u-boot/drivers/net/octeontx/bgx.c

1560 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell International Ltd.
*/
#include <config.h>
#include <dm.h>
#include <errno.h>
#include <fdt_support.h>
#include <malloc.h>
#include <miiphy.h>
#include <misc.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#include <pci_ids.h>
#include <asm/io.h>
#include <asm/arch/board.h>
#include <linux/delay.h>
#include <linux/libfdt.h>
#include "nic_reg.h"
#include "nic.h"
#include "bgx.h"
static const phy_interface_t if_mode[] = {
[QLM_MODE_SGMII] = PHY_INTERFACE_MODE_SGMII,
[QLM_MODE_RGMII] = PHY_INTERFACE_MODE_RGMII,
[QLM_MODE_QSGMII] = PHY_INTERFACE_MODE_QSGMII,
[QLM_MODE_XAUI] = PHY_INTERFACE_MODE_XAUI,
[QLM_MODE_RXAUI] = PHY_INTERFACE_MODE_RXAUI,
};
struct lmac {
struct bgx *bgx;
int dmac;
u8 mac[6];
bool link_up;
int lmacid; /* ID within BGX */
int phy_addr; /* ID on board */
struct udevice *dev;
struct mii_dev *mii_bus;
struct phy_device *phydev;
unsigned int last_duplex;
unsigned int last_link;
unsigned int last_speed;
int lane_to_sds;
int use_training;
int lmac_type;
u8 qlm_mode;
int qlm;
bool is_1gx;
};
struct bgx {
u8 bgx_id;
int node;
struct lmac lmac[MAX_LMAC_PER_BGX];
int lmac_count;
u8 max_lmac;
void __iomem *reg_base;
struct pci_dev *pdev;
bool is_rgx;
};
struct bgx_board_info bgx_board_info[MAX_BGX_PER_NODE];
struct bgx *bgx_vnic[MAX_BGX_PER_NODE];
/* APIs to read/write BGXX CSRs */
static u64 bgx_reg_read(struct bgx *bgx, uint8_t lmac, u64 offset)
{
u64 addr = (uintptr_t)bgx->reg_base +
((uint32_t)lmac << 20) + offset;
return readq((void *)addr);
}
static void bgx_reg_write(struct bgx *bgx, uint8_t lmac,
u64 offset, u64 val)
{
u64 addr = (uintptr_t)bgx->reg_base +
((uint32_t)lmac << 20) + offset;
writeq(val, (void *)addr);
}
static void bgx_reg_modify(struct bgx *bgx, uint8_t lmac,
u64 offset, u64 val)
{
u64 addr = (uintptr_t)bgx->reg_base +
((uint32_t)lmac << 20) + offset;
writeq(val | bgx_reg_read(bgx, lmac, offset), (void *)addr);
}
static int bgx_poll_reg(struct bgx *bgx, uint8_t lmac,
u64 reg, u64 mask, bool zero)
{
int timeout = 200;
u64 reg_val;
while (timeout) {
reg_val = bgx_reg_read(bgx, lmac, reg);
if (zero && !(reg_val & mask))
return 0;
if (!zero && (reg_val & mask))
return 0;
mdelay(1);
timeout--;
}
return 1;
}
static int gser_poll_reg(u64 reg, int bit, u64 mask, u64 expected_val,
int timeout)
{
u64 reg_val;
debug("%s reg = %#llx, mask = %#llx,", __func__, reg, mask);
debug(" expected_val = %#llx, bit = %d\n", expected_val, bit);
while (timeout) {
reg_val = readq(reg) >> bit;
if ((reg_val & mask) == (expected_val))
return 0;
mdelay(1);
timeout--;
}
return 1;
}
static bool is_bgx_port_valid(int bgx, int lmac)
{
debug("%s bgx %d lmac %d valid %d\n", __func__, bgx, lmac,
bgx_board_info[bgx].lmac_reg[lmac]);
if (bgx_board_info[bgx].lmac_reg[lmac])
return 1;
else
return 0;
}
struct lmac *bgx_get_lmac(int node, int bgx_idx, int lmacid)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
if (bgx)
return &bgx->lmac[lmacid];
return NULL;
}
const u8 *bgx_get_lmac_mac(int node, int bgx_idx, int lmacid)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
if (bgx)
return bgx->lmac[lmacid].mac;
return NULL;
}
void bgx_set_lmac_mac(int node, int bgx_idx, int lmacid, const u8 *mac)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
if (!bgx)
return;
memcpy(bgx->lmac[lmacid].mac, mac, 6);
}
/* Return number of BGX present in HW */
void bgx_get_count(int node, int *bgx_count)
{
int i;
struct bgx *bgx;
*bgx_count = 0;
for (i = 0; i < MAX_BGX_PER_NODE; i++) {
bgx = bgx_vnic[node * MAX_BGX_PER_NODE + i];
debug("bgx_vnic[%u]: %p\n", node * MAX_BGX_PER_NODE + i,
bgx);
if (bgx)
*bgx_count |= (1 << i);
}
}
/* Return number of LMAC configured for this BGX */
int bgx_get_lmac_count(int node, int bgx_idx)
{
struct bgx *bgx;
bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
if (bgx)
return bgx->lmac_count;
return 0;
}
void bgx_lmac_rx_tx_enable(int node, int bgx_idx, int lmacid, bool enable)
{
struct bgx *bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
u64 cfg;
if (!bgx)
return;
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
if (enable)
cfg |= CMR_PKT_RX_EN | CMR_PKT_TX_EN;
else
cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN);
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
}
static void bgx_flush_dmac_addrs(struct bgx *bgx, u64 lmac)
{
u64 dmac = 0x00;
u64 offset, addr;
while (bgx->lmac[lmac].dmac > 0) {
offset = ((bgx->lmac[lmac].dmac - 1) * sizeof(dmac)) +
(lmac * MAX_DMAC_PER_LMAC * sizeof(dmac));
addr = (uintptr_t)bgx->reg_base +
BGX_CMR_RX_DMACX_CAM + offset;
writeq(dmac, (void *)addr);
bgx->lmac[lmac].dmac--;
}
}
/* Configure BGX LMAC in internal loopback mode */
void bgx_lmac_internal_loopback(int node, int bgx_idx,
int lmac_idx, bool enable)
{
struct bgx *bgx;
struct lmac *lmac;
u64 cfg;
bgx = bgx_vnic[(node * MAX_BGX_PER_NODE) + bgx_idx];
if (!bgx)
return;
lmac = &bgx->lmac[lmac_idx];
if (lmac->qlm_mode == QLM_MODE_SGMII) {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL);
if (enable)
cfg |= PCS_MRX_CTL_LOOPBACK1;
else
cfg &= ~PCS_MRX_CTL_LOOPBACK1;
bgx_reg_write(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL, cfg);
} else {
cfg = bgx_reg_read(bgx, lmac_idx, BGX_SPUX_CONTROL1);
if (enable)
cfg |= SPU_CTL_LOOPBACK;
else
cfg &= ~SPU_CTL_LOOPBACK;
bgx_reg_write(bgx, lmac_idx, BGX_SPUX_CONTROL1, cfg);
}
}
/* Return the DLM used for the BGX */
static int get_qlm_for_bgx(int node, int bgx_id, int index)
{
int qlm = 0;
u64 cfg;
if (otx_is_soc(CN81XX)) {
qlm = (bgx_id) ? 2 : 0;
qlm += (index >= 2) ? 1 : 0;
} else if (otx_is_soc(CN83XX)) {
switch (bgx_id) {
case 0:
qlm = 2;
break;
case 1:
qlm = 3;
break;
case 2:
if (index >= 2)
qlm = 6;
else
qlm = 5;
break;
case 3:
qlm = 4;
break;
}
}
cfg = readq(GSERX_CFG(qlm)) & GSERX_CFG_BGX;
debug("%s:qlm%d: cfg = %lld\n", __func__, qlm, cfg);
/* Check if DLM is configured as BGX# */
if (cfg) {
if (readq(GSERX_PHY_CTL(qlm)))
return -1;
return qlm;
}
return -1;
}
static int bgx_lmac_sgmii_init(struct bgx *bgx, int lmacid)
{
u64 cfg;
struct lmac *lmac;
lmac = &bgx->lmac[lmacid];
debug("%s:bgx_id = %d, lmacid = %d\n", __func__, bgx->bgx_id, lmacid);
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_THRESH, 0x30);
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_RXX_JABBER, MAX_FRAME_SIZE);
/* Disable frame alignment if using preamble */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
if (cfg & 1)
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SGMII_CTL, 0);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
/* PCS reset */
bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_CTL,
PCS_MRX_CTL_RESET, true)) {
printf("BGX PCS reset not completed\n");
return -1;
}
/* power down, reset autoneg, autoneg enable */
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL);
cfg &= ~PCS_MRX_CTL_PWR_DN;
if (bgx_board_info[bgx->bgx_id].phy_info[lmacid].autoneg_dis)
cfg |= (PCS_MRX_CTL_RST_AN);
else
cfg |= (PCS_MRX_CTL_RST_AN | PCS_MRX_CTL_AN_EN);
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg);
/* Disable disparity for QSGMII mode, to prevent propogation across
* ports.
*/
if (lmac->qlm_mode == QLM_MODE_QSGMII) {
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL);
cfg &= ~PCS_MISCX_CTL_DISP_EN;
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL, cfg);
return 0; /* Skip checking AN_CPT */
}
if (lmac->is_1gx) {
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL);
cfg |= PCS_MISC_CTL_MODE;
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL, cfg);
}
if (lmac->qlm_mode == QLM_MODE_SGMII) {
if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_STATUS,
PCS_MRX_STATUS_AN_CPT, false)) {
printf("BGX AN_CPT not completed\n");
return -1;
}
}
return 0;
}
static int bgx_lmac_sgmii_set_link_speed(struct lmac *lmac)
{
u64 prtx_cfg;
u64 pcs_miscx_ctl;
u64 cfg;
struct bgx *bgx = lmac->bgx;
unsigned int lmacid = lmac->lmacid;
debug("%s: lmacid %d\n", __func__, lmac->lmacid);
/* Disable LMAC before setting up speed */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
/* Read GMX CFG */
prtx_cfg = bgx_reg_read(bgx, lmacid,
BGX_GMP_GMI_PRTX_CFG);
/* Read PCS MISCS CTL */
pcs_miscx_ctl = bgx_reg_read(bgx, lmacid,
BGX_GMP_PCS_MISCX_CTL);
/* Use GMXENO to force the link down*/
if (lmac->link_up) {
pcs_miscx_ctl &= ~PCS_MISC_CTL_GMX_ENO;
/* change the duplex setting if the link is up */
prtx_cfg |= GMI_PORT_CFG_DUPLEX;
} else {
pcs_miscx_ctl |= PCS_MISC_CTL_GMX_ENO;
}
/* speed based setting for GMX */
switch (lmac->last_speed) {
case 10:
prtx_cfg &= ~GMI_PORT_CFG_SPEED;
prtx_cfg |= GMI_PORT_CFG_SPEED_MSB;
prtx_cfg &= ~GMI_PORT_CFG_SLOT_TIME;
pcs_miscx_ctl |= 50; /* sampling point */
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SLOT, 0x40);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 100:
prtx_cfg &= ~GMI_PORT_CFG_SPEED;
prtx_cfg &= ~GMI_PORT_CFG_SPEED_MSB;
prtx_cfg &= ~GMI_PORT_CFG_SLOT_TIME;
pcs_miscx_ctl |= 0x5; /* sampling point */
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SLOT, 0x40);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_BURST, 0);
break;
case 1000:
prtx_cfg |= GMI_PORT_CFG_SPEED;
prtx_cfg &= ~GMI_PORT_CFG_SPEED_MSB;
prtx_cfg |= GMI_PORT_CFG_SLOT_TIME;
pcs_miscx_ctl |= 0x1; /* sampling point */
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SLOT, 0x200);
if (lmac->last_duplex)
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_BURST, 0);
else /* half duplex */
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_BURST,
0x2000);
break;
default:
break;
}
/* write back the new PCS misc and GMX settings */
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL, pcs_miscx_ctl);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_PRTX_CFG, prtx_cfg);
/* read back GMX CFG again to check config completion */
bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_PRTX_CFG);
/* enable BGX back */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg |= CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
return 0;
}
static int bgx_lmac_xaui_init(struct bgx *bgx, int lmacid, int lmac_type)
{
u64 cfg;
struct lmac *lmac;
lmac = &bgx->lmac[lmacid];
/* Reset SPU */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET);
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
printf("BGX SPU reset not completed\n");
return -1;
}
/* Disable LMAC */
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~CMR_EN;
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER);
/* Set interleaved running disparity for RXAUI */
if (lmac->qlm_mode != QLM_MODE_RXAUI)
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS);
else
bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL,
SPU_MISC_CTL_RX_DIS | SPU_MISC_CTL_INTLV_RDISP);
/* clear all interrupts */
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_RX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_INT);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
if (lmac->use_training) {
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LP_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_CUP, 0x00);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_REP, 0x00);
/* training enable */
bgx_reg_modify(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, SPU_PMD_CRTL_TRAIN_EN);
}
/* Append FCS to each packet */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, SMU_TX_APPEND_FCS_D);
/* Disable forward error correction */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_FEC_CONTROL);
cfg &= ~SPU_FEC_CTL_FEC_EN;
bgx_reg_write(bgx, lmacid, BGX_SPUX_FEC_CONTROL, cfg);
/* Disable autoneg */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL);
cfg = cfg & ~(SPU_AN_CTL_XNP_EN);
if (lmac->use_training)
cfg = cfg | (SPU_AN_CTL_AN_EN);
else
cfg = cfg & ~(SPU_AN_CTL_AN_EN);
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_CONTROL, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_ADV);
/* Clear all KR bits, configure according to the mode */
cfg &= ~((0xfULL << 22) | (1ULL << 12));
if (lmac->qlm_mode == QLM_MODE_10G_KR)
cfg |= (1 << 23);
else if (lmac->qlm_mode == QLM_MODE_40G_KR4)
cfg |= (1 << 24);
bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_ADV, cfg);
cfg = bgx_reg_read(bgx, 0, BGX_SPU_DBG_CONTROL);
if (lmac->use_training)
cfg |= SPU_DBG_CTL_AN_ARB_LINK_CHK_EN;
else
cfg &= ~SPU_DBG_CTL_AN_ARB_LINK_CHK_EN;
bgx_reg_write(bgx, 0, BGX_SPU_DBG_CONTROL, cfg);
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN);
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_CONTROL1);
cfg &= ~SPU_CTL_LOW_POWER;
bgx_reg_write(bgx, lmacid, BGX_SPUX_CONTROL1, cfg);
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_CTL);
cfg &= ~SMU_TX_CTL_UNI_EN;
cfg |= SMU_TX_CTL_DIC_EN;
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_CTL, cfg);
/* take lmac_count into account */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_THRESH, (0x100 - 1));
/* max packet size */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_RX_JABBER, MAX_FRAME_SIZE);
debug("xaui_init: lmacid = %d, qlm = %d, qlm_mode = %d\n",
lmacid, lmac->qlm, lmac->qlm_mode);
/* RXAUI with Marvell PHY requires some tweaking */
if (lmac->qlm_mode == QLM_MODE_RXAUI) {
char mii_name[20];
struct phy_info *phy;
phy = &bgx_board_info[bgx->bgx_id].phy_info[lmacid];
snprintf(mii_name, sizeof(mii_name), "smi%d", phy->mdio_bus);
debug("mii_name: %s\n", mii_name);
lmac->mii_bus = miiphy_get_dev_by_name(mii_name);
lmac->phy_addr = phy->phy_addr;
rxaui_phy_xs_init(lmac->mii_bus, lmac->phy_addr);
}
return 0;
}
/* Get max number of lanes present in a given QLM/DLM */
static int get_qlm_lanes(int qlm)
{
if (otx_is_soc(CN81XX))
return 2;
else if (otx_is_soc(CN83XX))
return (qlm >= 5) ? 2 : 4;
else
return -1;
}
int __rx_equalization(int qlm, int lane)
{
int max_lanes = get_qlm_lanes(qlm);
int l;
int fail = 0;
/* Before completing Rx equalization wait for
* GSERx_RX_EIE_DETSTS[CDRLOCK] to be set
* This ensures the rx data is valid
*/
if (lane == -1) {
if (gser_poll_reg(GSER_RX_EIE_DETSTS(qlm), GSER_CDRLOCK, 0xf,
(1 << max_lanes) - 1, 100)) {
debug("ERROR: CDR Lock not detected");
debug(" on DLM%d for 2 lanes\n", qlm);
return -1;
}
} else {
if (gser_poll_reg(GSER_RX_EIE_DETSTS(qlm), GSER_CDRLOCK,
(0xf & (1 << lane)), (1 << lane), 100)) {
debug("ERROR: DLM%d: CDR Lock not detected", qlm);
debug(" on %d lane\n", lane);
return -1;
}
}
for (l = 0; l < max_lanes; l++) {
u64 rctl, reer;
if (lane != -1 && lane != l)
continue;
/* Enable software control */
rctl = readq(GSER_BR_RXX_CTL(qlm, l));
rctl |= GSER_BR_RXX_CTL_RXT_SWM;
writeq(rctl, GSER_BR_RXX_CTL(qlm, l));
/* Clear the completion flag and initiate a new request */
reer = readq(GSER_BR_RXX_EER(qlm, l));
reer &= ~GSER_BR_RXX_EER_RXT_ESV;
reer |= GSER_BR_RXX_EER_RXT_EER;
writeq(reer, GSER_BR_RXX_EER(qlm, l));
}
/* Wait for RX equalization to complete */
for (l = 0; l < max_lanes; l++) {
u64 rctl, reer;
if (lane != -1 && lane != l)
continue;
gser_poll_reg(GSER_BR_RXX_EER(qlm, l), EER_RXT_ESV, 1, 1, 200);
reer = readq(GSER_BR_RXX_EER(qlm, l));
/* Switch back to hardware control */
rctl = readq(GSER_BR_RXX_CTL(qlm, l));
rctl &= ~GSER_BR_RXX_CTL_RXT_SWM;
writeq(rctl, GSER_BR_RXX_CTL(qlm, l));
if (reer & GSER_BR_RXX_EER_RXT_ESV) {
debug("Rx equalization completed on DLM%d", qlm);
debug(" QLM%d rxt_esm = 0x%llx\n", l, (reer & 0x3fff));
} else {
debug("Rx equalization timedout on DLM%d", qlm);
debug(" lane %d\n", l);
fail = 1;
}
}
return (fail) ? -1 : 0;
}
static int bgx_xaui_check_link(struct lmac *lmac)
{
struct bgx *bgx = lmac->bgx;
int lmacid = lmac->lmacid;
int lmac_type = lmac->lmac_type;
u64 cfg;
bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_RX_DIS);
/* check if auto negotiation is complete */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL);
if (cfg & SPU_AN_CTL_AN_EN) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_STATUS);
if (!(cfg & SPU_AN_STS_AN_COMPLETE)) {
/* Restart autonegotiation */
debug("restarting auto-neg\n");
bgx_reg_modify(bgx, lmacid, BGX_SPUX_AN_CONTROL,
SPU_AN_CTL_AN_RESTART);
return -1;
}
}
debug("%s link use_training %d\n", __func__, lmac->use_training);
if (lmac->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
debug("waiting for link training\n");
/* Clear the training interrupts (W1C) */
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
udelay(2000);
/* Restart training */
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
/* Perform RX Equalization. Applies to non-KR interfaces for speeds
* >= 6.25Gbps.
*/
if (!lmac->use_training) {
int qlm;
bool use_dlm = 0;
if (otx_is_soc(CN81XX) || (otx_is_soc(CN83XX) &&
bgx->bgx_id == 2))
use_dlm = 1;
switch (lmac->lmac_type) {
default:
case BGX_MODE_SGMII:
case BGX_MODE_RGMII:
case BGX_MODE_XAUI:
/* Nothing to do */
break;
case BGX_MODE_XLAUI:
if (use_dlm) {
if (__rx_equalization(lmac->qlm, -1) ||
__rx_equalization(lmac->qlm + 1, -1)) {
printf("BGX%d:%d", bgx->bgx_id, lmacid);
printf(" Waiting for RX Equalization");
printf(" on DLM%d/DLM%d\n",
lmac->qlm, lmac->qlm + 1);
return -1;
}
} else {
if (__rx_equalization(lmac->qlm, -1)) {
printf("BGX%d:%d", bgx->bgx_id, lmacid);
printf(" Waiting for RX Equalization");
printf(" on QLM%d\n", lmac->qlm);
return -1;
}
}
break;
case BGX_MODE_RXAUI:
/* RXAUI0 uses LMAC0:QLM0/QLM2 and RXAUI1 uses
* LMAC1:QLM1/QLM3 RXAUI requires 2 lanes
* for each interface
*/
qlm = lmac->qlm;
if (__rx_equalization(qlm, 0)) {
printf("BGX%d:%d", bgx->bgx_id, lmacid);
printf(" Waiting for RX Equalization");
printf(" on QLM%d, Lane0\n", qlm);
return -1;
}
if (__rx_equalization(qlm, 1)) {
printf("BGX%d:%d", bgx->bgx_id, lmacid);
printf(" Waiting for RX Equalization");
printf(" on QLM%d, Lane1\n", qlm);
return -1;
}
break;
case BGX_MODE_XFI:
{
int lid;
bool altpkg = otx_is_altpkg();
if (bgx->bgx_id == 0 && altpkg && lmacid)
lid = 0;
else if ((lmacid >= 2) && use_dlm)
lid = lmacid - 2;
else
lid = lmacid;
if (__rx_equalization(lmac->qlm, lid)) {
printf("BGX%d:%d", bgx->bgx_id, lid);
printf(" Waiting for RX Equalization");
printf(" on QLM%d\n", lmac->qlm);
}
}
break;
}
}
/* wait for PCS to come out of reset */
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) {
printf("BGX SPU reset not completed\n");
return -1;
}
if (lmac_type == 3 || lmac_type == 4) {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BR_STATUS1,
SPU_BR_STATUS_BLK_LOCK, false)) {
printf("SPU_BR_STATUS_BLK_LOCK not completed\n");
return -1;
}
} else {
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BX_STATUS,
SPU_BX_STATUS_RX_ALIGN, false)) {
printf("SPU_BX_STATUS_RX_ALIGN not completed\n");
return -1;
}
}
/* Clear rcvflt bit (latching high) and read it back */
bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS2, SPU_STATUS2_RCVFLT);
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) {
printf("Receive fault, retry training\n");
if (lmac->use_training) {
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT);
if (!(cfg & (1ull << 13))) {
cfg = (1ull << 13) | (1ull << 14);
bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg);
cfg = bgx_reg_read(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL);
cfg |= (1ull << 0);
bgx_reg_write(bgx, lmacid,
BGX_SPUX_BR_PMD_CRTL, cfg);
return -1;
}
}
return -1;
}
/* Wait for MAC RX to be ready */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_RX_CTL,
SMU_RX_CTL_STATUS, true)) {
printf("SMU RX link not okay\n");
return -1;
}
/* Wait for BGX RX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_RX_IDLE, false)) {
printf("SMU RX not idle\n");
return -1;
}
/* Wait for BGX TX to be idle */
if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_TX_IDLE, false)) {
printf("SMU TX not idle\n");
return -1;
}
if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) {
printf("Receive fault\n");
return -1;
}
/* Receive link is latching low. Force it high and verify it */
if (!(bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS1) &
SPU_STATUS1_RCV_LNK))
bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS1,
SPU_STATUS1_RCV_LNK);
if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_STATUS1,
SPU_STATUS1_RCV_LNK, false)) {
printf("SPU receive link down\n");
return -1;
}
cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_MISC_CONTROL);
cfg &= ~SPU_MISC_CTL_RX_DIS;
bgx_reg_write(bgx, lmacid, BGX_SPUX_MISC_CONTROL, cfg);
return 0;
}
static int bgx_lmac_enable(struct bgx *bgx, int8_t lmacid)
{
struct lmac *lmac;
u64 cfg;
lmac = &bgx->lmac[lmacid];
lmac->bgx = bgx;
debug("%s: lmac: %p, lmacid = %d\n", __func__, lmac, lmacid);
if (lmac->qlm_mode == QLM_MODE_SGMII ||
lmac->qlm_mode == QLM_MODE_RGMII ||
lmac->qlm_mode == QLM_MODE_QSGMII) {
if (bgx_lmac_sgmii_init(bgx, lmacid)) {
debug("bgx_lmac_sgmii_init failed\n");
return -1;
}
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_MIN_PKT, 60 - 1);
} else {
if (bgx_lmac_xaui_init(bgx, lmacid, lmac->lmac_type))
return -1;
cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_APPEND);
cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */
bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, cfg);
bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_MIN_PKT, 60 + 4);
}
/* Enable lmac */
bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG,
CMR_EN | CMR_PKT_RX_EN | CMR_PKT_TX_EN);
return 0;
}
int bgx_poll_for_link(int node, int bgx_idx, int lmacid)
{
int ret;
struct lmac *lmac = bgx_get_lmac(node, bgx_idx, lmacid);
char mii_name[10];
struct phy_info *phy;
if (!lmac) {
printf("LMAC %d/%d/%d is disabled or doesn't exist\n",
node, bgx_idx, lmacid);
return 0;
}
debug("%s: %d, lmac: %d/%d/%d %p\n",
__FILE__, __LINE__,
node, bgx_idx, lmacid, lmac);
if (lmac->qlm_mode == QLM_MODE_SGMII ||
lmac->qlm_mode == QLM_MODE_RGMII ||
lmac->qlm_mode == QLM_MODE_QSGMII) {
if (bgx_board_info[bgx_idx].phy_info[lmacid].phy_addr == -1) {
lmac->link_up = 1;
lmac->last_speed = 1000;
lmac->last_duplex = 1;
printf("BGX%d:LMAC %u link up\n", bgx_idx, lmacid);
return lmac->link_up;
}
snprintf(mii_name, sizeof(mii_name), "smi%d",
bgx_board_info[bgx_idx].phy_info[lmacid].mdio_bus);
debug("mii_name: %s\n", mii_name);
lmac->mii_bus = miiphy_get_dev_by_name(mii_name);
phy = &bgx_board_info[bgx_idx].phy_info[lmacid];
lmac->phy_addr = phy->phy_addr;
debug("lmac->mii_bus: %p\n", lmac->mii_bus);
if (!lmac->mii_bus) {
printf("MDIO device %s not found\n", mii_name);
ret = -ENODEV;
return ret;
}
lmac->phydev = phy_connect(lmac->mii_bus, lmac->phy_addr,
lmac->dev,
if_mode[lmac->qlm_mode]);
if (!lmac->phydev) {
printf("%s: No PHY device\n", __func__);
return -1;
}
ret = phy_config(lmac->phydev);
if (ret) {
printf("%s: Could not initialize PHY %s\n",
__func__, lmac->phydev->dev->name);
return ret;
}
ret = phy_startup(lmac->phydev);
debug("%s: %d\n", __FILE__, __LINE__);
if (ret) {
printf("%s: Could not initialize PHY %s\n",
__func__, lmac->phydev->dev->name);
}
#ifdef OCTEONTX_XCV
if (lmac->qlm_mode == QLM_MODE_RGMII)
xcv_setup_link(lmac->phydev->link, lmac->phydev->speed);
#endif
lmac->link_up = lmac->phydev->link;
lmac->last_speed = lmac->phydev->speed;
lmac->last_duplex = lmac->phydev->duplex;
debug("%s qlm_mode %d phy link status 0x%x,last speed 0x%x,",
__func__, lmac->qlm_mode, lmac->link_up,
lmac->last_speed);
debug(" duplex 0x%x\n", lmac->last_duplex);
if (lmac->qlm_mode != QLM_MODE_RGMII)
bgx_lmac_sgmii_set_link_speed(lmac);
} else {
u64 status1;
u64 tx_ctl;
u64 rx_ctl;
status1 = bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_SPUX_STATUS1);
tx_ctl = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SMUX_TX_CTL);
rx_ctl = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SMUX_RX_CTL);
debug("BGX%d LMAC%d BGX_SPUX_STATUS2: %lx\n", bgx_idx, lmacid,
(unsigned long)bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_SPUX_STATUS2));
debug("BGX%d LMAC%d BGX_SPUX_STATUS1: %lx\n", bgx_idx, lmacid,
(unsigned long)bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_SPUX_STATUS1));
debug("BGX%d LMAC%d BGX_SMUX_RX_CTL: %lx\n", bgx_idx, lmacid,
(unsigned long)bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_SMUX_RX_CTL));
debug("BGX%d LMAC%d BGX_SMUX_TX_CTL: %lx\n", bgx_idx, lmacid,
(unsigned long)bgx_reg_read(lmac->bgx, lmac->lmacid,
BGX_SMUX_TX_CTL));
if ((status1 & SPU_STATUS1_RCV_LNK) &&
((tx_ctl & SMU_TX_CTL_LNK_STATUS) == 0) &&
((rx_ctl & SMU_RX_CTL_STATUS) == 0)) {
lmac->link_up = 1;
if (lmac->lmac_type == 4)
lmac->last_speed = 40000;
else
lmac->last_speed = 10000;
lmac->last_duplex = 1;
} else {
lmac->link_up = 0;
lmac->last_speed = 0;
lmac->last_duplex = 0;
return bgx_xaui_check_link(lmac);
}
lmac->last_link = lmac->link_up;
}
printf("BGX%d:LMAC %u link %s\n", bgx_idx, lmacid,
(lmac->link_up) ? "up" : "down");
return lmac->link_up;
}
void bgx_lmac_disable(struct bgx *bgx, uint8_t lmacid)
{
struct lmac *lmac;
u64 cmrx_cfg;
lmac = &bgx->lmac[lmacid];
cmrx_cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cmrx_cfg &= ~(1 << 15);
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cmrx_cfg);
bgx_flush_dmac_addrs(bgx, lmacid);
if (lmac->phydev)
phy_shutdown(lmac->phydev);
lmac->phydev = NULL;
}
/* Program BGXX_CMRX_CONFIG.{lmac_type,lane_to_sds} for each interface.
* And the number of LMACs used by this interface. Each lmac can be in
* programmed in a different mode, so parse each lmac one at a time.
*/
static void bgx_init_hw(struct bgx *bgx)
{
struct lmac *lmac;
int i, lmacid, count = 0, inc = 0;
char buf[40];
static int qsgmii_configured;
for (lmacid = 0; lmacid < MAX_LMAC_PER_BGX; lmacid++) {
struct lmac *tlmac;
lmac = &bgx->lmac[lmacid];
debug("%s: lmacid = %d, qlm = %d, mode = %d\n",
__func__, lmacid, lmac->qlm, lmac->qlm_mode);
/* If QLM is not programmed, skip */
if (lmac->qlm == -1)
continue;
switch (lmac->qlm_mode) {
case QLM_MODE_SGMII:
{
/* EBB8000 (alternative pkg) has only lane0 present on
* DLM0 and DLM1, skip configuring other lanes
*/
if (bgx->bgx_id == 0 && otx_is_altpkg()) {
if (lmacid % 2)
continue;
}
lmac->lane_to_sds = lmacid;
lmac->lmac_type = 0;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: %s\n",
bgx->bgx_id, lmac->qlm, lmacid,
lmac->is_1gx ? "1000Base-X" : "SGMII");
break;
}
case QLM_MODE_XAUI:
if (lmacid != 0)
continue;
lmac->lmac_type = 1;
lmac->lane_to_sds = 0xE4;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: XAUI\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_RXAUI:
if (lmacid == 0) {
lmac->lmac_type = 2;
lmac->lane_to_sds = 0x4;
} else if (lmacid == 1) {
struct lmac *tlmac;
tlmac = &bgx->lmac[2];
if (tlmac->qlm_mode == QLM_MODE_RXAUI) {
lmac->lmac_type = 2;
lmac->lane_to_sds = 0xe;
lmac->qlm = tlmac->qlm;
}
} else {
continue;
}
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: RXAUI\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_XFI:
/* EBB8000 (alternative pkg) has only lane0 present on
* DLM0 and DLM1, skip configuring other lanes
*/
if (bgx->bgx_id == 0 && otx_is_altpkg()) {
if (lmacid % 2)
continue;
}
lmac->lane_to_sds = lmacid;
lmac->lmac_type = 3;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: XFI\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_XLAUI:
if (lmacid != 0)
continue;
lmac->lmac_type = 4;
lmac->lane_to_sds = 0xE4;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: XLAUI\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_10G_KR:
/* EBB8000 (alternative pkg) has only lane0 present on
* DLM0 and DLM1, skip configuring other lanes
*/
if (bgx->bgx_id == 0 && otx_is_altpkg()) {
if (lmacid % 2)
continue;
}
lmac->lane_to_sds = lmacid;
lmac->lmac_type = 3;
lmac->use_training = 1;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: 10G-KR\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_40G_KR4:
if (lmacid != 0)
continue;
lmac->lmac_type = 4;
lmac->lane_to_sds = 0xE4;
lmac->use_training = 1;
snprintf(buf, sizeof(buf),
"BGX%d QLM%d LMAC%d mode: 40G-KR4\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case QLM_MODE_RGMII:
if (lmacid != 0)
continue;
lmac->lmac_type = 5;
lmac->lane_to_sds = 0xE4;
snprintf(buf, sizeof(buf),
"BGX%d LMAC%d mode: RGMII\n",
bgx->bgx_id, lmacid);
break;
case QLM_MODE_QSGMII:
if (qsgmii_configured)
continue;
if (lmacid == 0 || lmacid == 2) {
count = 4;
printf("BGX%d QLM%d LMAC%d mode: QSGMII\n",
bgx->bgx_id, lmac->qlm, lmacid);
for (i = 0; i < count; i++) {
struct lmac *l;
int type;
l = &bgx->lmac[i];
l->lmac_type = 6;
type = l->lmac_type;
l->qlm_mode = QLM_MODE_QSGMII;
l->lane_to_sds = lmacid + i;
if (is_bgx_port_valid(bgx->bgx_id, i))
bgx_reg_write(bgx, i,
BGX_CMRX_CFG,
(type << 8) |
l->lane_to_sds);
}
qsgmii_configured = 1;
}
continue;
default:
continue;
}
/* Reset lmac to the unused slot */
if (is_bgx_port_valid(bgx->bgx_id, count) &&
lmac->qlm_mode != QLM_MODE_QSGMII) {
int lmac_en = 0;
int tmp, idx;
tlmac = &bgx->lmac[count];
tlmac->lmac_type = lmac->lmac_type;
idx = bgx->bgx_id;
tmp = count + inc;
/* Adjust lane_to_sds based on BGX-ENABLE */
for (; tmp < MAX_LMAC_PER_BGX; inc++) {
lmac_en = bgx_board_info[idx].lmac_enable[tmp];
if (lmac_en)
break;
tmp = count + inc;
}
if (inc != 0 && inc < MAX_LMAC_PER_BGX &&
lmac_en && inc != count)
tlmac->lane_to_sds =
lmac->lane_to_sds + abs(inc - count);
else
tlmac->lane_to_sds = lmac->lane_to_sds;
tlmac->qlm = lmac->qlm;
tlmac->qlm_mode = lmac->qlm_mode;
printf("%s", buf);
/* Initialize lmac_type and lane_to_sds */
bgx_reg_write(bgx, count, BGX_CMRX_CFG,
(tlmac->lmac_type << 8) |
tlmac->lane_to_sds);
if (tlmac->lmac_type == BGX_MODE_SGMII) {
if (tlmac->is_1gx) {
/* This is actually 1000BASE-X, so
* mark the LMAC as such.
*/
bgx_reg_modify(bgx, count,
BGX_GMP_PCS_MISCX_CTL,
PCS_MISC_CTL_MODE);
}
if (!bgx_board_info[bgx->bgx_id].phy_info[lmacid].autoneg_dis) {
/* The Linux DTS does not disable
* autoneg for this LMAC (in SGMII or
* 1000BASE-X mode), so that means
* enable autoneg.
*/
bgx_reg_modify(bgx, count,
BGX_GMP_PCS_MRX_CTL,
PCS_MRX_CTL_AN_EN);
}
}
count += 1;
}
}
/* Done probing all 4 lmacs, now clear qsgmii_configured */
qsgmii_configured = 0;
printf("BGX%d LMACs: %d\n", bgx->bgx_id, count);
bgx->lmac_count = count;
bgx_reg_write(bgx, 0, BGX_CMR_RX_LMACS, count);
bgx_reg_write(bgx, 0, BGX_CMR_TX_LMACS, count);
bgx_reg_modify(bgx, 0, BGX_CMR_GLOBAL_CFG, CMR_GLOBAL_CFG_FCS_STRIP);
if (bgx_reg_read(bgx, 0, BGX_CMR_BIST_STATUS))
printf("BGX%d BIST failed\n", bgx->bgx_id);
/* Set the backpressure AND mask */
for (i = 0; i < bgx->lmac_count; i++)
bgx_reg_modify(bgx, 0, BGX_CMR_CHAN_MSK_AND,
((1ULL << MAX_BGX_CHANS_PER_LMAC) - 1) <<
(i * MAX_BGX_CHANS_PER_LMAC));
/* Disable all MAC filtering */
for (i = 0; i < RX_DMAC_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + (i * 8), 0x00);
/* Disable MAC steering (NCSI traffic) */
for (i = 0; i < RX_TRAFFIC_STEER_RULE_COUNT; i++)
bgx_reg_write(bgx, 0, BGX_CMR_RX_STREERING + (i * 8), 0x00);
}
static void bgx_get_qlm_mode(struct bgx *bgx)
{
struct lmac *lmac;
int lmacid;
/* Read LMACx type to figure out QLM mode
* This is configured by low level firmware
*/
for (lmacid = 0; lmacid < MAX_LMAC_PER_BGX; lmacid++) {
int lmac_type;
int train_en;
int index = 0;
if (otx_is_soc(CN81XX) || (otx_is_soc(CN83XX) &&
bgx->bgx_id == 2))
index = (lmacid < 2) ? 0 : 2;
lmac = &bgx->lmac[lmacid];
/* check if QLM is programmed, if not, skip */
if (lmac->qlm == -1)
continue;
lmac_type = bgx_reg_read(bgx, index, BGX_CMRX_CFG);
lmac->lmac_type = (lmac_type >> 8) & 0x07;
debug("%s:%d:%d: lmac_type = %d, altpkg = %d\n", __func__,
bgx->bgx_id, lmacid, lmac->lmac_type, otx_is_altpkg());
train_en = (readq(GSERX_SCRATCH(lmac->qlm))) & 0xf;
lmac->is_1gx = bgx_reg_read(bgx, index, BGX_GMP_PCS_MISCX_CTL)
& (PCS_MISC_CTL_MODE) ? true : false;
switch (lmac->lmac_type) {
case BGX_MODE_SGMII:
if (bgx->is_rgx) {
if (lmacid == 0) {
lmac->qlm_mode = QLM_MODE_RGMII;
debug("BGX%d LMAC%d mode: RGMII\n",
bgx->bgx_id, lmacid);
}
continue;
} else {
if (bgx->bgx_id == 0 && otx_is_altpkg()) {
if (lmacid % 2)
continue;
}
lmac->qlm_mode = QLM_MODE_SGMII;
debug("BGX%d QLM%d LMAC%d mode: %s\n",
bgx->bgx_id, lmac->qlm, lmacid,
lmac->is_1gx ? "1000Base-X" : "SGMII");
}
break;
case BGX_MODE_XAUI:
if (bgx->bgx_id == 0 && otx_is_altpkg())
continue;
lmac->qlm_mode = QLM_MODE_XAUI;
if (lmacid != 0)
continue;
debug("BGX%d QLM%d LMAC%d mode: XAUI\n",
bgx->bgx_id, lmac->qlm, lmacid);
break;
case BGX_MODE_RXAUI:
if (bgx->bgx_id == 0 && otx_is_altpkg())
continue;
lmac->qlm_mode = QLM_MODE_RXAUI;
if (index == lmacid) {
debug("BGX%d QLM%d LMAC%d mode: RXAUI\n",
bgx->bgx_id, lmac->qlm, (index ? 1 : 0));
}
break;
case BGX_MODE_XFI:
if (bgx->bgx_id == 0 && otx_is_altpkg()) {
if (lmacid % 2)
continue;
}
if ((lmacid < 2 && (train_en & (1 << lmacid))) ||
(train_en & (1 << (lmacid - 2)))) {
lmac->qlm_mode = QLM_MODE_10G_KR;
debug("BGX%d QLM%d LMAC%d mode: 10G_KR\n",
bgx->bgx_id, lmac->qlm, lmacid);
} else {
lmac->qlm_mode = QLM_MODE_XFI;
debug("BGX%d QLM%d LMAC%d mode: XFI\n",
bgx->bgx_id, lmac->qlm, lmacid);
}
break;
case BGX_MODE_XLAUI:
if (bgx->bgx_id == 0 && otx_is_altpkg())
continue;
if (train_en) {
lmac->qlm_mode = QLM_MODE_40G_KR4;
if (lmacid != 0)
break;
debug("BGX%d QLM%d LMAC%d mode: 40G_KR4\n",
bgx->bgx_id, lmac->qlm, lmacid);
} else {
lmac->qlm_mode = QLM_MODE_XLAUI;
if (lmacid != 0)
break;
debug("BGX%d QLM%d LMAC%d mode: XLAUI\n",
bgx->bgx_id, lmac->qlm, lmacid);
}
break;
case BGX_MODE_QSGMII:
/* If QLM is configured as QSGMII, use lmac0 */
if (otx_is_soc(CN83XX) && lmacid == 2 &&
bgx->bgx_id != 2) {
//lmac->qlm_mode = QLM_MODE_DISABLED;
continue;
}
if (lmacid == 0 || lmacid == 2) {
lmac->qlm_mode = QLM_MODE_QSGMII;
debug("BGX%d QLM%d LMAC%d mode: QSGMII\n",
bgx->bgx_id, lmac->qlm, lmacid);
}
break;
default:
break;
}
}
}
void bgx_set_board_info(int bgx_id, int *mdio_bus,
int *phy_addr, bool *autoneg_dis, bool *lmac_reg,
bool *lmac_enable)
{
unsigned int i;
for (i = 0; i < MAX_LMAC_PER_BGX; i++) {
bgx_board_info[bgx_id].phy_info[i].phy_addr = phy_addr[i];
bgx_board_info[bgx_id].phy_info[i].mdio_bus = mdio_bus[i];
bgx_board_info[bgx_id].phy_info[i].autoneg_dis = autoneg_dis[i];
bgx_board_info[bgx_id].lmac_reg[i] = lmac_reg[i];
bgx_board_info[bgx_id].lmac_enable[i] = lmac_enable[i];
debug("%s bgx_id %d lmac %d\n", __func__, bgx_id, i);
debug("phy addr %x mdio bus %d autoneg_dis %d lmac_reg %d\n",
bgx_board_info[bgx_id].phy_info[i].phy_addr,
bgx_board_info[bgx_id].phy_info[i].mdio_bus,
bgx_board_info[bgx_id].phy_info[i].autoneg_dis,
bgx_board_info[bgx_id].lmac_reg[i]);
debug("lmac_enable = %x\n",
bgx_board_info[bgx_id].lmac_enable[i]);
}
}
int octeontx_bgx_remove(struct udevice *dev)
{
int lmacid;
u64 cfg;
int count = MAX_LMAC_PER_BGX;
struct bgx *bgx = dev_get_priv(dev);
if (!bgx->reg_base)
return 0;
if (bgx->is_rgx)
count = 1;
for (lmacid = 0; lmacid < count; lmacid++) {
struct lmac *lmac;
lmac = &bgx->lmac[lmacid];
cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG);
cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN);
bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg);
/* Disable PCS for 1G interface */
if (lmac->lmac_type == BGX_MODE_SGMII ||
lmac->lmac_type == BGX_MODE_QSGMII) {
cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL);
cfg |= PCS_MRX_CTL_PWR_DN;
bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg);
}
debug("%s disabling bgx%d lmacid%d\n", __func__, bgx->bgx_id,
lmacid);
bgx_lmac_disable(bgx, lmacid);
}
return 0;
}
int octeontx_bgx_probe(struct udevice *dev)
{
int err;
struct bgx *bgx = dev_get_priv(dev);
u8 lmac = 0;
int qlm[4] = {-1, -1, -1, -1};
int bgx_idx, node;
int inc = 1;
bgx->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE,
PCI_REGION_MEM);
if (!bgx->reg_base) {
debug("No PCI region found\n");
return 0;
}
#ifdef OCTEONTX_XCV
/* Use FAKE BGX2 for RGX interface */
if ((((uintptr_t)bgx->reg_base >> 24) & 0xf) == 0x8) {
bgx->bgx_id = 2;
bgx->is_rgx = true;
for (lmac = 0; lmac < MAX_LMAC_PER_BGX; lmac++) {
if (lmac == 0) {
bgx->lmac[lmac].lmacid = 0;
bgx->lmac[lmac].qlm = 0;
} else {
bgx->lmac[lmac].qlm = -1;
}
}
xcv_init_hw();
goto skip_qlm_config;
}
#endif
node = node_id(bgx->reg_base);
bgx_idx = ((uintptr_t)bgx->reg_base >> 24) & 3;
bgx->bgx_id = (node * MAX_BGX_PER_NODE) + bgx_idx;
if (otx_is_soc(CN81XX))
inc = 2;
else if (otx_is_soc(CN83XX) && (bgx_idx == 2))
inc = 2;
for (lmac = 0; lmac < MAX_LMAC_PER_BGX; lmac += inc) {
/* BGX3 (DLM4), has only 2 lanes */
if (otx_is_soc(CN83XX) && bgx_idx == 3 && lmac >= 2)
continue;
qlm[lmac + 0] = get_qlm_for_bgx(node, bgx_idx, lmac);
/* Each DLM has 2 lanes, configure both lanes with
* same qlm configuration
*/
if (inc == 2)
qlm[lmac + 1] = qlm[lmac];
debug("qlm[%d] = %d\n", lmac, qlm[lmac]);
}
/* A BGX can take 1 or 2 DLMs, if both the DLMs are not configured
* as BGX, then return, nothing to initialize
*/
if (otx_is_soc(CN81XX))
if ((qlm[0] == -1) && (qlm[2] == -1))
return -ENODEV;
/* MAP configuration registers */
for (lmac = 0; lmac < MAX_LMAC_PER_BGX; lmac++) {
bgx->lmac[lmac].qlm = qlm[lmac];
bgx->lmac[lmac].lmacid = lmac;
}
#ifdef OCTEONTX_XCV
skip_qlm_config:
#endif
bgx_vnic[bgx->bgx_id] = bgx;
bgx_get_qlm_mode(bgx);
debug("bgx_vnic[%u]: %p\n", bgx->bgx_id, bgx);
bgx_init_hw(bgx);
/* Init LMACs */
for (lmac = 0; lmac < bgx->lmac_count; lmac++) {
struct lmac *tlmac = &bgx->lmac[lmac];
tlmac->dev = dev;
err = bgx_lmac_enable(bgx, lmac);
if (err) {
printf("BGX%d failed to enable lmac%d\n",
bgx->bgx_id, lmac);
}
}
return 0;
}
U_BOOT_DRIVER(octeontx_bgx) = {
.name = "octeontx_bgx",
.id = UCLASS_MISC,
.probe = octeontx_bgx_probe,
.remove = octeontx_bgx_remove,
.priv_auto = sizeof(struct bgx),
.flags = DM_FLAG_OS_PREPARE,
};
static struct pci_device_id octeontx_bgx_supported[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BGX) },
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_RGX) },
{}
};
U_BOOT_PCI_DEVICE(octeontx_bgx, octeontx_bgx_supported);