2018-11-02 14:21:05 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
|
|
|
* K3: Common Architecture initialization
|
|
|
|
*
|
|
|
|
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
|
|
|
|
* Lokesh Vutla <lokeshvutla@ti.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
2019-12-28 17:45:01 +00:00
|
|
|
#include <cpu_func.h>
|
2020-05-10 17:40:01 +00:00
|
|
|
#include <image.h>
|
2020-05-10 17:40:02 +00:00
|
|
|
#include <init.h>
|
2020-05-10 17:40:05 +00:00
|
|
|
#include <log.h>
|
2018-11-02 14:21:05 +00:00
|
|
|
#include <spl.h>
|
2020-10-31 03:38:53 +00:00
|
|
|
#include <asm/global_data.h>
|
2018-11-02 14:21:05 +00:00
|
|
|
#include "common.h"
|
|
|
|
#include <dm.h>
|
|
|
|
#include <remoteproc.h>
|
2020-05-10 17:39:56 +00:00
|
|
|
#include <asm/cache.h>
|
2019-03-08 06:17:33 +00:00
|
|
|
#include <linux/soc/ti/ti_sci_protocol.h>
|
2019-03-08 06:17:34 +00:00
|
|
|
#include <fdt_support.h>
|
2019-06-07 13:54:42 +00:00
|
|
|
#include <asm/arch/sys_proto.h>
|
2019-09-27 08:02:11 +00:00
|
|
|
#include <asm/hardware.h>
|
|
|
|
#include <asm/io.h>
|
2020-02-12 08:25:04 +00:00
|
|
|
#include <fs_loader.h>
|
|
|
|
#include <fs.h>
|
|
|
|
#include <env.h>
|
|
|
|
#include <elf.h>
|
2020-07-16 04:40:04 +00:00
|
|
|
#include <soc.h>
|
2019-03-08 06:17:33 +00:00
|
|
|
|
|
|
|
struct ti_sci_handle *get_ti_sci_handle(void)
|
|
|
|
{
|
|
|
|
struct udevice *dev;
|
|
|
|
int ret;
|
|
|
|
|
2019-09-27 08:02:15 +00:00
|
|
|
ret = uclass_get_device_by_driver(UCLASS_FIRMWARE,
|
2020-12-29 03:34:56 +00:00
|
|
|
DM_DRIVER_GET(ti_sci), &dev);
|
2019-03-08 06:17:33 +00:00
|
|
|
if (ret)
|
|
|
|
panic("Failed to get SYSFW (%d)\n", ret);
|
|
|
|
|
|
|
|
return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev);
|
|
|
|
}
|
2018-11-02 14:21:05 +00:00
|
|
|
|
2020-03-10 11:20:58 +00:00
|
|
|
void k3_sysfw_print_ver(void)
|
|
|
|
{
|
|
|
|
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
|
|
|
|
char fw_desc[sizeof(ti_sci->version.firmware_description) + 1];
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Output System Firmware version info. Note that since the
|
|
|
|
* 'firmware_description' field is not guaranteed to be zero-
|
|
|
|
* terminated we manually add a \0 terminator if needed. Further
|
|
|
|
* note that we intentionally no longer rely on the extended
|
|
|
|
* printf() formatter '%.*s' to not having to require a more
|
|
|
|
* full-featured printf() implementation.
|
|
|
|
*/
|
|
|
|
strncpy(fw_desc, ti_sci->version.firmware_description,
|
|
|
|
sizeof(ti_sci->version.firmware_description));
|
|
|
|
fw_desc[sizeof(fw_desc) - 1] = '\0';
|
|
|
|
|
|
|
|
printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n",
|
|
|
|
ti_sci->version.abi_major, ti_sci->version.abi_minor,
|
|
|
|
ti_sci->version.firmware_revision, fw_desc);
|
|
|
|
}
|
|
|
|
|
2020-08-05 17:14:17 +00:00
|
|
|
void mmr_unlock(phys_addr_t base, u32 partition)
|
|
|
|
{
|
|
|
|
/* Translate the base address */
|
|
|
|
phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
|
|
|
|
|
|
|
|
/* Unlock the requested partition if locked using two-step sequence */
|
|
|
|
writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
|
|
|
|
writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
|
|
|
|
}
|
|
|
|
|
2020-08-05 17:14:23 +00:00
|
|
|
bool is_rom_loaded_sysfw(struct rom_extended_boot_data *data)
|
|
|
|
{
|
|
|
|
if (strncmp(data->header, K3_ROM_BOOT_HEADER_MAGIC, 7))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return data->num_components > 1;
|
|
|
|
}
|
|
|
|
|
2019-08-15 20:55:28 +00:00
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
|
|
|
|
#ifdef CONFIG_K3_EARLY_CONS
|
|
|
|
int early_console_init(void)
|
|
|
|
{
|
|
|
|
struct udevice *dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
gd->baudrate = CONFIG_BAUDRATE;
|
|
|
|
|
|
|
|
ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX,
|
|
|
|
&dev);
|
|
|
|
if (ret) {
|
|
|
|
printf("Error getting serial dev for early console! (%d)\n",
|
|
|
|
ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
gd->cur_serial_dev = dev;
|
|
|
|
gd->flags |= GD_FLG_SERIAL_READY;
|
|
|
|
gd->have_console = 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2018-11-02 14:21:05 +00:00
|
|
|
#ifdef CONFIG_SYS_K3_SPL_ATF
|
2020-02-12 08:25:04 +00:00
|
|
|
|
|
|
|
void init_env(void)
|
|
|
|
{
|
|
|
|
#ifdef CONFIG_SPL_ENV_SUPPORT
|
|
|
|
char *part;
|
|
|
|
|
|
|
|
env_init();
|
|
|
|
env_relocate();
|
|
|
|
switch (spl_boot_device()) {
|
|
|
|
case BOOT_DEVICE_MMC2:
|
|
|
|
part = env_get("bootpart");
|
|
|
|
env_set("storage_interface", "mmc");
|
|
|
|
env_set("fw_dev_part", part);
|
|
|
|
break;
|
|
|
|
case BOOT_DEVICE_SPI:
|
|
|
|
env_set("storage_interface", "ubi");
|
|
|
|
env_set("fw_ubi_mtdpart", "UBI");
|
|
|
|
env_set("fw_ubi_volume", "UBI0");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("%s from device %u not supported!\n",
|
|
|
|
__func__, spl_boot_device());
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_FS_LOADER
|
|
|
|
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
|
|
|
|
{
|
|
|
|
struct udevice *fsdev;
|
|
|
|
char *name = NULL;
|
|
|
|
int size = 0;
|
|
|
|
|
|
|
|
*loadaddr = 0;
|
|
|
|
#ifdef CONFIG_SPL_ENV_SUPPORT
|
|
|
|
switch (spl_boot_device()) {
|
|
|
|
case BOOT_DEVICE_MMC2:
|
|
|
|
name = env_get(name_fw);
|
|
|
|
*loadaddr = env_get_hex(name_loadaddr, *loadaddr);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printf("Loading rproc fw image from device %u not supported!\n",
|
|
|
|
spl_boot_device());
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (!*loadaddr)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!uclass_get_device(UCLASS_FS_FIRMWARE_LOADER, 0, &fsdev)) {
|
|
|
|
size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr,
|
|
|
|
0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
return size;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
__weak void start_non_linux_remote_cores(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2018-11-02 14:21:05 +00:00
|
|
|
void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
|
|
|
|
{
|
2020-02-12 08:25:06 +00:00
|
|
|
typedef void __noreturn (*image_entry_noargs_t)(void);
|
2019-06-07 13:54:43 +00:00
|
|
|
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
|
2020-02-12 08:25:06 +00:00
|
|
|
u32 loadaddr = 0;
|
|
|
|
int ret, size;
|
2018-11-02 14:21:05 +00:00
|
|
|
|
2019-06-07 13:54:43 +00:00
|
|
|
/* Release all the exclusive devices held by SPL before starting ATF */
|
|
|
|
ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci);
|
|
|
|
|
2020-02-12 08:25:04 +00:00
|
|
|
ret = rproc_init();
|
|
|
|
if (ret)
|
|
|
|
panic("rproc failed to be initialized (%d)\n", ret);
|
|
|
|
|
|
|
|
init_env();
|
|
|
|
start_non_linux_remote_cores();
|
2020-02-12 08:25:06 +00:00
|
|
|
size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load",
|
|
|
|
&loadaddr);
|
|
|
|
|
2020-02-12 08:25:04 +00:00
|
|
|
|
2018-11-02 14:21:05 +00:00
|
|
|
/*
|
|
|
|
* It is assumed that remoteproc device 1 is the corresponding
|
2019-02-04 18:58:47 +00:00
|
|
|
* Cortex-A core which runs ATF. Make sure DT reflects the same.
|
2018-11-02 14:21:05 +00:00
|
|
|
*/
|
|
|
|
ret = rproc_load(1, spl_image->entry_point, 0x200);
|
2019-02-04 18:58:47 +00:00
|
|
|
if (ret)
|
|
|
|
panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret);
|
2018-11-02 14:21:05 +00:00
|
|
|
|
2019-02-04 18:58:47 +00:00
|
|
|
/* Add an extra newline to differentiate the ATF logs from SPL */
|
2018-11-02 14:21:05 +00:00
|
|
|
printf("Starting ATF on ARM64 core...\n\n");
|
|
|
|
|
|
|
|
ret = rproc_start(1);
|
2019-02-04 18:58:47 +00:00
|
|
|
if (ret)
|
|
|
|
panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret);
|
2020-02-12 08:25:06 +00:00
|
|
|
if (!(size > 0 && valid_elf_image(loadaddr))) {
|
|
|
|
debug("Shutting down...\n");
|
|
|
|
release_resources_for_core_shutdown();
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
asm volatile("wfe");
|
|
|
|
}
|
2018-11-02 14:21:05 +00:00
|
|
|
|
2020-02-12 08:25:06 +00:00
|
|
|
image_entry_noargs_t image_entry =
|
|
|
|
(image_entry_noargs_t)load_elf_image_phdr(loadaddr);
|
2019-06-07 13:54:42 +00:00
|
|
|
|
2020-02-12 08:25:06 +00:00
|
|
|
image_entry();
|
2018-11-02 14:21:05 +00:00
|
|
|
}
|
|
|
|
#endif
|
2019-03-08 06:17:34 +00:00
|
|
|
|
|
|
|
#if defined(CONFIG_OF_LIBFDT)
|
|
|
|
int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name)
|
|
|
|
{
|
|
|
|
u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2];
|
|
|
|
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
|
|
|
|
int ret, node, subnode, len, prev_node;
|
|
|
|
u32 range[4], addr, size;
|
|
|
|
const fdt32_t *sub_reg;
|
|
|
|
|
|
|
|
ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end);
|
|
|
|
msmc_size = msmc_end - msmc_start + 1;
|
|
|
|
debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__,
|
|
|
|
msmc_start, msmc_size);
|
|
|
|
|
|
|
|
/* find or create "msmc_sram node */
|
|
|
|
ret = fdt_path_offset(blob, parent_path);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
node = fdt_find_or_add_subnode(blob, ret, node_name);
|
|
|
|
if (node < 0)
|
|
|
|
return node;
|
|
|
|
|
|
|
|
ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram");
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
reg[0] = cpu_to_fdt64(msmc_start);
|
|
|
|
reg[1] = cpu_to_fdt64(msmc_size);
|
|
|
|
ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg));
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
fdt_setprop_cell(blob, node, "#address-cells", 1);
|
|
|
|
fdt_setprop_cell(blob, node, "#size-cells", 1);
|
|
|
|
|
|
|
|
range[0] = 0;
|
|
|
|
range[1] = cpu_to_fdt32(msmc_start >> 32);
|
|
|
|
range[2] = cpu_to_fdt32(msmc_start & 0xffffffff);
|
|
|
|
range[3] = cpu_to_fdt32(msmc_size);
|
|
|
|
ret = fdt_setprop(blob, node, "ranges", range, sizeof(range));
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
subnode = fdt_first_subnode(blob, node);
|
|
|
|
prev_node = 0;
|
|
|
|
|
|
|
|
/* Look for invalid subnodes and delete them */
|
|
|
|
while (subnode >= 0) {
|
|
|
|
sub_reg = fdt_getprop(blob, subnode, "reg", &len);
|
|
|
|
addr = fdt_read_number(sub_reg, 1);
|
|
|
|
sub_reg++;
|
|
|
|
size = fdt_read_number(sub_reg, 1);
|
|
|
|
debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__,
|
|
|
|
subnode, addr, size);
|
|
|
|
if (addr + size > msmc_size ||
|
|
|
|
!strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) ||
|
|
|
|
!strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) {
|
|
|
|
fdt_del_node(blob, subnode);
|
|
|
|
debug("%s: deleting subnode %d\n", __func__, subnode);
|
|
|
|
if (!prev_node)
|
|
|
|
subnode = fdt_first_subnode(blob, node);
|
|
|
|
else
|
|
|
|
subnode = fdt_next_subnode(blob, prev_node);
|
|
|
|
} else {
|
|
|
|
prev_node = subnode;
|
|
|
|
subnode = fdt_next_subnode(blob, prev_node);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2019-09-17 21:15:40 +00:00
|
|
|
|
|
|
|
int fdt_disable_node(void *blob, char *node_path)
|
|
|
|
{
|
|
|
|
int offs;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
offs = fdt_path_offset(blob, node_path);
|
|
|
|
if (offs < 0) {
|
2020-01-07 23:12:40 +00:00
|
|
|
printf("Node %s not found.\n", node_path);
|
|
|
|
return offs;
|
2019-09-17 21:15:40 +00:00
|
|
|
}
|
|
|
|
ret = fdt_setprop_string(blob, offs, "status", "disabled");
|
|
|
|
if (ret < 0) {
|
|
|
|
printf("Could not add status property to node %s: %s\n",
|
|
|
|
node_path, fdt_strerror(ret));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-03-08 06:17:34 +00:00
|
|
|
#endif
|
arm: K3: j721e: Add basic support for J721E SoC definition
The J721E SoC belongs to the K3 Multicore SoC architecture platform,
providing advanced system integration to enable lower system costs
of automotive applications such as infotainment, cluster, premium
Audio, Gateway, industrial and a range of broad market applications.
This SoC is designed around reducing the system cost by eliminating
the need of an external system MCU and is targeted towards ASIL-B/C
certification/requirements in addition to allowing complex software
and system use-cases.
Some highlights of this SoC are:
* Dual Cortex-A72s in a single cluster, three clusters of lockstep
capable dual Cortex-R5F MCUs, Deep-learning Matrix Multiply Accelerator(MMA),
C7x floating point Vector DSP, Two C66x floating point DSPs.
* 3D GPU PowerVR Rogue 8XE GE8430
* Vision Processing Accelerator (VPAC) with image signal processor and Depth
and Motion Processing Accelerator (DMPAC)
* Two Gigabit Industrial Communication Subsystems (ICSSG), each with dual
PRUs and dual RTUs
* Two CSI2.0 4L RX plus one CSI2.0 4L TX, one eDP/DP, One DSI Tx, and
up to two DPI interfaces.
* Integrated Ethernet switch supporting up to a total of 8 external ports in
addition to legacy Ethernet switch of up to 2 ports.
* System MMU (SMMU) Version 3.0 and advanced virtualisation
capabilities.
* Upto 4 PCIe-GEN3 controllers, 2 USB3.0 Dual-role device subsystems,
16 MCANs, 12 McASP, eMMC and SD, UFS, OSPI/HyperBus memory controller, QSPI,
I3C and I2C, eCAP/eQEP, eHRPWM, MLB among other peripherals.
* Two hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL
management.
* Configurable L3 Cache and IO-coherent architecture with high data throughput
capable distributed DMA architecture under NAVSS
* Centralized System Controller for Security, Power, and Resource
Management (DMSC)
See J721E Technical Reference Manual (SPRUIL1, May 2019)
for further details: http://www.ti.com/lit/pdf/spruil1
Add base support for J721E SoC
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
2019-06-13 04:59:42 +00:00
|
|
|
|
|
|
|
#ifndef CONFIG_SYSRESET
|
2020-12-15 15:47:52 +00:00
|
|
|
void reset_cpu(void)
|
arm: K3: j721e: Add basic support for J721E SoC definition
The J721E SoC belongs to the K3 Multicore SoC architecture platform,
providing advanced system integration to enable lower system costs
of automotive applications such as infotainment, cluster, premium
Audio, Gateway, industrial and a range of broad market applications.
This SoC is designed around reducing the system cost by eliminating
the need of an external system MCU and is targeted towards ASIL-B/C
certification/requirements in addition to allowing complex software
and system use-cases.
Some highlights of this SoC are:
* Dual Cortex-A72s in a single cluster, three clusters of lockstep
capable dual Cortex-R5F MCUs, Deep-learning Matrix Multiply Accelerator(MMA),
C7x floating point Vector DSP, Two C66x floating point DSPs.
* 3D GPU PowerVR Rogue 8XE GE8430
* Vision Processing Accelerator (VPAC) with image signal processor and Depth
and Motion Processing Accelerator (DMPAC)
* Two Gigabit Industrial Communication Subsystems (ICSSG), each with dual
PRUs and dual RTUs
* Two CSI2.0 4L RX plus one CSI2.0 4L TX, one eDP/DP, One DSI Tx, and
up to two DPI interfaces.
* Integrated Ethernet switch supporting up to a total of 8 external ports in
addition to legacy Ethernet switch of up to 2 ports.
* System MMU (SMMU) Version 3.0 and advanced virtualisation
capabilities.
* Upto 4 PCIe-GEN3 controllers, 2 USB3.0 Dual-role device subsystems,
16 MCANs, 12 McASP, eMMC and SD, UFS, OSPI/HyperBus memory controller, QSPI,
I3C and I2C, eCAP/eQEP, eHRPWM, MLB among other peripherals.
* Two hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL
management.
* Configurable L3 Cache and IO-coherent architecture with high data throughput
capable distributed DMA architecture under NAVSS
* Centralized System Controller for Security, Power, and Resource
Management (DMSC)
See J721E Technical Reference Manual (SPRUIL1, May 2019)
for further details: http://www.ti.com/lit/pdf/spruil1
Add base support for J721E SoC
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Andreas Dannenberg <dannenberg@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
2019-06-13 04:59:42 +00:00
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
2019-09-27 08:02:11 +00:00
|
|
|
|
|
|
|
#if defined(CONFIG_DISPLAY_CPUINFO)
|
|
|
|
int print_cpuinfo(void)
|
|
|
|
{
|
2020-07-16 04:40:04 +00:00
|
|
|
struct udevice *soc;
|
|
|
|
char name[64];
|
|
|
|
int ret;
|
2020-07-16 04:40:04 +00:00
|
|
|
|
2020-07-24 12:42:06 +00:00
|
|
|
printf("SoC: ");
|
2020-07-16 04:40:04 +00:00
|
|
|
|
2020-07-16 04:40:04 +00:00
|
|
|
ret = soc_get(&soc);
|
|
|
|
if (ret) {
|
|
|
|
printf("UNKNOWN\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = soc_get_family(soc, name, 64);
|
|
|
|
if (!ret) {
|
|
|
|
printf("%s ", name);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = soc_get_revision(soc, name, 64);
|
|
|
|
if (!ret) {
|
|
|
|
printf("%s\n", name);
|
|
|
|
}
|
2019-09-27 08:02:11 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
2019-10-07 08:22:17 +00:00
|
|
|
|
2020-08-05 17:14:19 +00:00
|
|
|
bool soc_is_j721e(void)
|
|
|
|
{
|
|
|
|
u32 soc;
|
|
|
|
|
|
|
|
soc = (readl(CTRLMMR_WKUP_JTAG_ID) &
|
|
|
|
JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT;
|
|
|
|
|
|
|
|
return soc == J721E;
|
|
|
|
}
|
|
|
|
|
arm: mach-k3: j7200: Add support for SOC detection
The J7200 SoC is a part of the K3 Multicore SoC architecture platform.
It is targeted for automotive gateway, vehicle compute systems,
Vehicle-to-Vehicle (V2V) and Vehicle-to-Everything (V2X) applications.
The SoC aims to meet the complex processing needs of modern embedded
products.
Some highlights of this SoC are:
* Dual Cortex-A72s in a single cluster, two clusters of lockstep
capable dual Cortex-R5F MCUs and a Centralized Device Management and
Security Controller (DMSC).
* Configurable L3 Cache and IO-coherent architecture with high data
throughput capable distributed DMA architecture under NAVSS.
* Integrated Ethernet switch supporting up to a total of 4 external ports
in addition to legacy Ethernet switch of up to 2 ports.
* Upto 1 PCIe-GEN3 controller, 1 USB3.0 Dual-role device subsystems,
20 MCANs, 3 McASP, eMMC and SD, OSPI/HyperBus memory controller, I3C and
I2C, eCAP/eQEP, eHRPWM among other peripherals.
* One hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL
management.
See J7200 Technical Reference Manual (SPRUIU1, June 2020)
for further details: https://www.ti.com/lit/pdf/spruiu1
Add support for detection J7200 SoC
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
2020-08-05 17:14:21 +00:00
|
|
|
bool soc_is_j7200(void)
|
|
|
|
{
|
|
|
|
u32 soc;
|
|
|
|
|
|
|
|
soc = (readl(CTRLMMR_WKUP_JTAG_ID) &
|
|
|
|
JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT;
|
|
|
|
|
|
|
|
return soc == J7200;
|
|
|
|
}
|
|
|
|
|
2019-10-07 08:22:17 +00:00
|
|
|
#ifdef CONFIG_ARM64
|
|
|
|
void board_prep_linux(bootm_headers_t *images)
|
|
|
|
{
|
|
|
|
debug("Linux kernel Image start = 0x%lx end = 0x%lx\n",
|
|
|
|
images->os.start, images->os.end);
|
|
|
|
__asm_flush_dcache_range(images->os.start,
|
|
|
|
ROUND(images->os.end,
|
|
|
|
CONFIG_SYS_CACHELINE_SIZE));
|
|
|
|
}
|
|
|
|
#endif
|
2019-12-31 10:19:55 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_CPU_V7R
|
|
|
|
void disable_linefill_optimization(void)
|
|
|
|
{
|
|
|
|
u32 actlr;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On K3 devices there are 2 conditions where R5F can deadlock:
|
|
|
|
* 1.When software is performing series of store operations to
|
|
|
|
* cacheable write back/write allocate memory region and later
|
|
|
|
* on software execute barrier operation (DSB or DMB). R5F may
|
|
|
|
* hang at the barrier instruction.
|
|
|
|
* 2.When software is performing a mix of load and store operations
|
|
|
|
* within a tight loop and store operations are all writing to
|
|
|
|
* cacheable write back/write allocates memory regions, R5F may
|
|
|
|
* hang at one of the load instruction.
|
|
|
|
*
|
|
|
|
* To avoid the above two conditions disable linefill optimization
|
|
|
|
* inside Cortex R5F.
|
|
|
|
*/
|
|
|
|
asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr));
|
|
|
|
actlr |= (1 << 13); /* Set DLFO bit */
|
|
|
|
asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr));
|
|
|
|
}
|
|
|
|
#endif
|
2020-01-10 19:35:21 +00:00
|
|
|
|
|
|
|
void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size)
|
|
|
|
{
|
|
|
|
struct ti_sci_msg_fwl_region region;
|
|
|
|
struct ti_sci_fwl_ops *fwl_ops;
|
|
|
|
struct ti_sci_handle *ti_sci;
|
|
|
|
size_t i, j;
|
|
|
|
|
|
|
|
ti_sci = get_ti_sci_handle();
|
|
|
|
fwl_ops = &ti_sci->ops.fwl_ops;
|
|
|
|
for (i = 0; i < fwl_data_size; i++) {
|
|
|
|
for (j = 0; j < fwl_data[i].regions; j++) {
|
|
|
|
region.fwl_id = fwl_data[i].fwl_id;
|
|
|
|
region.region = j;
|
|
|
|
region.n_permission_regs = 3;
|
|
|
|
|
|
|
|
fwl_ops->get_fwl_region(ti_sci, ®ion);
|
|
|
|
|
|
|
|
if (region.control != 0) {
|
|
|
|
pr_debug("Attempting to disable firewall %5d (%25s)\n",
|
|
|
|
region.fwl_id, fwl_data[i].name);
|
|
|
|
region.control = 0;
|
|
|
|
|
|
|
|
if (fwl_ops->set_fwl_region(ti_sci, ®ion))
|
|
|
|
pr_err("Could not disable firewall %5d (%25s)\n",
|
|
|
|
region.fwl_id, fwl_data[i].name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2020-05-18 05:57:22 +00:00
|
|
|
|
|
|
|
void spl_enable_dcache(void)
|
|
|
|
{
|
|
|
|
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
|
|
|
|
phys_addr_t ram_top = CONFIG_SYS_SDRAM_BASE;
|
|
|
|
|
|
|
|
dram_init_banksize();
|
|
|
|
|
|
|
|
/* reserve TLB table */
|
|
|
|
gd->arch.tlb_size = PGTABLE_SIZE;
|
|
|
|
|
|
|
|
ram_top += get_effective_memsize();
|
|
|
|
/* keep ram_top in the 32-bit address space */
|
|
|
|
if (ram_top >= 0x100000000)
|
|
|
|
ram_top = (phys_addr_t) 0x100000000;
|
|
|
|
|
|
|
|
gd->arch.tlb_addr = ram_top - gd->arch.tlb_size;
|
|
|
|
debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr,
|
|
|
|
gd->arch.tlb_addr + gd->arch.tlb_size);
|
|
|
|
|
|
|
|
dcache_enable();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
|
|
|
|
void spl_board_prepare_for_boot(void)
|
|
|
|
{
|
|
|
|
dcache_disable();
|
|
|
|
}
|
|
|
|
|
2020-07-07 12:25:15 +00:00
|
|
|
void spl_board_prepare_for_linux(void)
|
2020-05-18 05:57:22 +00:00
|
|
|
{
|
|
|
|
dcache_disable();
|
|
|
|
}
|
|
|
|
#endif
|