
#if 0
/* set the Receive Delay Timer Register */
E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
#endif
if (hw->mac_type >= e1000_82540) {
#if 0
E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
#endif
/* Set the interrupt throttling rate. Value is calculated
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC 8000
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
}
/* Setup the Base and Length of the Rx Descriptor Ring */
ptr = (u32) rx_pool;
if (ptr & 0xf)
ptr = (ptr + 0x10) & (~0xf);
rx_base = (typeof(rx_base)) ptr;
E1000_WRITE_REG(hw, RDBAL, (u32) rx_base);
E1000_WRITE_REG(hw, RDBAH, 0);
E1000_WRITE_REG(hw, RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
#if 0
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) {
rxcsum = E1000_READ_REG(hw, RXCSUM);
rxcsum |= E1000_RXCSUM_TUOFL;
E1000_WRITE_REG(hw, RXCSUM, rxcsum);
}
#endif
/* Enable Receives */
E1000_WRITE_REG(hw, RCTL, rctl);
fill_rx(hw);
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int
e1000_poll(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
struct e1000_rx_desc *rd;
/* return true if there's an ethernet packet ready to read */
rd = rx_base + rx_last;
if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD)
return 0;
/*DEBUGOUT("recv: packet len=%d \n", rd->length); */
2005-10-13 14:45:02 +00:00
NetReceive((uchar *)packet, le32_to_cpu(rd->length));
fill_rx(hw);
return 1;
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static int
e1000_transmit(struct eth_device *nic, volatile void *packet, int length)
{
struct e1000_hw *hw = nic->priv;
struct e1000_tx_desc *txp;
int i = 0;
txp = tx_base + tx_tail;
tx_tail = (tx_tail + 1) % 8;
txp->buffer_addr = cpu_to_le64(virt_to_bus(packet));
txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS | length);
txp->upper.data = 0;
E1000_WRITE_REG(hw, TDT, tx_tail);
while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) {
if (i++ > TOUT_LOOP) {
DEBUGOUT("e1000: tx timeout\n");
return 0;
}
udelay(10); /* give the nic a chance to write to the register */
}
return 1;
}
/*reset function*/
static inline int
e1000_reset(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
e1000_reset_hw(hw);
if (hw->mac_type >= e1000_82544) {
E1000_WRITE_REG(hw, WUC, 0);
}
return e1000_init_hw(nic);
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void
e1000_disable(struct eth_device *nic)
{
struct e1000_hw *hw = nic->priv;
/* Turn off the ethernet interface */
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, 0);
/* Clear the transmit ring */
E1000_WRITE_REG(hw, TDH, 0);
E1000_WRITE_REG(hw, TDT, 0);
/* Clear the receive ring */
E1000_WRITE_REG(hw, RDH, 0);
E1000_WRITE_REG(hw, RDT, 0);
/* put the card in its initial state */
#if 0
E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST);
#endif
mdelay(10);
}
/**************************************************************************
INIT - set up ethernet interface(s)
***************************************************************************/
static int
e1000_init(struct eth_device *nic, bd_t * bis)
{
struct e1000_hw *hw = nic->priv;
int ret_val = 0;
ret_val = e1000_reset(nic);
if (ret_val < 0) {
if ((ret_val == -E1000_ERR_NOLINK) ||
(ret_val == -E1000_ERR_TIMEOUT)) {
E1000_ERR("Valid Link not detected\n");
} else {
E1000_ERR("Hardware Initialization Failed\n");
}
return 0;
}
e1000_configure_tx(hw);
e1000_setup_rctl(hw);
e1000_configure_rx(hw);
return 1;
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
***************************************************************************/
int
e1000_initialize(bd_t * bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *nic = NULL;
struct e1000_hw *hw = NULL;
u32 iobase;
int idx = 0;
u32 PciCommandWord;
while (1) { /* Find PCI device(s) */
if ((devno = pci_find_devices(supported, idx++)) < 0) {
break;
}
pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase);
iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */
DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase);
pci_write_config_dword(devno, PCI_COMMAND,
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
/* Check if I/O accesses and Bus Mastering are enabled. */
pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord);
if (!(PciCommandWord & PCI_COMMAND_MEMORY)) {
printf("Error: Can not enable MEM access.\n");
continue;
} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
nic = (struct eth_device *) malloc(sizeof (*nic));
hw = (struct e1000_hw *) malloc(sizeof (*hw));
hw->pdev = devno;
nic->priv = hw;
nic->iobase = bus_to_phys(devno, iobase);
sprintf(nic->name, "e1000#%d", card_number);
/* Are these variables needed? */
#if 0
hw->fc = e1000_fc_none;
hw->original_fc = e1000_fc_none;
#else
hw->fc = e1000_fc_default;
hw->original_fc = e1000_fc_default;
#endif
hw->autoneg_failed = 0;
hw->get_link_status = TRUE;
hw->hw_addr = (typeof(hw->hw_addr)) iobase;
hw->mac_type = e1000_undefined;
/* MAC and Phy settings */
if (e1000_sw_init(nic, card_number) < 0) {
free(hw);
free(nic);
return 0;
}
#if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G))
if (e1000_validate_eeprom_checksum(nic) < 0) {
printf("The EEPROM Checksum Is Not Valid\n");
free(hw);
free(nic);
return 0;
}
#endif
e1000_read_mac_addr(nic);
E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA);
printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n",
nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2],
nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]);
nic->init = e1000_init;
nic->recv = e1000_poll;
nic->send = e1000_transmit;
nic->halt = e1000_disable;
eth_register(nic);
card_number++;
}
return card_number;
}