u-boot/arch/powerpc/cpu/mpc8xxx/srio.c

449 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2011 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <config.h>
#include <log.h>
#include <time.h>
#include <asm/fsl_law.h>
#include <asm/fsl_serdes.h>
#include <asm/fsl_srio.h>
#include <linux/delay.h>
#include <linux/errno.h>
#ifdef CONFIG_SRIO_PCIE_BOOT_MASTER
#define SRIO_PORT_ACCEPT_ALL 0x10000001
#define SRIO_IB_ATMU_AR 0x80f55000
#define SRIO_OB_ATMU_AR_MAINT 0x80077000
#define SRIO_OB_ATMU_AR_RW 0x80045000
#define SRIO_LCSBA1CSR_OFFSET 0x5c
#define SRIO_MAINT_WIN_SIZE 0x1000000 /* 16M */
#define SRIO_RW_WIN_SIZE 0x100000 /* 1M */
#define SRIO_LCSBA1CSR 0x60000000
#endif
#if defined(CONFIG_FSL_CORENET)
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
#define _DEVDISR_SRIO1 FSL_CORENET_DEVDISR3_SRIO1
#define _DEVDISR_SRIO2 FSL_CORENET_DEVDISR3_SRIO2
#else
#define _DEVDISR_SRIO1 FSL_CORENET_DEVDISR_SRIO1
#define _DEVDISR_SRIO2 FSL_CORENET_DEVDISR_SRIO2
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#endif
#define _DEVDISR_RMU FSL_CORENET_DEVDISR_RMU
#define CONFIG_SYS_MPC8xxx_GUTS_ADDR CFG_SYS_MPC85xx_GUTS_ADDR
#elif defined(CONFIG_MPC85xx)
#define _DEVDISR_SRIO1 MPC85xx_DEVDISR_SRIO
#define _DEVDISR_SRIO2 MPC85xx_DEVDISR_SRIO
#define _DEVDISR_RMU MPC85xx_DEVDISR_RMSG
#define CONFIG_SYS_MPC8xxx_GUTS_ADDR CFG_SYS_MPC85xx_GUTS_ADDR
#elif defined(CONFIG_MPC86xx)
#define _DEVDISR_SRIO1 MPC86xx_DEVDISR_SRIO
#define _DEVDISR_SRIO2 MPC86xx_DEVDISR_SRIO
#define _DEVDISR_RMU MPC86xx_DEVDISR_RMSG
#define CONFIG_SYS_MPC8xxx_GUTS_ADDR \
(&((immap_t *)CONFIG_SYS_IMMR)->im_gur)
#else
#error "No defines for DEVDISR_SRIO"
#endif
#ifdef CONFIG_SYS_FSL_ERRATUM_SRIO_A004034
/*
* Erratum A-004034
* Affects: SRIO
* Description: During port initialization, the SRIO port performs
* lane synchronization (detecting valid symbols on a lane) and
* lane alignment (coordinating multiple lanes to receive valid data
* across lanes). Internal errors in lane synchronization and lane
* alignment may cause failure to achieve link initialization at
* the configured port width.
* An SRIO port configured as a 4x port may see one of these scenarios:
* 1. One or more lanes fails to achieve lane synchronization. Depending
* on which lanes fail, this may result in downtraining from 4x to 1x
* on lane 0, 4x to 1x on lane R (redundant lane).
* 2. The link may fail to achieve lane alignment as a 4x, even though
* all 4 lanes achieve lane synchronization, and downtrain to a 1x.
* An SRIO port configured as a 1x port may fail to complete port
* initialization (PnESCSR[PU] never deasserts) because of scenario 1.
* Impact: SRIO port may downtrain to 1x, or may fail to complete
* link initialization. Once a port completes link initialization
* successfully, it will operate normally.
*/
static int srio_erratum_a004034(u8 port)
{
serdes_corenet_t *srds_regs;
u32 conf_lane;
u32 init_lane;
int idx, first, last;
u32 i;
unsigned long long end_tick;
struct ccsr_rio *srio_regs = (void *)CFG_SYS_FSL_SRIO_ADDR;
srds_regs = (void *)(CFG_SYS_FSL_CORENET_SERDES_ADDR);
conf_lane = (in_be32((void *)&srds_regs->srdspccr0)
>> (12 - port * 4)) & 0x3;
init_lane = (in_be32((void *)&srio_regs->lp_serial
.port[port].pccsr) >> 27) & 0x7;
/*
* Start a counter set to ~2 ms after the SERDES reset is
* complete (SERDES SRDSBnRSTCTL[RST_DONE]=1 for n
* corresponding to the SERDES bank/PLL for the SRIO port).
*/
if (in_be32((void *)&srds_regs->bank[0].rstctl)
& SRDS_RSTCTL_RSTDONE) {
/*
* Poll the port uninitialized status (SRIO PnESCSR[PO]) until
* PO=1 or the counter expires. If the counter expires, the
* port has failed initialization: go to recover steps. If PO=1
* and the desired port width is 1x, go to normal steps. If
* PO = 1 and the desired port width is 4x, go to recover steps.
*/
end_tick = usec2ticks(2000) + get_ticks();
do {
if (in_be32((void *)&srio_regs->lp_serial
.port[port].pescsr) & 0x2) {
if (conf_lane == 0x1)
goto host_ok;
else {
if (init_lane == 0x2)
goto host_ok;
else
break;
}
}
} while (end_tick > get_ticks());
/* recover at most 3 times */
for (i = 0; i < 3; i++) {
/* Set SRIO PnCCSR[PD]=1 */
setbits_be32((void *)&srio_regs->lp_serial
.port[port].pccsr,
0x800000);
/*
* Set SRIO PnPCR[OBDEN] on the host to
* enable the discarding of any pending packets.
*/
setbits_be32((void *)&srio_regs->impl.port[port].pcr,
0x04);
/* Wait 50 us */
udelay(50);
/* Run sync command */
isync();
if (port)
first = serdes_get_first_lane(SRIO2);
else
first = serdes_get_first_lane(SRIO1);
if (unlikely(first < 0))
return -ENODEV;
if (conf_lane == 0x1)
last = first;
else
last = first + 3;
/*
* Set SERDES BnGCRm0[RRST]=0 for each SRIO
* bank n and lane m.
*/
for (idx = first; idx <= last; idx++)
clrbits_be32(&srds_regs->lane[idx].gcr0,
SRDS_GCR0_RRST);
/*
* Read SERDES BnGCRm0 for each SRIO
* bank n and lane m
*/
for (idx = first; idx <= last; idx++)
in_be32(&srds_regs->lane[idx].gcr0);
/* Run sync command */
isync();
/* Wait >= 100 ns */
udelay(1);
/*
* Set SERDES BnGCRm0[RRST]=1 for each SRIO
* bank n and lane m.
*/
for (idx = first; idx <= last; idx++)
setbits_be32(&srds_regs->lane[idx].gcr0,
SRDS_GCR0_RRST);
/*
* Read SERDES BnGCRm0 for each SRIO
* bank n and lane m
*/
for (idx = first; idx <= last; idx++)
in_be32(&srds_regs->lane[idx].gcr0);
/* Run sync command */
isync();
/* Wait >= 300 ns */
udelay(1);
/* Write 1 to clear all bits in SRIO PnSLCSR */
out_be32((void *)&srio_regs->impl.port[port].slcsr,
0xffffffff);
/* Clear SRIO PnPCR[OBDEN] on the host */
clrbits_be32((void *)&srio_regs->impl.port[port].pcr,
0x04);
/* Set SRIO PnCCSR[PD]=0 */
clrbits_be32((void *)&srio_regs->lp_serial
.port[port].pccsr,
0x800000);
/* Wait >= 24 ms */
udelay(24000);
/* Poll the state of the port again */
init_lane =
(in_be32((void *)&srio_regs->lp_serial
.port[port].pccsr) >> 27) & 0x7;
if (in_be32((void *)&srio_regs->lp_serial
.port[port].pescsr) & 0x2) {
if (conf_lane == 0x1)
goto host_ok;
else {
if (init_lane == 0x2)
goto host_ok;
}
}
if (i == 2)
return -ENODEV;
}
} else
return -ENODEV;
host_ok:
/* Poll PnESCSR[OES] on the host until it is clear */
end_tick = usec2ticks(1000000) + get_ticks();
do {
if (!(in_be32((void *)&srio_regs->lp_serial.port[port].pescsr)
& 0x10000)) {
out_be32(((void *)&srio_regs->lp_serial
.port[port].pescsr), 0xffffffff);
out_be32(((void *)&srio_regs->phys_err
.port[port].edcsr), 0);
out_be32(((void *)&srio_regs->logical_err.ltledcsr), 0);
return 0;
}
} while (end_tick > get_ticks());
return -ENODEV;
}
#endif
void srio_init(void)
{
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC8xxx_GUTS_ADDR;
int srio1_used = 0, srio2_used = 0;
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
u32 *devdisr;
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
#ifdef CONFIG_SYS_FSL_QORIQ_CHASSIS2
devdisr = &gur->devdisr3;
#else
devdisr = &gur->devdisr;
#endif
if (is_serdes_configured(SRIO1)) {
set_next_law(CFG_SYS_SRIO1_MEM_PHYS,
law_size_bits(CFG_SYS_SRIO1_MEM_SIZE),
LAW_TRGT_IF_RIO_1);
srio1_used = 1;
#ifdef CONFIG_SYS_FSL_ERRATUM_SRIO_A004034
if (srio_erratum_a004034(0) < 0)
printf("SRIO1: enabled but port error\n");
else
#endif
printf("SRIO1: enabled\n");
} else {
printf("SRIO1: disabled\n");
}
#ifdef CONFIG_SRIO2
if (is_serdes_configured(SRIO2)) {
set_next_law(CFG_SYS_SRIO2_MEM_PHYS,
law_size_bits(CFG_SYS_SRIO2_MEM_SIZE),
LAW_TRGT_IF_RIO_2);
srio2_used = 1;
#ifdef CONFIG_SYS_FSL_ERRATUM_SRIO_A004034
if (srio_erratum_a004034(1) < 0)
printf("SRIO2: enabled but port error\n");
else
#endif
printf("SRIO2: enabled\n");
} else {
printf("SRIO2: disabled\n");
}
#endif
#ifdef CONFIG_FSL_CORENET
/* On FSL_CORENET devices we can disable individual ports */
if (!srio1_used)
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
setbits_be32(devdisr, _DEVDISR_SRIO1);
if (!srio2_used)
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
setbits_be32(devdisr, _DEVDISR_SRIO2);
#endif
/* neither port is used - disable everything */
if (!srio1_used && !srio2_used) {
powerpc/mpc85xx: Add T4240 SoC Add support for Freescale T4240 SoC. Feature of T4240 are (incomplete list): 12 dual-threaded e6500 cores built on Power Architecture® technology Arranged as clusters of four cores sharing a 2 MB L2 cache. Up to 1.8 GHz at 1.0 V with 64-bit ISA support (Power Architecture v2.06-compliant) Three levels of instruction: user, supervisor, and hypervisor 1.5 MB CoreNet Platform Cache (CPC) Hierarchical interconnect fabric CoreNet fabric supporting coherent and non-coherent transactions with prioritization and bandwidth allocation amongst CoreNet end-points 1.6 Tbps coherent read bandwidth Queue Manager (QMan) fabric supporting packet-level queue management and quality of service scheduling Three 64-bit DDR3/3L SDRAM memory controllers with ECC and interleaving support Memory prefetch engine (PMan) Data Path Acceleration Architecture (DPAA) incorporating acceleration for the following functions: Packet parsing, classification, and distribution (Frame Manager 1.1) Queue management for scheduling, packet sequencing, and congestion management (Queue Manager 1.1) Hardware buffer management for buffer allocation and de-allocation (BMan 1.1) Cryptography acceleration (SEC 5.0) at up to 40 Gbps RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0) 32 SerDes lanes at up to 10.3125 GHz Ethernet interfaces Up to four 10 Gbps Ethernet MACs Up to sixteen 1 Gbps Ethernet MACs Maximum configuration of 4 x 10 GE + 8 x 1 GE High-speed peripheral interfaces Four PCI Express 2.0/3.0 controllers Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data streaming support Interlaken look-aside interface for serial TCAM connection Additional peripheral interfaces Two serial ATA (SATA 2.0) controllers Two high-speed USB 2.0 controllers with integrated PHY Enhanced secure digital host controller (SD/MMC/eMMC) Enhanced serial peripheral interface (eSPI) Four I2C controllers Four 2-pin or two 4-pin UARTs Integrated Flash controller supporting NAND and NOR flash Two eight-channel DMA engines Support for hardware virtualization and partitioning enforcement QorIQ Platform's Trust Architecture 1.1 Signed-off-by: York Sun <yorksun@freescale.com> Signed-off-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Andy Fleming <afleming@freescale.com> Signed-off-by: Roy Zang <tie-fei.zang@freescale.com> Signed-off-by: Prabhakar Kushwaha <prabhakar@freescale.com> Signed-off-by: Shengzhou Liu <Shengzhou.Liu@freescale.com> Signed-off-by: Andy Fleming <afleming@freescale.com>
2012-10-08 07:44:19 +00:00
setbits_be32(devdisr, _DEVDISR_SRIO1);
setbits_be32(devdisr, _DEVDISR_SRIO2);
setbits_be32(devdisr, _DEVDISR_RMU);
}
}
#ifdef CONFIG_SRIO_PCIE_BOOT_MASTER
void srio_boot_master(int port)
{
struct ccsr_rio *srio = (void *)CFG_SYS_FSL_SRIO_ADDR;
/* set port accept-all */
out_be32((void *)&srio->impl.port[port - 1].ptaacr,
SRIO_PORT_ACCEPT_ALL);
debug("SRIOBOOT - MASTER: Master port [ %d ] for srio boot.\n", port);
/* configure inbound window for slave's u-boot image */
debug("SRIOBOOT - MASTER: Inbound window for slave's image; "
"Local = 0x%llx, Srio = 0x%llx, Size = 0x%x\n",
(u64)CFG_SRIO_PCIE_BOOT_IMAGE_MEM_PHYS,
(u64)CFG_SRIO_PCIE_BOOT_IMAGE_MEM_BUS1,
CFG_SRIO_PCIE_BOOT_IMAGE_SIZE);
out_be32((void *)&srio->atmu.port[port - 1].inbw[0].riwtar,
CFG_SRIO_PCIE_BOOT_IMAGE_MEM_PHYS >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[0].riwbar,
CFG_SRIO_PCIE_BOOT_IMAGE_MEM_BUS1 >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[0].riwar,
SRIO_IB_ATMU_AR
| atmu_size_mask(CFG_SRIO_PCIE_BOOT_IMAGE_SIZE));
/* configure inbound window for slave's u-boot image */
debug("SRIOBOOT - MASTER: Inbound window for slave's image; "
"Local = 0x%llx, Srio = 0x%llx, Size = 0x%x\n",
(u64)CFG_SRIO_PCIE_BOOT_IMAGE_MEM_PHYS,
(u64)CFG_SRIO_PCIE_BOOT_IMAGE_MEM_BUS2,
CFG_SRIO_PCIE_BOOT_IMAGE_SIZE);
out_be32((void *)&srio->atmu.port[port - 1].inbw[1].riwtar,
CFG_SRIO_PCIE_BOOT_IMAGE_MEM_PHYS >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[1].riwbar,
CFG_SRIO_PCIE_BOOT_IMAGE_MEM_BUS2 >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[1].riwar,
SRIO_IB_ATMU_AR
| atmu_size_mask(CFG_SRIO_PCIE_BOOT_IMAGE_SIZE));
/* configure inbound window for slave's ucode and ENV */
debug("SRIOBOOT - MASTER: Inbound window for slave's ucode and ENV; "
"Local = 0x%llx, Srio = 0x%llx, Size = 0x%x\n",
(u64)CFG_SRIO_PCIE_BOOT_UCODE_ENV_MEM_PHYS,
(u64)CFG_SRIO_PCIE_BOOT_UCODE_ENV_MEM_BUS,
CFG_SRIO_PCIE_BOOT_UCODE_ENV_SIZE);
out_be32((void *)&srio->atmu.port[port - 1].inbw[2].riwtar,
CFG_SRIO_PCIE_BOOT_UCODE_ENV_MEM_PHYS >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[2].riwbar,
CFG_SRIO_PCIE_BOOT_UCODE_ENV_MEM_BUS >> 12);
out_be32((void *)&srio->atmu.port[port - 1].inbw[2].riwar,
SRIO_IB_ATMU_AR
| atmu_size_mask(CFG_SRIO_PCIE_BOOT_UCODE_ENV_SIZE));
}
void srio_boot_master_release_slave(int port)
{
struct ccsr_rio *srio = (void *)CFG_SYS_FSL_SRIO_ADDR;
u32 escsr;
debug("SRIOBOOT - MASTER: "
"Check the port status and release slave core ...\n");
escsr = in_be32((void *)&srio->lp_serial.port[port - 1].pescsr);
if (escsr & 0x2) {
if (escsr & 0x10100) {
debug("SRIOBOOT - MASTER: Port [ %d ] is error.\n",
port);
} else {
debug("SRIOBOOT - MASTER: "
"Port [ %d ] is ready, now release slave's core ...\n",
port);
/*
* configure outbound window
* with maintenance attribute to set slave's LCSBA1CSR
*/
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[1].rowtar, 0);
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[1].rowtear, 0);
if (port - 1)
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[1].rowbar,
CFG_SYS_SRIO2_MEM_PHYS >> 12);
else
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[1].rowbar,
CFG_SYS_SRIO1_MEM_PHYS >> 12);
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[1].rowar,
SRIO_OB_ATMU_AR_MAINT
| atmu_size_mask(SRIO_MAINT_WIN_SIZE));
/*
* configure outbound window
* with R/W attribute to set slave's BRR
*/
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[2].rowtar,
SRIO_LCSBA1CSR >> 9);
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[2].rowtear, 0);
if (port - 1)
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[2].rowbar,
(CFG_SYS_SRIO2_MEM_PHYS
+ SRIO_MAINT_WIN_SIZE) >> 12);
else
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[2].rowbar,
(CFG_SYS_SRIO1_MEM_PHYS
+ SRIO_MAINT_WIN_SIZE) >> 12);
out_be32((void *)&srio->atmu.port[port - 1]
.outbw[2].rowar,
SRIO_OB_ATMU_AR_RW
| atmu_size_mask(SRIO_RW_WIN_SIZE));
/*
* Set the LCSBA1CSR register in slave
* by the maint-outbound window
*/
if (port - 1) {
out_be32((void *)CFG_SYS_SRIO2_MEM_VIRT
+ SRIO_LCSBA1CSR_OFFSET,
SRIO_LCSBA1CSR);
while (in_be32((void *)CFG_SYS_SRIO2_MEM_VIRT
+ SRIO_LCSBA1CSR_OFFSET)
!= SRIO_LCSBA1CSR)
;
/*
* And then set the BRR register
* to release slave core
*/
out_be32((void *)CFG_SYS_SRIO2_MEM_VIRT
+ SRIO_MAINT_WIN_SIZE
+ CFG_SRIO_PCIE_BOOT_BRR_OFFSET,
CFG_SRIO_PCIE_BOOT_RELEASE_MASK);
} else {
out_be32((void *)CFG_SYS_SRIO1_MEM_VIRT
+ SRIO_LCSBA1CSR_OFFSET,
SRIO_LCSBA1CSR);
while (in_be32((void *)CFG_SYS_SRIO1_MEM_VIRT
+ SRIO_LCSBA1CSR_OFFSET)
!= SRIO_LCSBA1CSR)
;
/*
* And then set the BRR register
* to release slave core
*/
out_be32((void *)CFG_SYS_SRIO1_MEM_VIRT
+ SRIO_MAINT_WIN_SIZE
+ CFG_SRIO_PCIE_BOOT_BRR_OFFSET,
CFG_SRIO_PCIE_BOOT_RELEASE_MASK);
}
debug("SRIOBOOT - MASTER: "
"Release slave successfully! Now the slave should start up!\n");
}
} else
debug("SRIOBOOT - MASTER: Port [ %d ] is not ready.\n", port);
}
#endif