u-boot/drivers/net/mvpp2.c

5512 lines
151 KiB
C
Raw Normal View History

/*
* Driver for Marvell PPv2 network controller for Armada 375 SoC.
*
* Copyright (C) 2014 Marvell
*
* Marcin Wojtas <mw@semihalf.com>
*
* U-Boot version:
* Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <dm/lists.h>
#include <net.h>
#include <netdev.h>
#include <config.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <phy.h>
#include <miiphy.h>
#include <watchdog.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/compat.h>
#include <linux/libfdt.h>
#include <linux/mbus.h>
#include <asm-generic/gpio.h>
#include <fdt_support.h>
#include <linux/mdio.h>
DECLARE_GLOBAL_DATA_PTR;
#define __verify_pcpu_ptr(ptr) \
do { \
const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
(void)__vpp_verify; \
} while (0)
#define VERIFY_PERCPU_PTR(__p) \
({ \
__verify_pcpu_ptr(__p); \
(typeof(*(__p)) __kernel __force *)(__p); \
})
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
#define smp_processor_id() 0
#define num_present_cpus() 1
#define for_each_present_cpu(cpu) \
for ((cpu) = 0; (cpu) < 1; (cpu)++)
#define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
#define WRAP (2 + ETH_HLEN + 4 + 32)
#define MTU 1500
#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
/* RX Fifo Registers */
#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
#define MVPP2_RX_FIFO_INIT_REG 0x64
/* RX DMA Top Registers */
#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
#define MVPP2_POOL_BUF_SIZE_OFFSET 5
#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
#define MVPP2_RXQ_POOL_SHORT_OFFS 20
#define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
#define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
#define MVPP2_RXQ_POOL_LONG_OFFS 24
#define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
#define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
#define MVPP2_RXQ_DISABLE_MASK BIT(31)
/* Parser Registers */
#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
#define MVPP2_PRS_PORT_LU_MAX 0xf
#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_TCAM_IDX_REG 0x1100
#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
#define MVPP2_PRS_TCAM_INV_MASK BIT(31)
#define MVPP2_PRS_SRAM_IDX_REG 0x1200
#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
#define MVPP2_PRS_TCAM_CTRL_REG 0x1230
#define MVPP2_PRS_TCAM_EN_MASK BIT(0)
/* Classifier Registers */
#define MVPP2_CLS_MODE_REG 0x1800
#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
#define MVPP2_CLS_PORT_WAY_REG 0x1810
#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
#define MVPP2_CLS_LKP_INDEX_REG 0x1814
#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
#define MVPP2_CLS_LKP_TBL_REG 0x1818
#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
#define MVPP2_CLS_FLOW_INDEX_REG 0x1820
#define MVPP2_CLS_FLOW_TBL0_REG 0x1824
#define MVPP2_CLS_FLOW_TBL1_REG 0x1828
#define MVPP2_CLS_FLOW_TBL2_REG 0x182c
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
/* Descriptor Manager Top Registers */
#define MVPP2_RXQ_NUM_REG 0x2040
#define MVPP2_RXQ_DESC_ADDR_REG 0x2044
#define MVPP22_DESC_ADDR_OFFS 8
#define MVPP2_RXQ_DESC_SIZE_REG 0x2048
#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
#define MVPP2_RXQ_NUM_NEW_OFFSET 16
#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
#define MVPP2_RXQ_THRESH_REG 0x204c
#define MVPP2_OCCUPIED_THRESH_OFFSET 0
#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
#define MVPP2_RXQ_INDEX_REG 0x2050
#define MVPP2_TXQ_NUM_REG 0x2080
#define MVPP2_TXQ_DESC_ADDR_REG 0x2084
#define MVPP2_TXQ_DESC_SIZE_REG 0x2088
#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
#define MVPP2_TXQ_THRESH_REG 0x2094
#define MVPP2_TRANSMITTED_THRESH_OFFSET 16
#define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
#define MVPP2_TXQ_INDEX_REG 0x2098
#define MVPP2_TXQ_PREF_BUF_REG 0x209c
#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
#define MVPP2_TXQ_PENDING_REG 0x20a0
#define MVPP2_TXQ_PENDING_MASK 0x3fff
#define MVPP2_TXQ_INT_STATUS_REG 0x20a4
#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
#define MVPP2_TRANSMITTED_COUNT_OFFSET 16
#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
#define MVPP2_TXQ_RSVD_CLR_OFFSET 16
#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
#define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
/* MBUS bridge registers */
#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
#define MVPP2_BASE_ADDR_ENABLE 0x4060
/* AXI Bridge Registers */
#define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
#define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
#define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
#define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
#define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
#define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
#define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
#define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
#define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
#define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
#define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
#define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
/* Values for AXI Bridge registers */
#define MVPP22_AXI_ATTR_CACHE_OFFS 0
#define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
#define MVPP22_AXI_CODE_CACHE_OFFS 0
#define MVPP22_AXI_CODE_DOMAIN_OFFS 4
#define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
#define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
#define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
#define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
#define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
/* Interrupt Cause and Mask registers */
#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
#define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
#define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
#define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
/* Buffer Manager registers */
#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
#define MVPP2_BM_POOL_SIZE_MASK 0xfff0
#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
#define MVPP2_BM_START_MASK BIT(0)
#define MVPP2_BM_STOP_MASK BIT(1)
#define MVPP2_BM_STATE_MASK BIT(4)
#define MVPP2_BM_LOW_THRESH_OFFS 8
#define MVPP2_BM_LOW_THRESH_MASK 0x7f00
#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
MVPP2_BM_LOW_THRESH_OFFS)
#define MVPP2_BM_HIGH_THRESH_OFFS 16
#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
MVPP2_BM_HIGH_THRESH_OFFS)
#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
#define MVPP2_BM_BPPE_FULL_MASK BIT(3)
#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
#define MVPP2_BM_VIRT_ALLOC_REG 0x6440
#define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
#define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
#define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
#define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
#define MVPP2_BM_VIRT_RLS_REG 0x64c0
#define MVPP21_BM_MC_RLS_REG 0x64c4
#define MVPP2_BM_MC_ID_MASK 0xfff
#define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
#define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
#define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
#define MVPP22_BM_MC_RLS_REG 0x64d4
#define MVPP22_BM_POOL_BASE_HIGH_REG 0x6310
#define MVPP22_BM_POOL_BASE_HIGH_MASK 0xff
/* TX Scheduler registers */
#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
#define MVPP2_TXP_SCHED_ENQ_MASK 0xff
#define MVPP2_TXP_SCHED_DISQ_OFFSET 8
#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
#define MVPP2_TXP_SCHED_MTU_REG 0x801c
#define MVPP2_TXP_MTU_MAX 0x7FFFF
#define MVPP2_TXP_SCHED_REFILL_REG 0x8020
#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
/* TX general registers */
#define MVPP2_TX_SNOOP_REG 0x8800
#define MVPP2_TX_PORT_FLUSH_REG 0x8810
#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
/* LMS registers */
#define MVPP2_SRC_ADDR_MIDDLE 0x24
#define MVPP2_SRC_ADDR_HIGH 0x28
#define MVPP2_PHY_AN_CFG0_REG 0x34
#define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
/* Per-port registers */
#define MVPP2_GMAC_CTRL_0_REG 0x0
#define MVPP2_GMAC_PORT_EN_MASK BIT(0)
#define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
#define MVPP2_GMAC_CTRL_1_REG 0x4
#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
#define MVPP2_GMAC_PCS_LB_EN_BIT 6
#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
#define MVPP2_GMAC_SA_LOW_OFFS 7
#define MVPP2_GMAC_CTRL_2_REG 0x8
#define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
#define MVPP2_GMAC_SGMII_MODE_MASK BIT(0)
#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
#define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
#define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5)
#define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
#define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9)
#define MVPP2_GMAC_AUTONEG_CONFIG 0xc
#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
#define MVPP2_GMAC_EN_PCS_AN BIT(2)
#define MVPP2_GMAC_AN_BYPASS_EN BIT(3)
#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVPP2_GMAC_AN_SPEED_EN BIT(7)
#define MVPP2_GMAC_FC_ADV_EN BIT(9)
#define MVPP2_GMAC_EN_FC_AN BIT(11)
#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
#define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15)
#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
#define MVPP2_GMAC_CTRL_4_REG 0x90
#define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0)
#define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5)
#define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6)
#define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7)
/*
* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
* relative to port->base.
*/
/* Port Mac Control0 */
#define MVPP22_XLG_CTRL0_REG 0x100
#define MVPP22_XLG_PORT_EN BIT(0)
#define MVPP22_XLG_MAC_RESETN BIT(1)
#define MVPP22_XLG_RX_FC_EN BIT(7)
#define MVPP22_XLG_MIBCNT_DIS BIT(13)
/* Port Mac Control1 */
#define MVPP22_XLG_CTRL1_REG 0x104
#define MVPP22_XLG_MAX_RX_SIZE_OFFS 0
#define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff
/* Port Interrupt Mask */
#define MVPP22_XLG_INTERRUPT_MASK_REG 0x118
#define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1)
/* Port Mac Control3 */
#define MVPP22_XLG_CTRL3_REG 0x11c
#define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13)
/* Port Mac Control4 */
#define MVPP22_XLG_CTRL4_REG 0x184
#define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5)
#define MVPP22_XLG_FORWARD_PFC_EN BIT(6)
#define MVPP22_XLG_MODE_DMA_1G BIT(12)
#define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14)
/* XPCS registers */
/* Global Configuration 0 */
#define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0
#define MVPP22_XPCS_PCSRESET BIT(0)
#define MVPP22_XPCS_PCSMODE_OFFS 3
#define MVPP22_XPCS_PCSMODE_MASK (0x3 << \
MVPP22_XPCS_PCSMODE_OFFS)
#define MVPP22_XPCS_LANEACTIVE_OFFS 5
#define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \
MVPP22_XPCS_LANEACTIVE_OFFS)
/* MPCS registers */
#define PCS40G_COMMON_CONTROL 0x14
#define FORWARD_ERROR_CORRECTION_MASK BIT(10)
#define PCS_CLOCK_RESET 0x14c
#define TX_SD_CLK_RESET_MASK BIT(0)
#define RX_SD_CLK_RESET_MASK BIT(1)
#define MAC_CLK_RESET_MASK BIT(2)
#define CLK_DIVISION_RATIO_OFFS 4
#define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS)
#define CLK_DIV_PHASE_SET_MASK BIT(11)
/* System Soft Reset 1 */
#define GOP_SOFT_RESET_1_REG 0x108
#define NETC_GOP_SOFT_RESET_OFFS 6
#define NETC_GOP_SOFT_RESET_MASK (0x1 << \
NETC_GOP_SOFT_RESET_OFFS)
/* Ports Control 0 */
#define NETCOMP_PORTS_CONTROL_0_REG 0x110
#define NETC_BUS_WIDTH_SELECT_OFFS 1
#define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \
NETC_BUS_WIDTH_SELECT_OFFS)
#define NETC_GIG_RX_DATA_SAMPLE_OFFS 29
#define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \
NETC_GIG_RX_DATA_SAMPLE_OFFS)
#define NETC_CLK_DIV_PHASE_OFFS 31
#define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS)
/* Ports Control 1 */
#define NETCOMP_PORTS_CONTROL_1_REG 0x114
#define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p)
#define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \
NETC_PORTS_ACTIVE_OFFSET(p))
#define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p)
#define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \
NETC_PORT_GIG_RF_RESET_OFFS(p))
#define NETCOMP_CONTROL_0_REG 0x120
#define NETC_GBE_PORT0_SGMII_MODE_OFFS 0
#define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \
NETC_GBE_PORT0_SGMII_MODE_OFFS)
#define NETC_GBE_PORT1_SGMII_MODE_OFFS 1
#define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \
NETC_GBE_PORT1_SGMII_MODE_OFFS)
#define NETC_GBE_PORT1_MII_MODE_OFFS 2
#define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \
NETC_GBE_PORT1_MII_MODE_OFFS)
#define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04)
#define MVPP22_SMI_POLLING_EN BIT(10)
#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
/* Descriptor ring Macros */
#define MVPP2_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
#define MVPP22_SMI 0x1200
/* Additional PPv2.2 offsets */
#define MVPP22_MPCS 0x007000
#define MVPP22_XPCS 0x007400
#define MVPP22_PORT_BASE 0x007e00
#define MVPP22_PORT_OFFSET 0x001000
#define MVPP22_RFU1 0x318000
/* Maximum number of ports */
#define MVPP22_GOP_MAC_NUM 4
/* Sets the field located at the specified in data */
#define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41
#define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5
#define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb
/* Net Complex */
enum mv_netc_topology {
MV_NETC_GE_MAC2_SGMII = BIT(0),
MV_NETC_GE_MAC2_RGMII = BIT(1),
MV_NETC_GE_MAC3_SGMII = BIT(2),
MV_NETC_GE_MAC3_RGMII = BIT(3),
};
enum mv_netc_phase {
MV_NETC_FIRST_PHASE,
MV_NETC_SECOND_PHASE,
};
enum mv_netc_sgmii_xmi_mode {
MV_NETC_GBE_SGMII,
MV_NETC_GBE_XMII,
};
enum mv_netc_mii_mode {
MV_NETC_GBE_RGMII,
MV_NETC_GBE_MII,
};
enum mv_netc_lanes {
MV_NETC_LANE_23,
MV_NETC_LANE_45,
};
/* Various constants */
/* Coalescing */
#define MVPP2_TXDONE_COAL_PKTS_THRESH 15
#define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
#define MVPP2_RX_COAL_PKTS 32
#define MVPP2_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVPP2_MH_SIZE 2
#define MVPP2_ETH_TYPE_LEN 2
#define MVPP2_PPPOE_HDR_SIZE 8
#define MVPP2_VLAN_TAG_LEN 4
/* Lbtd 802.3 type */
#define MVPP2_IP_LBDT_TYPE 0xfffa
#define MVPP2_CPU_D_CACHE_LINE_SIZE 32
#define MVPP2_TX_CSUM_MAX_SIZE 9800
/* Timeout constants */
#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
#define MVPP2_TX_MTU_MAX 0x7ffff
/* Maximum number of T-CONTs of PON port */
#define MVPP2_MAX_TCONT 16
/* Maximum number of supported ports */
#define MVPP2_MAX_PORTS 4
/* Maximum number of TXQs used by single port */
#define MVPP2_MAX_TXQ 8
/* Default number of TXQs in use */
#define MVPP2_DEFAULT_TXQ 1
/* Default number of RXQs in use */
#define MVPP2_DEFAULT_RXQ 1
#define CFG_MV_ETH_RXQ 8 /* increment by 8 */
/* Max number of Rx descriptors */
#define MVPP2_MAX_RXD 16
/* Max number of Tx descriptors */
#define MVPP2_MAX_TXD 16
/* Amount of Tx descriptors that can be reserved at once by CPU */
#define MVPP2_CPU_DESC_CHUNK 16
/* Max number of Tx descriptors in each aggregated queue */
#define MVPP2_AGGR_TXQ_SIZE 16
/* Descriptor aligned size */
#define MVPP2_DESC_ALIGNED_SIZE 32
/* Descriptor alignment mask */
#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
/* RX FIFO constants */
#define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000
#define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80
#define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000
#define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000
#define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000
#define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200
#define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80
#define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40
#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
/* TX general registers */
#define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2))
#define MVPP22_TX_FIFO_SIZE_MASK 0xf
/* TX FIFO constants */
#define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa
#define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3
/* RX buffer constants */
#define MVPP2_SKB_SHINFO_SIZE \
0
#define MVPP2_RX_PKT_SIZE(mtu) \
ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
/* IPv6 max L3 address size */
#define MVPP2_MAX_L3_ADDR_SIZE 16
/* Port flags */
#define MVPP2_F_LOOPBACK BIT(0)
/* Marvell tag types */
enum mvpp2_tag_type {
MVPP2_TAG_TYPE_NONE = 0,
MVPP2_TAG_TYPE_MH = 1,
MVPP2_TAG_TYPE_DSA = 2,
MVPP2_TAG_TYPE_EDSA = 3,
MVPP2_TAG_TYPE_VLAN = 4,
MVPP2_TAG_TYPE_LAST = 5
};
/* Parser constants */
#define MVPP2_PRS_TCAM_SRAM_SIZE 256
#define MVPP2_PRS_TCAM_WORDS 6
#define MVPP2_PRS_SRAM_WORDS 4
#define MVPP2_PRS_FLOW_ID_SIZE 64
#define MVPP2_PRS_FLOW_ID_MASK 0x3f
#define MVPP2_PRS_TCAM_ENTRY_INVALID 1
#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
#define MVPP2_PRS_IPV4_HEAD 0x40
#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
#define MVPP2_PRS_IPV4_MC 0xe0
#define MVPP2_PRS_IPV4_MC_MASK 0xf0
#define MVPP2_PRS_IPV4_BC_MASK 0xff
#define MVPP2_PRS_IPV4_IHL 0x5
#define MVPP2_PRS_IPV4_IHL_MASK 0xf
#define MVPP2_PRS_IPV6_MC 0xff
#define MVPP2_PRS_IPV6_MC_MASK 0xff
#define MVPP2_PRS_IPV6_HOP_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
#define MVPP2_PRS_DBL_VLANS_MAX 100
/* Tcam structure:
* - lookup ID - 4 bits
* - port ID - 1 byte
* - additional information - 1 byte
* - header data - 8 bytes
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
*/
#define MVPP2_PRS_AI_BITS 8
#define MVPP2_PRS_PORT_MASK 0xff
#define MVPP2_PRS_LU_MASK 0xf
#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
(((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
(((offs) * 2) - ((offs) % 2) + 2)
#define MVPP2_PRS_TCAM_AI_BYTE 16
#define MVPP2_PRS_TCAM_PORT_BYTE 17
#define MVPP2_PRS_TCAM_LU_BYTE 20
#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
#define MVPP2_PRS_TCAM_INV_WORD 5
/* Tcam entries ID */
#define MVPP2_PE_DROP_ALL 0
#define MVPP2_PE_FIRST_FREE_TID 1
#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
/* Sram structure
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
*/
#define MVPP2_PRS_SRAM_RI_OFFS 0
#define MVPP2_PRS_SRAM_RI_WORD 0
#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
#define MVPP2_PRS_SRAM_SHIFT_OFFS 64
#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
#define MVPP2_PRS_SRAM_UDF_OFFS 73
#define MVPP2_PRS_SRAM_UDF_BITS 8
#define MVPP2_PRS_SRAM_UDF_MASK 0xff
#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
#define MVPP2_PRS_SRAM_AI_OFFS 90
#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
#define MVPP2_PRS_SRAM_AI_MASK 0xff
#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
#define MVPP2_PRS_SRAM_LU_DONE_BIT 110
#define MVPP2_PRS_SRAM_LU_GEN_BIT 111
/* Sram result info bits assignment */
#define MVPP2_PRS_RI_MAC_ME_MASK 0x1
#define MVPP2_PRS_RI_DSA_MASK 0x2
net: mvpp2: simplify MVPP2_PRS_RI_* definitions Some of the MVPP2_PRS_RI_* definitions use the ~(value) syntax, which doesn't compile nicely on 64-bit. Moreover, those definitions are in fact unneeded, since they are always used in combination with a bit mask that ensures only the appropriate bits are modified. Therefore, such definitions should just be set to 0x0. In addition, as suggested by Russell King, we change the _MASK definitions to also use the BIT() macro so that it is clear they are related to the values defined afterwards. For example: #define MVPP2_PRS_RI_L2_CAST_MASK 0x600 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) becomes #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_UCAST 0x0 #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) Because the values (MVPP2_PRS_RI_L2_UCAST, MVPP2_PRS_RI_L2_MCAST and MVPP2_PRS_RI_L2_BCAST) are always applied with MVPP2_PRS_RI_L2_CAST_MASK, and therefore there is no need for MVPP2_PRS_RI_L2_UCAST to be defined as ~(BIT(9) | BIT(10)). It fixes the following warnings when building the driver on a 64-bit platform (which is not possible as of this commit, but will be enabled in a follow-up commit): drivers/net/ethernet/marvell/mvpp2.c: In function ‘mvpp2_prs_mac_promisc_set’: drivers/net/ethernet/marvell/mvpp2.c:524:33: warning: large integer implicitly truncated to unsigned type [-Woverflow] #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) ^ drivers/net/ethernet/marvell/mvpp2.c:1459:33: note: in expansion of macro ‘MVPP2_PRS_RI_L2_UCAST’ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 11:19:36 +00:00
#define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_VLAN_NONE 0x0
#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
net: mvpp2: simplify MVPP2_PRS_RI_* definitions Some of the MVPP2_PRS_RI_* definitions use the ~(value) syntax, which doesn't compile nicely on 64-bit. Moreover, those definitions are in fact unneeded, since they are always used in combination with a bit mask that ensures only the appropriate bits are modified. Therefore, such definitions should just be set to 0x0. In addition, as suggested by Russell King, we change the _MASK definitions to also use the BIT() macro so that it is clear they are related to the values defined afterwards. For example: #define MVPP2_PRS_RI_L2_CAST_MASK 0x600 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) becomes #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_UCAST 0x0 #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) Because the values (MVPP2_PRS_RI_L2_UCAST, MVPP2_PRS_RI_L2_MCAST and MVPP2_PRS_RI_L2_BCAST) are always applied with MVPP2_PRS_RI_L2_CAST_MASK, and therefore there is no need for MVPP2_PRS_RI_L2_UCAST to be defined as ~(BIT(9) | BIT(10)). It fixes the following warnings when building the driver on a 64-bit platform (which is not possible as of this commit, but will be enabled in a follow-up commit): drivers/net/ethernet/marvell/mvpp2.c: In function ‘mvpp2_prs_mac_promisc_set’: drivers/net/ethernet/marvell/mvpp2.c:524:33: warning: large integer implicitly truncated to unsigned type [-Woverflow] #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) ^ drivers/net/ethernet/marvell/mvpp2.c:1459:33: note: in expansion of macro ‘MVPP2_PRS_RI_L2_UCAST’ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 11:19:36 +00:00
#define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
#define MVPP2_PRS_RI_L2_UCAST 0x0
#define MVPP2_PRS_RI_L2_MCAST BIT(9)
#define MVPP2_PRS_RI_L2_BCAST BIT(10)
#define MVPP2_PRS_RI_PPPOE_MASK 0x800
net: mvpp2: simplify MVPP2_PRS_RI_* definitions Some of the MVPP2_PRS_RI_* definitions use the ~(value) syntax, which doesn't compile nicely on 64-bit. Moreover, those definitions are in fact unneeded, since they are always used in combination with a bit mask that ensures only the appropriate bits are modified. Therefore, such definitions should just be set to 0x0. In addition, as suggested by Russell King, we change the _MASK definitions to also use the BIT() macro so that it is clear they are related to the values defined afterwards. For example: #define MVPP2_PRS_RI_L2_CAST_MASK 0x600 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) becomes #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_UCAST 0x0 #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) Because the values (MVPP2_PRS_RI_L2_UCAST, MVPP2_PRS_RI_L2_MCAST and MVPP2_PRS_RI_L2_BCAST) are always applied with MVPP2_PRS_RI_L2_CAST_MASK, and therefore there is no need for MVPP2_PRS_RI_L2_UCAST to be defined as ~(BIT(9) | BIT(10)). It fixes the following warnings when building the driver on a 64-bit platform (which is not possible as of this commit, but will be enabled in a follow-up commit): drivers/net/ethernet/marvell/mvpp2.c: In function ‘mvpp2_prs_mac_promisc_set’: drivers/net/ethernet/marvell/mvpp2.c:524:33: warning: large integer implicitly truncated to unsigned type [-Woverflow] #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) ^ drivers/net/ethernet/marvell/mvpp2.c:1459:33: note: in expansion of macro ‘MVPP2_PRS_RI_L2_UCAST’ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 11:19:36 +00:00
#define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_UN 0x0
#define MVPP2_PRS_RI_L3_IP4 BIT(12)
#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
#define MVPP2_PRS_RI_L3_IP6 BIT(14)
#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
net: mvpp2: simplify MVPP2_PRS_RI_* definitions Some of the MVPP2_PRS_RI_* definitions use the ~(value) syntax, which doesn't compile nicely on 64-bit. Moreover, those definitions are in fact unneeded, since they are always used in combination with a bit mask that ensures only the appropriate bits are modified. Therefore, such definitions should just be set to 0x0. In addition, as suggested by Russell King, we change the _MASK definitions to also use the BIT() macro so that it is clear they are related to the values defined afterwards. For example: #define MVPP2_PRS_RI_L2_CAST_MASK 0x600 #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) becomes #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_UCAST 0x0 #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) Because the values (MVPP2_PRS_RI_L2_UCAST, MVPP2_PRS_RI_L2_MCAST and MVPP2_PRS_RI_L2_BCAST) are always applied with MVPP2_PRS_RI_L2_CAST_MASK, and therefore there is no need for MVPP2_PRS_RI_L2_UCAST to be defined as ~(BIT(9) | BIT(10)). It fixes the following warnings when building the driver on a 64-bit platform (which is not possible as of this commit, but will be enabled in a follow-up commit): drivers/net/ethernet/marvell/mvpp2.c: In function ‘mvpp2_prs_mac_promisc_set’: drivers/net/ethernet/marvell/mvpp2.c:524:33: warning: large integer implicitly truncated to unsigned type [-Woverflow] #define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10)) ^ drivers/net/ethernet/marvell/mvpp2.c:1459:33: note: in expansion of macro ‘MVPP2_PRS_RI_L2_UCAST’ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 11:19:36 +00:00
#define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_L3_UCAST 0x0
#define MVPP2_PRS_RI_L3_MCAST BIT(15)
#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
#define MVPP2_PRS_RI_UDF3_MASK 0x300000
#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
#define MVPP2_PRS_RI_L4_TCP BIT(22)
#define MVPP2_PRS_RI_L4_UDP BIT(23)
#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
#define MVPP2_PRS_RI_UDF7_MASK 0x60000000
#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
#define MVPP2_PRS_RI_DROP_MASK 0x80000000
/* Sram additional info bits assignment */
#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
#define MVPP2_PRS_SINGLE_VLAN_AI 0
#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
/* DSA/EDSA type */
#define MVPP2_PRS_TAGGED true
#define MVPP2_PRS_UNTAGGED false
#define MVPP2_PRS_EDSA true
#define MVPP2_PRS_DSA false
/* MAC entries, shadow udf */
enum mvpp2_prs_udf {
MVPP2_PRS_UDF_MAC_DEF,
MVPP2_PRS_UDF_MAC_RANGE,
MVPP2_PRS_UDF_L2_DEF,
MVPP2_PRS_UDF_L2_DEF_COPY,
MVPP2_PRS_UDF_L2_USER,
};
/* Lookup ID */
enum mvpp2_prs_lookup {
MVPP2_PRS_LU_MH,
MVPP2_PRS_LU_MAC,
MVPP2_PRS_LU_DSA,
MVPP2_PRS_LU_VLAN,
MVPP2_PRS_LU_L2,
MVPP2_PRS_LU_PPPOE,
MVPP2_PRS_LU_IP4,
MVPP2_PRS_LU_IP6,
MVPP2_PRS_LU_FLOWS,
MVPP2_PRS_LU_LAST,
};
/* L3 cast enum */
enum mvpp2_prs_l3_cast {
MVPP2_PRS_L3_UNI_CAST,
MVPP2_PRS_L3_MULTI_CAST,
MVPP2_PRS_L3_BROAD_CAST
};
/* Classifier constants */
#define MVPP2_CLS_FLOWS_TBL_SIZE 512
#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
#define MVPP2_CLS_LKP_TBL_SIZE 64
/* BM constants */
#define MVPP2_BM_POOLS_NUM 1
#define MVPP2_BM_LONG_BUF_NUM 16
#define MVPP2_BM_SHORT_BUF_NUM 16
#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
#define MVPP2_BM_POOL_PTR_ALIGN 128
#define MVPP2_BM_SWF_LONG_POOL(port) 0
/* BM cookie (32 bits) definition */
#define MVPP2_BM_COOKIE_POOL_OFFS 8
#define MVPP2_BM_COOKIE_CPU_OFFS 24
/* BM short pool packet size
* These value assure that for SWF the total number
* of bytes allocated for each buffer will be 512
*/
#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
enum mvpp2_bm_type {
MVPP2_BM_FREE,
MVPP2_BM_SWF_LONG,
MVPP2_BM_SWF_SHORT
};
/* Definitions */
/* Shared Packet Processor resources */
struct mvpp2 {
/* Shared registers' base addresses */
void __iomem *base;
void __iomem *lms_base;
void __iomem *iface_base;
void __iomem *mpcs_base;
void __iomem *xpcs_base;
void __iomem *rfu1_base;
u32 netc_config;
/* List of pointers to port structures */
struct mvpp2_port **port_list;
/* Aggregated TXQs */
struct mvpp2_tx_queue *aggr_txqs;
/* BM pools */
struct mvpp2_bm_pool *bm_pools;
/* PRS shadow table */
struct mvpp2_prs_shadow *prs_shadow;
/* PRS auxiliary table for double vlan entries control */
bool *prs_double_vlans;
/* Tclk value */
u32 tclk;
/* HW version */
enum { MVPP21, MVPP22 } hw_version;
/* Maximum number of RXQs per port */
unsigned int max_port_rxqs;
int probe_done;
u8 num_ports;
};
struct mvpp2_pcpu_stats {
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
};
struct mvpp2_port {
u8 id;
/* Index of the port from the "group of ports" complex point
* of view
*/
int gop_id;
int irq;
struct mvpp2 *priv;
/* Per-port registers' base address */
void __iomem *base;
struct mvpp2_rx_queue **rxqs;
struct mvpp2_tx_queue **txqs;
int pkt_size;
u32 pending_cause_rx;
/* Per-CPU port control */
struct mvpp2_port_pcpu __percpu *pcpu;
/* Flags */
unsigned long flags;
u16 tx_ring_size;
u16 rx_ring_size;
struct mvpp2_pcpu_stats __percpu *stats;
struct phy_device *phy_dev;
phy_interface_t phy_interface;
int phyaddr;
struct udevice *mdio_dev;
struct mii_dev *bus;
#if CONFIG_IS_ENABLED(DM_GPIO)
struct gpio_desc phy_reset_gpio;
struct gpio_desc phy_tx_disable_gpio;
#endif
int init;
unsigned int link;
unsigned int duplex;
unsigned int speed;
struct mvpp2_bm_pool *pool_long;
struct mvpp2_bm_pool *pool_short;
/* Index of first port's physical RXQ */
u8 first_rxq;
u8 dev_addr[ETH_ALEN];
};
/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVPP2_TXD_L3_OFF_SHIFT 0
#define MVPP2_TXD_IP_HLEN_SHIFT 8
#define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
#define MVPP2_TXD_L4_CSUM_NOT BIT(14)
#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
#define MVPP2_TXD_PADDING_DISABLE BIT(23)
#define MVPP2_TXD_L4_UDP BIT(24)
#define MVPP2_TXD_L3_IP6 BIT(26)
#define MVPP2_TXD_L_DESC BIT(28)
#define MVPP2_TXD_F_DESC BIT(29)
#define MVPP2_RXD_ERR_SUMMARY BIT(15)
#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
#define MVPP2_RXD_ERR_CRC 0x0
#define MVPP2_RXD_ERR_OVERRUN BIT(13)
#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
#define MVPP2_RXD_BM_POOL_ID_OFFS 16
#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
#define MVPP2_RXD_HWF_SYNC BIT(21)
#define MVPP2_RXD_L4_CSUM_OK BIT(22)
#define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
#define MVPP2_RXD_L4_TCP BIT(25)
#define MVPP2_RXD_L4_UDP BIT(26)
#define MVPP2_RXD_L3_IP4 BIT(28)
#define MVPP2_RXD_L3_IP6 BIT(30)
#define MVPP2_RXD_BUF_HDR BIT(31)
/* HW TX descriptor for PPv2.1 */
struct mvpp21_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u8 packet_offset; /* the offset from the buffer beginning */
u8 phys_txq; /* destination queue ID */
u16 data_size; /* data size of transmitted packet in bytes */
u32 buf_dma_addr; /* physical addr of transmitted buffer */
u32 buf_cookie; /* cookie for access to TX buffer in tx path */
u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
u32 reserved2; /* reserved (for future use) */
};
/* HW RX descriptor for PPv2.1 */
struct mvpp21_rx_desc {
u32 status; /* info about received packet */
u16 reserved1; /* parser_info (for future use, PnC) */
u16 data_size; /* size of received packet in bytes */
u32 buf_dma_addr; /* physical address of the buffer */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved2; /* gem_port_id (for future use, PON) */
u16 reserved3; /* csum_l4 (for future use, PnC) */
u8 reserved4; /* bm_qset (for future use, BM) */
u8 reserved5;
u16 reserved6; /* classify_info (for future use, PnC) */
u32 reserved7; /* flow_id (for future use, PnC) */
u32 reserved8;
};
/* HW TX descriptor for PPv2.2 */
struct mvpp22_tx_desc {
u32 command;
u8 packet_offset;
u8 phys_txq;
u16 data_size;
u64 reserved1;
u64 buf_dma_addr_ptp;
u64 buf_cookie_misc;
};
/* HW RX descriptor for PPv2.2 */
struct mvpp22_rx_desc {
u32 status;
u16 reserved1;
u16 data_size;
u32 reserved2;
u32 reserved3;
u64 buf_dma_addr_key_hash;
u64 buf_cookie_misc;
};
/* Opaque type used by the driver to manipulate the HW TX and RX
* descriptors
*/
struct mvpp2_tx_desc {
union {
struct mvpp21_tx_desc pp21;
struct mvpp22_tx_desc pp22;
};
};
struct mvpp2_rx_desc {
union {
struct mvpp21_rx_desc pp21;
struct mvpp22_rx_desc pp22;
};
};
/* Per-CPU Tx queue control */
struct mvpp2_txq_pcpu {
int cpu;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the
* descriptor ring
*/
int count;
/* Number of Tx DMA descriptors reserved for each CPU */
int reserved_num;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
};
struct mvpp2_tx_queue {
/* Physical number of this Tx queue */
u8 id;
/* Logical number of this Tx queue */
u8 log_id;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the descriptor ring */
int count;
/* Per-CPU control of physical Tx queues */
struct mvpp2_txq_pcpu __percpu *pcpu;
u32 done_pkts_coal;
/* Virtual address of thex Tx DMA descriptors array */
struct mvpp2_tx_desc *descs;
/* DMA address of the Tx DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last Tx DMA descriptor */
int last_desc;
/* Index of the next Tx DMA descriptor to process */
int next_desc_to_proc;
};
struct mvpp2_rx_queue {
/* RX queue number, in the range 0-31 for physical RXQs */
u8 id;
/* Num of rx descriptors in the rx descriptor ring */
int size;
u32 pkts_coal;
u32 time_coal;
/* Virtual address of the RX DMA descriptors array */
struct mvpp2_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
/* ID of port to which physical RXQ is mapped */
int port;
/* Port's logic RXQ number to which physical RXQ is mapped */
int logic_rxq;
};
union mvpp2_prs_tcam_entry {
u32 word[MVPP2_PRS_TCAM_WORDS];
u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
};
union mvpp2_prs_sram_entry {
u32 word[MVPP2_PRS_SRAM_WORDS];
u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
};
struct mvpp2_prs_entry {
u32 index;
union mvpp2_prs_tcam_entry tcam;
union mvpp2_prs_sram_entry sram;
};
struct mvpp2_prs_shadow {
bool valid;
bool finish;
/* Lookup ID */
int lu;
/* User defined offset */
int udf;
/* Result info */
u32 ri;
u32 ri_mask;
};
struct mvpp2_cls_flow_entry {
u32 index;
u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
};
struct mvpp2_cls_lookup_entry {
u32 lkpid;
u32 way;
u32 data;
};
struct mvpp2_bm_pool {
/* Pool number in the range 0-7 */
int id;
enum mvpp2_bm_type type;
/* Buffer Pointers Pool External (BPPE) size */
int size;
/* Number of buffers for this pool */
int buf_num;
/* Pool buffer size */
int buf_size;
/* Packet size */
int pkt_size;
/* BPPE virtual base address */
unsigned long *virt_addr;
/* BPPE DMA base address */
dma_addr_t dma_addr;
/* Ports using BM pool */
u32 port_map;
};
/* Static declaractions */
/* Number of RXQs used by single port */
static int rxq_number = MVPP2_DEFAULT_RXQ;
/* Number of TXQs used by single port */
static int txq_number = MVPP2_DEFAULT_TXQ;
static int base_id;
#define MVPP2_DRIVER_NAME "mvpp2"
#define MVPP2_DRIVER_VERSION "1.0"
/*
* U-Boot internal data, mostly uncached buffers for descriptors and data
*/
struct buffer_location {
struct mvpp2_tx_desc *aggr_tx_descs;
struct mvpp2_tx_desc *tx_descs;
struct mvpp2_rx_desc *rx_descs;
unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
int first_rxq;
};
/*
* All 4 interfaces use the same global buffer, since only one interface
* can be enabled at once
*/
static struct buffer_location buffer_loc;
static int buffer_loc_init;
/*
* Page table entries are set to 1MB, or multiples of 1MB
* (not < 1MB). driver uses less bd's so use 1MB bdspace.
*/
#define BD_SPACE (1 << 20)
/* Utility/helper methods */
static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->base + offset);
}
static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->base + offset);
}
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
dma_addr_t dma_addr)
{
if (port->priv->hw_version == MVPP21) {
tx_desc->pp21.buf_dma_addr = dma_addr;
} else {
u64 val = (u64)dma_addr;
tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
tx_desc->pp22.buf_dma_addr_ptp |= val;
}
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
size_t size)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.data_size = size;
else
tx_desc->pp22.data_size = size;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int txq)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.phys_txq = txq;
else
tx_desc->pp22.phys_txq = txq;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int command)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.command = command;
else
tx_desc->pp22.command = command;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int offset)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.packet_offset = offset;
else
tx_desc->pp22.packet_offset = offset;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_dma_addr;
else
return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_cookie;
else
return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.data_size;
else
return rx_desc->pp22.data_size;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.status;
else
return rx_desc->pp22.status;
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
}
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
txq_pcpu->txq_get_index++;
if (txq_pcpu->txq_get_index == txq_pcpu->size)
txq_pcpu->txq_get_index = 0;
}
/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
return MVPP2_MAX_TCONT + port->id;
}
/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}
/* Parser configuration routines */
/* Update parser tcam and sram hw entries */
static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Clear entry invalidation bit */
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
return 0;
}
/* Read tcam entry from hw */
static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
return MVPP2_PRS_TCAM_ENTRY_INVALID;
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
return 0;
}
/* Invalidate tcam hw entry */
static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
{
/* Write index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
MVPP2_PRS_TCAM_INV_MASK);
}
/* Enable shadow table entry and set its lookup ID */
static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
{
priv->prs_shadow[index].valid = true;
priv->prs_shadow[index].lu = lu;
}
/* Update ri fields in shadow table entry */
static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
unsigned int ri, unsigned int ri_mask)
{
priv->prs_shadow[index].ri_mask = ri_mask;
priv->prs_shadow[index].ri = ri;
}
/* Update lookup field in tcam sw entry */
static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
}
/* Update mask for single port in tcam sw entry */
static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
unsigned int port, bool add)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
if (add)
pe->tcam.byte[enable_off] &= ~(1 << port);
else
pe->tcam.byte[enable_off] |= 1 << port;
}
/* Update port map in tcam sw entry */
static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
unsigned int ports)
{
unsigned char port_mask = MVPP2_PRS_PORT_MASK;
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
pe->tcam.byte[enable_off] &= ~port_mask;
pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
}
/* Obtain port map from tcam sw entry */
static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
}
/* Set byte of data and its enable bits in tcam sw entry */
static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char byte,
unsigned char enable)
{
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
}
/* Get byte of data and its enable bits from tcam sw entry */
static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char *byte,
unsigned char *enable)
{
*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
}
/* Set ethertype in tcam sw entry */
static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
unsigned short ethertype)
{
mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
}
/* Set bits in sram sw entry */
static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
}
/* Clear bits in sram sw entry */
static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
}
/* Update ri bits in sram sw entry */
static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
}
}
/* Update ai bits in sram sw entry */
static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
}
}
/* Read ai bits from sram sw entry */
static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
{
u8 bits;
int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
int ai_en_off = ai_off + 1;
int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
bits = (pe->sram.byte[ai_off] >> ai_shift) |
(pe->sram.byte[ai_en_off] << (8 - ai_shift));
return bits;
}
/* In sram sw entry set lookup ID field of the tcam key to be used in the next
* lookup interation
*/
static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
unsigned int lu)
{
int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
mvpp2_prs_sram_bits_clear(pe, sram_next_off,
MVPP2_PRS_SRAM_NEXT_LU_MASK);
mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
}
/* In the sram sw entry set sign and value of the next lookup offset
* and the offset value generated to the classifier
*/
static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
unsigned int op)
{
/* Set sign */
if (shift < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
shift = 0 - shift;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
}
/* Set value */
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
(unsigned char)shift;
/* Reset and set operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* In the sram sw entry set sign and value of the user defined offset
* generated to the classifier
*/
static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
unsigned int type, int offset,
unsigned int op)
{
/* Set sign */
if (offset < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
offset = 0 - offset;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
}
/* Set value */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
MVPP2_PRS_SRAM_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] |=
(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
/* Set offset type */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
MVPP2_PRS_SRAM_UDF_TYPE_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
/* Set offset operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
(8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
(op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* Find parser flow entry */
static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
u8 bits;
if (!priv->prs_shadow[tid].valid ||
priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
bits = mvpp2_prs_sram_ai_get(pe);
/* Sram store classification lookup ID in AI bits [5:0] */
if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
return pe;
}
kfree(pe);
return NULL;
}
/* Return first free tcam index, seeking from start to end */
static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
unsigned char end)
{
int tid;
if (start > end)
swap(start, end);
if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
for (tid = start; tid <= end; tid++) {
if (!priv->prs_shadow[tid].valid)
return tid;
}
return -EINVAL;
}
/* Enable/disable dropping all mac da's */
static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_DROP_ALL;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_DROP_ALL;
/* Non-promiscuous mode for all ports - DROP unknown packets */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set port to promiscuous mode */
static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
/* Promiscuous mode - Accept unknown packets */
if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Accept multicast */
static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
bool add)
{
struct mvpp2_prs_entry pe;
unsigned char da_mc;
/* Ethernet multicast address first byte is
* 0x01 for IPv4 and 0x33 for IPv6
*/
da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
if (priv->prs_shadow[index].valid) {
/* Entry exist - update port only */
pe.index = index;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = index;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Update tcam entry data first byte */
mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Parser per-port initialization */
static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
int lu_max, int offset)
{
u32 val;
/* Set lookup ID */
val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
val &= ~MVPP2_PRS_PORT_LU_MASK(port);
val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
/* Set maximum number of loops for packet received from port */
val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
/* Set initial offset for packet header extraction for the first
* searching loop
*/
val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
}
/* Default flow entries initialization for all ports */
static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Set flow ID*/
mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_hw_write(priv, &pe);
}
}
/* Set default entry for Marvell Header field */
static void mvpp2_prs_mh_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
pe.index = MVPP2_PE_MH_DEFAULT;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set default entires (place holder) for promiscuous, non-promiscuous and
* multicast MAC addresses
*/
static void mvpp2_prs_mac_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
/* Non-promiscuous mode for all ports - DROP unknown packets */
pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, &pe);
/* place holders only - no ports */
mvpp2_prs_mac_drop_all_set(priv, 0, false);
mvpp2_prs_mac_promisc_set(priv, 0, false);
mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
}
/* Match basic ethertypes */
static int mvpp2_prs_etype_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int tid;
/* Ethertype: PPPoE */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: ARP */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: LBTD */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_IP);
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
MVPP2_PRS_IPV4_HEAD_MASK |
MVPP2_PRS_IPV4_IHL_MASK);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Skip eth_type + 4 bytes of IP header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 with options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe.index = tid;
/* Clear tcam data before updating */
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD,
MVPP2_PRS_IPV4_HEAD_MASK);
/* Clear ri before updating */
pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv6 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
/* Skip DIP of IPV6 header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
MVPP2_MAX_L3_ADDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = MVPP2_PE_ETH_TYPE_UN;
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset even it's unknown L3 */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Parser default initialization */
static int mvpp2_prs_default_init(struct udevice *dev,
struct mvpp2 *priv)
{
int err, index, i;
/* Enable tcam table */
mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
/* Clear all tcam and sram entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
}
/* Invalidate all tcam entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
mvpp2_prs_hw_inv(priv, index);
priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
sizeof(struct mvpp2_prs_shadow),
GFP_KERNEL);
if (!priv->prs_shadow)
return -ENOMEM;
/* Always start from lookup = 0 */
for (index = 0; index < MVPP2_MAX_PORTS; index++)
mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
MVPP2_PRS_PORT_LU_MAX, 0);
mvpp2_prs_def_flow_init(priv);
mvpp2_prs_mh_init(priv);
mvpp2_prs_mac_init(priv);
err = mvpp2_prs_etype_init(priv);
if (err)
return err;
return 0;
}
/* Compare MAC DA with tcam entry data */
static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
const u8 *da, unsigned char *mask)
{
unsigned char tcam_byte, tcam_mask;
int index;
for (index = 0; index < ETH_ALEN; index++) {
mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
if (tcam_mask != mask[index])
return false;
if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
return false;
}
return true;
}
/* Find tcam entry with matched pair <MAC DA, port> */
static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
unsigned char *mask, int udf_type)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
/* Go through the all entires with MVPP2_PRS_LU_MAC */
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned int entry_pmap;
if (!priv->prs_shadow[tid].valid ||
(priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
(priv->prs_shadow[tid].udf != udf_type))
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
entry_pmap == pmap)
return pe;
}
kfree(pe);
return NULL;
}
/* Update parser's mac da entry */
static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
const u8 *da, bool add)
{
struct mvpp2_prs_entry *pe;
unsigned int pmap, len, ri;
unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int tid;
/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
MVPP2_PRS_UDF_MAC_DEF);
/* No such entry */
if (!pe) {
if (!add)
return 0;
/* Create new TCAM entry */
/* Find first range mac entry*/
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++)
if (priv->prs_shadow[tid].valid &&
(priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
(priv->prs_shadow[tid].udf ==
MVPP2_PRS_UDF_MAC_RANGE))
break;
/* Go through the all entries from first to last */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
tid - 1);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -1;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
pe->index = tid;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(pe, port, add);
/* Invalidate the entry if no ports are left enabled */
pmap = mvpp2_prs_tcam_port_map_get(pe);
if (pmap == 0) {
if (add) {
kfree(pe);
return -1;
}
mvpp2_prs_hw_inv(priv, pe->index);
priv->prs_shadow[pe->index].valid = false;
kfree(pe);
return 0;
}
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
/* Set match on DA */
len = ETH_ALEN;
while (len--)
mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
/* Set result info bits */
ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Update shadow table and hw entry */
priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, pe);
kfree(pe);
return 0;
}
static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
{
int err;
/* Remove old parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
false);
if (err)
return err;
/* Add new parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
if (err)
return err;
/* Set addr in the device */
memcpy(port->dev_addr, da, ETH_ALEN);
return 0;
}
/* Set prs flow for the port */
static int mvpp2_prs_def_flow(struct mvpp2_port *port)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = mvpp2_prs_flow_find(port->priv, port->id);
/* Such entry not exist */
if (!pe) {
/* Go through the all entires from last to first */
tid = mvpp2_prs_tcam_first_free(port->priv,
MVPP2_PE_LAST_FREE_TID,
MVPP2_PE_FIRST_FREE_TID);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
pe->index = tid;
/* Set flow ID*/
mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table */
mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
}
mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
mvpp2_prs_hw_write(port->priv, pe);
kfree(pe);
return 0;
}
/* Classifier configuration routines */
/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
struct mvpp2_cls_flow_entry *fe)
{
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
}
/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
struct mvpp2_cls_lookup_entry *le)
{
u32 val;
val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}
/* Classifier default initialization */
static void mvpp2_cls_init(struct mvpp2 *priv)
{
struct mvpp2_cls_lookup_entry le;
struct mvpp2_cls_flow_entry fe;
int index;
/* Enable classifier */
mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
/* Clear classifier flow table */
memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
fe.index = index;
mvpp2_cls_flow_write(priv, &fe);
}
/* Clear classifier lookup table */
le.data = 0;
for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
le.lkpid = index;
le.way = 0;
mvpp2_cls_lookup_write(priv, &le);
le.way = 1;
mvpp2_cls_lookup_write(priv, &le);
}
}
static void mvpp2_cls_port_config(struct mvpp2_port *port)
{
struct mvpp2_cls_lookup_entry le;
u32 val;
/* Set way for the port */
val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
/* Pick the entry to be accessed in lookup ID decoding table
* according to the way and lkpid.
*/
le.lkpid = port->id;
le.way = 0;
le.data = 0;
/* Set initial CPU queue for receiving packets */
le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
le.data |= port->first_rxq;
/* Disable classification engines */
le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
/* Update lookup ID table entry */
mvpp2_cls_lookup_write(port->priv, &le);
}
/* Set CPU queue number for oversize packets */
static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
u32 val;
mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
(port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}
/* Buffer Manager configuration routines */
/* Create pool */
static int mvpp2_bm_pool_create(struct udevice *dev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool, int size)
{
u32 val;
/* Number of buffer pointers must be a multiple of 16, as per
* hardware constraints
*/
if (!IS_ALIGNED(size, 16))
return -EINVAL;
bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
if (!bm_pool->virt_addr)
return -ENOMEM;
if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
MVPP2_BM_POOL_PTR_ALIGN)) {
dev_err(dev, "BM pool %d is not %d bytes aligned\n",
bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
return -ENOMEM;
}
mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
lower_32_bits(bm_pool->dma_addr));
if (priv->hw_version == MVPP22)
mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
(upper_32_bits(bm_pool->dma_addr) &
MVPP22_BM_POOL_BASE_HIGH_MASK));
mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_START_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
bm_pool->type = MVPP2_BM_FREE;
bm_pool->size = size;
bm_pool->pkt_size = 0;
bm_pool->buf_num = 0;
return 0;
}
/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
int buf_size)
{
u32 val;
bm_pool->buf_size = buf_size;
val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}
/* Free all buffers from the pool */
static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
int i;
for (i = 0; i < bm_pool->buf_num; i++) {
/* Allocate buffer back from the buffer manager */
mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
}
bm_pool->buf_num = 0;
}
/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct udevice *dev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
u32 val;
mvpp2_bm_bufs_free(dev, priv, bm_pool);
if (bm_pool->buf_num) {
dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
return 0;
}
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_STOP_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
return 0;
}
static int mvpp2_bm_pools_init(struct udevice *dev,
struct mvpp2 *priv)
{
int i, err, size;
struct mvpp2_bm_pool *bm_pool;
/* Create all pools with maximum size */
size = MVPP2_BM_POOL_SIZE_MAX;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
bm_pool = &priv->bm_pools[i];
bm_pool->id = i;
err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
if (err)
goto err_unroll_pools;
mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
}
return 0;
err_unroll_pools:
dev_err(dev, "failed to create BM pool %d, size %d\n", i, size);
for (i = i - 1; i >= 0; i--)
mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
return err;
}
static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
{
int i, err;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
/* Mask BM all interrupts */
mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
/* Clear BM cause register */
mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
}
/* Allocate and initialize BM pools */
priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
if (!priv->bm_pools)
return -ENOMEM;
err = mvpp2_bm_pools_init(dev, priv);
if (err < 0)
return err;
return 0;
}
/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
int lrxq, int long_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_LONG_MASK;
else
mask = MVPP22_RXQ_POOL_LONG_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Set pool number in a BM cookie */
static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
{
u32 bm;
bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
return bm;
}
/* Get pool number from a BM cookie */
static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
{
return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
}
/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
dma_addr_t buf_dma_addr,
unsigned long buf_phys_addr)
{
if (port->priv->hw_version == MVPP22) {
u32 val = 0;
if (sizeof(dma_addr_t) == 8)
val |= upper_32_bits(buf_dma_addr) &
MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
if (sizeof(phys_addr_t) == 8)
val |= (upper_32_bits(buf_phys_addr)
<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
}
/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
* returned in the "cookie" field of the RX
* descriptor. Instead of storing the virtual address, we
* store the physical address
*/
mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
}
/* Refill BM pool */
static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
dma_addr_t dma_addr,
phys_addr_t phys_addr)
{
int pool = mvpp2_bm_cookie_pool_get(bm);
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
}
/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool, int buf_num)
{
int i;
if (buf_num < 0 ||
(buf_num + bm_pool->buf_num > bm_pool->size)) {
dev_err(port->phy_dev->dev,
"cannot allocate %d buffers for pool %d\n", buf_num,
bm_pool->id);
return 0;
}
for (i = 0; i < buf_num; i++) {
mvpp2_bm_pool_put(port, bm_pool->id,
(dma_addr_t)buffer_loc.rx_buffer[i],
(unsigned long)buffer_loc.rx_buffer[i]);
}
/* Update BM driver with number of buffers added to pool */
bm_pool->buf_num += i;
return i;
}
/* Notify the driver that BM pool is being used as specific type and return the
* pool pointer on success
*/
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
int pkt_size)
{
struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
int num;
if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
dev_err(port->phy_dev->dev, "mixing pool types is forbidden\n");
return NULL;
}
if (new_pool->type == MVPP2_BM_FREE)
new_pool->type = type;
/* Allocate buffers in case BM pool is used as long pool, but packet
* size doesn't match MTU or BM pool hasn't being used yet
*/
if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
(new_pool->pkt_size == 0)) {
int pkts_num;
/* Set default buffer number or free all the buffers in case
* the pool is not empty
*/
pkts_num = new_pool->buf_num;
if (pkts_num == 0)
pkts_num = type == MVPP2_BM_SWF_LONG ?
MVPP2_BM_LONG_BUF_NUM :
MVPP2_BM_SHORT_BUF_NUM;
else
mvpp2_bm_bufs_free(NULL,
port->priv, new_pool);
new_pool->pkt_size = pkt_size;
/* Allocate buffers for this pool */
num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
if (num != pkts_num) {
dev_err(port->phy_dev->dev,
"pool %d: %d of %d allocated\n", new_pool->id,
num, pkts_num);
return NULL;
}
}
return new_pool;
}
/* Initialize pools for swf */
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
int rxq;
if (!port->pool_long) {
port->pool_long =
mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
MVPP2_BM_SWF_LONG,
port->pkt_size);
if (!port->pool_long)
return -ENOMEM;
port->pool_long->port_map |= (1 << port->id);
for (rxq = 0; rxq < rxq_number; rxq++)
mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
}
return 0;
}
/* Port configuration routines */
static void mvpp2_port_mii_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_SGMII:
val |= MVPP2_GMAC_INBAND_AN_MASK;
break;
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
val &= ~MVPP2_GMAC_INBAND_AN_MASK;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
val |= MVPP2_GMAC_PORT_RGMII_MASK;
default:
val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
}
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
}
static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= MVPP2_GMAC_FC_ADV_EN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void mvpp2_port_enable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val |= MVPP2_GMAC_PORT_EN_MASK;
val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
static void mvpp2_port_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~(MVPP2_GMAC_PORT_EN_MASK);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
if (port->speed == 1000)
val |= MVPP2_GMAC_GMII_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
port->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
val |= MVPP2_GMAC_PCS_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
static void mvpp2_port_reset(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
MVPP2_GMAC_PORT_RESET_MASK)
continue;
}
/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP2_GMAC_MAX_RX_SIZE_OFFS);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* PPv2.2 GoP/GMAC config */
/* Set the MAC to reset or exit from reset */
static int gop_gmac_reset(struct mvpp2_port *port, int reset)
{
u32 val;
/* read - modify - write */
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (reset)
val |= MVPP2_GMAC_PORT_RESET_MASK;
else
val &= ~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
/*
* gop_gpcs_mode_cfg
*
* Configure port to working with Gig PCS or don't.
*/
static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (en)
val |= MVPP2_GMAC_PCS_ENABLE_MASK;
else
val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
/* enable / disable PCS on this port */
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (en)
val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
else
val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
/* enable / disable PCS on this port */
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to SGMII mode */
val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure AN */
val = MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_EN_FC_AN |
MVPP2_GMAC_AN_DUPLEX_EN |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_2500basex_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/*
* Configure GIG MAC to 2500Base-X mode connected to a fiber
* transceiver
*/
val |= MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* In 2500BaseX mode, we can't negotiate speed
* and we do not want InBand autoneg
* bypass enabled (link interrupt storm risk
* otherwise).
*/
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_1000basex_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to 1000BASEX mode */
val |= MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* In 1000BaseX mode, we can't negotiate speed (it's
* only 1000), and we do not want InBand autoneg
* bypass enabled (link interrupt storm risk
* otherwise).
*/
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to SGMII mode */
val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure AN 0xb8e8 */
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_EN_FC_AN |
MVPP2_GMAC_AN_DUPLEX_EN |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
/* Set the internal mux's to the required MAC in the GOP */
static int gop_gmac_mode_cfg(struct mvpp2_port *port)
{
u32 val;
/* Set TX FIFO thresholds */
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_SGMII:
gop_gmac_sgmii_cfg(port);
break;
case PHY_INTERFACE_MODE_1000BASEX:
gop_gmac_1000basex_cfg(port);
break;
case PHY_INTERFACE_MODE_2500BASEX:
gop_gmac_2500basex_cfg(port);
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
gop_gmac_rgmii_cfg(port);
break;
default:
return -1;
}
/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* PeriodicXonEn disable */
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
return 0;
}
static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
{
u32 val;
/* relevant only for MAC0 (XLG0 and GMAC0) */
if (port->gop_id > 0)
return;
/* configure 1Gig MAC mode */
val = readl(port->base + MVPP22_XLG_CTRL3_REG);
val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
writel(val, port->base + MVPP22_XLG_CTRL3_REG);
}
static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (reset)
val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
else
val |= MVPP2_GMAC_SGMII_MODE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static int gop_mpcs_mode(struct mvpp2_port *port)
{
u32 val;
/* configure PCS40G COMMON CONTROL */
val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS40G_COMMON_CONTROL);
val &= ~FORWARD_ERROR_CORRECTION_MASK;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS40G_COMMON_CONTROL);
/* configure PCS CLOCK RESET */
val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
val &= ~CLK_DIVISION_RATIO_MASK;
val |= 1 << CLK_DIVISION_RATIO_OFFS;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
val &= ~CLK_DIV_PHASE_SET_MASK;
val |= MAC_CLK_RESET_MASK;
val |= RX_SD_CLK_RESET_MASK;
val |= TX_SD_CLK_RESET_MASK;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
return 0;
}
/* Set the internal mux's to the required MAC in the GOP */
static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
{
u32 val;
/* configure 10G MAC mode */
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val |= MVPP22_XLG_RX_FC_EN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
val = readl(port->base + MVPP22_XLG_CTRL3_REG);
val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
writel(val, port->base + MVPP22_XLG_CTRL3_REG);
/* read - modify - write */
val = readl(port->base + MVPP22_XLG_CTRL4_REG);
val &= ~MVPP22_XLG_MODE_DMA_1G;
val |= MVPP22_XLG_FORWARD_PFC_EN;
val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
writel(val, port->base + MVPP22_XLG_CTRL4_REG);
/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
val = readl(port->base + MVPP22_XLG_CTRL1_REG);
val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
writel(val, port->base + MVPP22_XLG_CTRL1_REG);
/* unmask link change interrupt */
val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
val |= 1; /* unmask summary bit */
writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
return 0;
}
/* Set the MAC to reset or exit from reset */
static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
{
u32 val;
/* read - modify - write */
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
if (reset)
val &= ~MVPP22_XLG_MAC_RESETN;
else
val |= MVPP22_XLG_MAC_RESETN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
return 0;
}
/*
* gop_port_init
*
* Init physical port. Configures the port mode and all it's elements
* accordingly.
* Does not verify that the selected mode/port number is valid at the
* core level.
*/
static int gop_port_init(struct mvpp2_port *port)
{
int mac_num = port->gop_id;
int num_of_act_lanes;
if (mac_num >= MVPP22_GOP_MAC_NUM) {
log_err("illegal port number %d", mac_num);
return -1;
}
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
gop_gmac_reset(port, 1);
/* configure PCS */
gop_gpcs_mode_cfg(port, 0);
gop_bypass_clk_cfg(port, 1);
/* configure MAC */
gop_gmac_mode_cfg(port);
/* pcs unreset */
gop_gpcs_reset(port, 0);
/* mac unreset */
gop_gmac_reset(port, 0);
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
/* configure PCS */
gop_gpcs_mode_cfg(port, 1);
/* configure MAC */
gop_gmac_mode_cfg(port);
/* select proper Mac mode */
gop_xlg_2_gig_mac_cfg(port);
/* pcs unreset */
gop_gpcs_reset(port, 0);
/* mac unreset */
gop_gmac_reset(port, 0);
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_XAUI:
num_of_act_lanes = 2;
mac_num = 0;
/* configure PCS */
gop_mpcs_mode(port);
/* configure MAC */
gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
/* mac unreset */
gop_xlg_mac_reset(port, 0);
break;
default:
log_err("Requested port mode (%d) not supported\n",
port->phy_interface);
return -1;
}
return 0;
}
static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
{
u32 val;
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
if (enable) {
/* Enable port and MIB counters update */
val |= MVPP22_XLG_PORT_EN;
val &= ~MVPP22_XLG_MIBCNT_DIS;
} else {
/* Disable port */
val &= ~MVPP22_XLG_PORT_EN;
}
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
}
static void gop_port_enable(struct mvpp2_port *port, int enable)
{
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
if (enable)
mvpp2_port_enable(port);
else
mvpp2_port_disable(port);
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_XAUI:
gop_xlg_mac_port_enable(port, enable);
break;
default:
log_err("%s: Wrong port mode (%d)\n", __func__,
port->phy_interface);
return;
}
}
/* RFU1 functions */
static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->rfu1_base + offset);
}
static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->rfu1_base + offset);
}
static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
{
u32 val = 0;
if (gop_id == 2) {
if (phy_type == PHY_INTERFACE_MODE_SGMII ||
phy_type == PHY_INTERFACE_MODE_1000BASEX ||
phy_type == PHY_INTERFACE_MODE_2500BASEX)
val |= MV_NETC_GE_MAC2_SGMII;
else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
phy_type == PHY_INTERFACE_MODE_RGMII_ID)
val |= MV_NETC_GE_MAC2_RGMII;
}
if (gop_id == 3) {
if (phy_type == PHY_INTERFACE_MODE_SGMII ||
phy_type == PHY_INTERFACE_MODE_1000BASEX ||
phy_type == PHY_INTERFACE_MODE_2500BASEX)
val |= MV_NETC_GE_MAC3_SGMII;
else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
phy_type == PHY_INTERFACE_MODE_RGMII_ID)
val |= MV_NETC_GE_MAC3_RGMII;
}
return val;
}
static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
val &= NETC_PORTS_ACTIVE_MASK(gop_id);
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
}
static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
val &= NETC_GBE_PORT1_MII_MODE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
}
static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
reg &= ~NETC_GOP_SOFT_RESET_MASK;
val <<= NETC_GOP_SOFT_RESET_OFFS;
val &= NETC_GOP_SOFT_RESET_MASK;
reg |= val;
gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
}
static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_CLK_DIV_PHASE_MASK;
val <<= NETC_CLK_DIV_PHASE_OFFS;
val &= NETC_CLK_DIV_PHASE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
}
static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
u32 val)
{
u32 reg, mask, offset;
if (gop_id == 2) {
mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
} else {
mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
}
reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
reg &= ~mask;
val <<= offset;
val &= mask;
reg |= val;
gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
}
static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
val <<= NETC_BUS_WIDTH_SELECT_OFFS;
val &= NETC_BUS_WIDTH_SELECT_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
enum mv_netc_phase phase)
{
switch (phase) {
case MV_NETC_FIRST_PHASE:
/* Set Bus Width to HB mode = 1 */
gop_netc_bus_width_select(priv, 1);
/* Select RGMII mode */
gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
break;
case MV_NETC_SECOND_PHASE:
/* De-assert the relevant port HB reset */
gop_netc_port_rf_reset(priv, gop_id, 1);
break;
}
}
static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
enum mv_netc_phase phase)
{
switch (phase) {
case MV_NETC_FIRST_PHASE:
/* Set Bus Width to HB mode = 1 */
gop_netc_bus_width_select(priv, 1);
/* Select SGMII mode */
if (gop_id >= 1) {
gop_netc_gbe_sgmii_mode_select(priv, gop_id,
MV_NETC_GBE_SGMII);
}
/* Configure the sample stages */
gop_netc_sample_stages_timing(priv, 0);
/* Configure the ComPhy Selector */
/* gop_netc_com_phy_selector_config(netComplex); */
break;
case MV_NETC_SECOND_PHASE:
/* De-assert the relevant port HB reset */
gop_netc_port_rf_reset(priv, gop_id, 1);
break;
}
}
static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
{
u32 c = priv->netc_config;
if (c & MV_NETC_GE_MAC2_SGMII)
gop_netc_mac_to_sgmii(priv, 2, phase);
else if (c & MV_NETC_GE_MAC2_RGMII)
gop_netc_mac_to_xgmii(priv, 2, phase);
if (c & MV_NETC_GE_MAC3_SGMII) {
gop_netc_mac_to_sgmii(priv, 3, phase);
} else {
gop_netc_mac_to_xgmii(priv, 3, phase);
if (c & MV_NETC_GE_MAC3_RGMII)
gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
else
gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
}
/* Activate gop ports 0, 2, 3 */
gop_netc_active_port(priv, 0, 1);
gop_netc_active_port(priv, 2, 1);
gop_netc_active_port(priv, 3, 1);
if (phase == MV_NETC_SECOND_PHASE) {
/* Enable the GOP internal clock logic */
gop_netc_gop_clock_logic_set(priv, 1);
/* De-assert GOP unit reset */
gop_netc_gop_reset(priv, 1);
}
return 0;
}
/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
int tx_port_num, val, queue, ptxq, lrxq;
if (port->priv->hw_version == MVPP21) {
/* Configure port to loopback if needed */
if (port->flags & MVPP2_F_LOOPBACK)
mvpp2_port_loopback_set(port);
/* Update TX FIFO MIN Threshold */
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
/* Min. TX threshold must be less than minimal packet length */
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
}
/* Disable Legacy WRR, Disable EJP, Release from reset */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
/* Close bandwidth for all queues */
for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
ptxq = mvpp2_txq_phys(port->id, queue);
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
}
/* Set refill period to 1 usec, refill tokens
* and bucket size to maximum
*/
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
val = MVPP2_TXP_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
/* Set MaximumLowLatencyPacketSize value to 256 */
mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
/* Enable Rx cache snoop */
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_SNOOP_PKT_SIZE_MASK |
MVPP2_SNOOP_BUF_HDR_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val &= ~MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable transmit via physical egress queue
* - HW starts take descriptors from DRAM
*/
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
u32 qmap;
int queue;
int tx_port_num = mvpp2_egress_port(port);
/* Enable all initialized TXs. */
qmap = 0;
for (queue = 0; queue < txq_number; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
if (txq->descs != NULL)
qmap |= (1 << queue);
}
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}
/* Disable transmit via physical egress queue
* - HW doesn't take descriptors from DRAM
*/
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
u32 reg_data;
int delay;
int tx_port_num = mvpp2_egress_port(port);
/* Issue stop command for active channels only */
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
MVPP2_TXP_SCHED_ENQ_MASK;
if (reg_data != 0)
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
(reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
/* Wait for all Tx activity to terminate. */
delay = 0;
do {
if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
dev_warn(port->phy_dev->dev,
"Tx stop timed out, status=0x%08x\n",
reg_data);
break;
}
mdelay(1);
delay++;
/* Check port TX Command register that all
* Tx queues are stopped
*/
reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}
/* Rx descriptors helper methods */
/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
return val & MVPP2_RXQ_OCCUPIED_MASK;
}
/* Update Rx queue status with the number of occupied and available
* Rx descriptor slots.
*/
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
int used_count, int free_count)
{
/* Decrement the number of used descriptors and increment count
* increment the number of free descriptors.
*/
u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}
/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
int prxq, int offset)
{
u32 val;
/* Convert offset from bytes to units of 32 bytes */
offset = offset >> 5;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
/* Offset is in */
val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
MVPP2_RXQ_PACKET_OFFSET_MASK);
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Obtain BM cookie information from descriptor */
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
int cpu = smp_processor_id();
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
int pool;
pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
}
/* Tx descriptors helper methods */
/* Get number of Tx descriptors waiting to be transmitted by HW */
static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
return val & MVPP2_TXQ_PENDING_MASK;
}
/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Update HW with number of aggregated Tx descriptors to be sent */
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
/* aggregated access - relevant TXQ number is written in TX desc */
mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
* Per-CPU access
*/
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
/* Reading status reg resets transmitted descriptor counter */
val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
MVPP2_TRANSMITTED_COUNT_OFFSET;
}
static void mvpp2_txq_sent_counter_clear(void *arg)
{
struct mvpp2_port *port = arg;
int queue;
for (queue = 0; queue < txq_number; queue++) {
int id = port->txqs[queue]->id;
mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
}
}
/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
u32 val, size, mtu;
int txq, tx_port_num;
mtu = port->pkt_size * 8;
if (mtu > MVPP2_TXP_MTU_MAX)
mtu = MVPP2_TXP_MTU_MAX;
/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
mtu = 3 * mtu;
/* Indirect access to registers */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
/* Set MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
val &= ~MVPP2_TXP_MTU_MAX;
val |= mtu;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
/* TXP token size and all TXQs token size must be larger that MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
}
for (txq = 0; txq < txq_number; txq++) {
val = mvpp2_read(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
val);
}
}
}
/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
int i;
for (i = 0; i < num; i++)
mvpp2_txq_inc_get(txq_pcpu);
}
static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->rxqs[queue];
}
static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->txqs[queue];
}
/* Rx/Tx queue initialization/cleanup methods */
/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct udevice *dev,
struct mvpp2_tx_queue *aggr_txq,
int desc_num, int cpu,
struct mvpp2 *priv)
{
u32 txq_dma;
/* Allocate memory for TX descriptors */
aggr_txq->descs = buffer_loc.aggr_tx_descs;
aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
if (!aggr_txq->descs)
return -ENOMEM;
/* Make sure descriptor address is cache line size aligned */
BUG_ON(aggr_txq->descs !=
PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
aggr_txq->last_desc = aggr_txq->size - 1;
/* Aggr TXQ no reset WA */
aggr_txq->next_desc_to_proc = mvpp2_read(priv,
MVPP2_AGGR_TXQ_INDEX_REG(cpu));
/* Set Tx descriptors queue starting address indirect
* access
*/
if (priv->hw_version == MVPP21)
txq_dma = aggr_txq->descs_dma;
else
txq_dma = aggr_txq->descs_dma >>
MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
return 0;
}
/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
u32 rxq_dma;
rxq->size = port->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs = buffer_loc.rx_descs;
rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
if (!rxq->descs)
return -ENOMEM;
BUG_ON(rxq->descs !=
PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
rxq->last_desc = rxq->size - 1;
/* Zero occupied and non-occupied counters - direct access */
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
/* Set Rx descriptors queue starting address - indirect access */
mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
if (port->priv->hw_version == MVPP21)
rxq_dma = rxq->descs_dma;
else
rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
/* Set Offset */
mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
/* Add number of descriptors ready for receiving packets */
mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
return 0;
}
/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int rx_received, i;
rx_received = mvpp2_rxq_received(port, rxq->id);
if (!rx_received)
return;
for (i = 0; i < rx_received; i++) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
mvpp2_pool_refill(port, bm,
mvpp2_rxdesc_dma_addr_get(port, rx_desc),
mvpp2_rxdesc_cookie_get(port, rx_desc));
}
mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}
/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
mvpp2_rxq_drop_pkts(port, rxq);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_dma = 0;
/* Clear Rx descriptors queue starting address and size;
* free descriptor number
*/
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
}
/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
int cpu, desc, desc_per_txq, tx_port_num;
struct mvpp2_txq_pcpu *txq_pcpu;
txq->size = port->tx_ring_size;
/* Allocate memory for Tx descriptors */
txq->descs = buffer_loc.tx_descs;
txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
if (!txq->descs)
return -ENOMEM;
/* Make sure descriptor address is cache line size aligned */
BUG_ON(txq->descs !=
PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
txq->last_desc = txq->size - 1;
/* Set Tx descriptors queue starting address - indirect access */
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
MVPP2_TXQ_DESC_SIZE_MASK);
mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
val &= ~MVPP2_TXQ_PENDING_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
/* Calculate base address in prefetch buffer. We reserve 16 descriptors
* for each existing TXQ.
* TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
* GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
*/
desc_per_txq = 16;
desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
(txq->log_id * desc_per_txq);
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
/* WRR / EJP configuration - indirect access */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
val = MVPP2_TXQ_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
val);
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->size = txq->size;
}
return 0;
}
/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_dma = 0;
/* Set minimum bandwidth for disabled TXQs */
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
/* Set Tx descriptors queue starting address and size */
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
}
/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
int delay, pending, cpu;
u32 val;
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
val |= MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
/* The napi queue has been stopped so wait for all packets
* to be transmitted.
*/
delay = 0;
do {
if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
dev_warn(port->phy_dev->dev,
"port %d: cleaning queue %d timed out\n",
port->id, txq->log_id);
break;
}
mdelay(1);
delay++;
pending = mvpp2_txq_pend_desc_num_get(port, txq);
} while (pending);
val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
/* Release all packets */
mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
/* Reset queue */
txq_pcpu->count = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
}
}
/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue;
u32 val;
val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
/* Reset Tx ports and delete Tx queues */
val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
for (queue = 0; queue < txq_number; queue++) {
txq = port->txqs[queue];
mvpp2_txq_clean(port, txq);
mvpp2_txq_deinit(port, txq);
}
mvpp2_txq_sent_counter_clear(port);
val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}
/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
int queue;
for (queue = 0; queue < rxq_number; queue++)
mvpp2_rxq_deinit(port, port->rxqs[queue]);
}
/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
int queue, err;
for (queue = 0; queue < rxq_number; queue++) {
err = mvpp2_rxq_init(port, port->rxqs[queue]);
if (err)
goto err_cleanup;
}
return 0;
err_cleanup:
mvpp2_cleanup_rxqs(port);
return err;
}
/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue, err;
for (queue = 0; queue < txq_number; queue++) {
txq = port->txqs[queue];
err = mvpp2_txq_init(port, txq);
if (err)
goto err_cleanup;
}
mvpp2_txq_sent_counter_clear(port);
return 0;
err_cleanup:
mvpp2_cleanup_txqs(port);
return err;
}
/* Adjust link */
static void mvpp2_link_event(struct mvpp2_port *port)
{
struct phy_device *phydev = port->phy_dev;
int status_change = 0;
u32 val;
if (phydev->link) {
if ((port->speed != phydev->speed) ||
(port->duplex != phydev->duplex)) {
u32 val;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_AN_DUPLEX_EN);
if (phydev->duplex)
val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
if (phydev->speed == SPEED_1000 ||
phydev->speed == 2500)
val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
else if (phydev->speed == SPEED_100)
val |= MVPP2_GMAC_CONFIG_MII_SPEED;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
port->duplex = phydev->duplex;
port->speed = phydev->speed;
}
}
if (phydev->link != port->link) {
if (!phydev->link) {
port->duplex = -1;
port->speed = 0;
}
port->link = phydev->link;
status_change = 1;
}
if (status_change) {
if (phydev->link) {
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= (MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_FORCE_LINK_DOWN);
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
} else {
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
}
}
}
/* Main RX/TX processing routines */
/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
switch (status & MVPP2_RXD_ERR_CODE_MASK) {
case MVPP2_RXD_ERR_CRC:
dev_err(port->phy_dev->dev,
"bad rx status %08x (crc error), size=%zu\n", status,
sz);
break;
case MVPP2_RXD_ERR_OVERRUN:
dev_err(port->phy_dev->dev,
"bad rx status %08x (overrun error), size=%zu\n",
status, sz);
break;
case MVPP2_RXD_ERR_RESOURCE:
dev_err(port->phy_dev->dev,
"bad rx status %08x (resource error), size=%zu\n",
status, sz);
break;
}
}
/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool,
u32 bm, dma_addr_t dma_addr)
{
mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
return 0;
}
/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
mvpp2_gmac_max_rx_size_set(port);
default:
break;
}
mvpp2_txp_max_tx_size_set(port);
if (port->priv->hw_version == MVPP21)
mvpp2_port_enable(port);
else
gop_port_enable(port, 1);
}
/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
/* Stop new packets from arriving to RXQs */
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
if (port->priv->hw_version == MVPP21)
mvpp2_port_disable(port);
else
gop_port_enable(port, 0);
}
static void mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
{
struct phy_device *phy_dev;
if (!port->init || port->link == 0) {
phy_dev = dm_mdio_phy_connect(port->mdio_dev, port->phyaddr,
dev, port->phy_interface);
/*
* If the phy doesn't match with any existing u-boot drivers the
* phy framework will connect it to generic one which
* uid == 0xffffffff. In this case act as if the phy wouldn't be
* declared in dts. Otherwise in case of 3310 (for which the
* driver doesn't exist) the link will not be correctly
* detected. Removing phy entry from dts in case of 3310 is not
* an option because it is required for the phy_fw_down
* procedure.
*/
if (phy_dev &&
phy_dev->drv->uid == 0xffffffff) {/* Generic phy */
dev_warn(port->phy_dev->dev,
"Marking phy as invalid, link will not be checked\n");
/* set phy_addr to invalid value */
port->phyaddr = PHY_MAX_ADDR;
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return;
}
port->phy_dev = phy_dev;
if (!phy_dev) {
dev_err(port->phy_dev->dev, "cannot connect to phy\n");
return;
}
phy_dev->supported &= PHY_GBIT_FEATURES;
phy_dev->advertising = phy_dev->supported;
port->phy_dev = phy_dev;
port->link = 0;
port->duplex = 0;
port->speed = 0;
phy_config(phy_dev);
phy_startup(phy_dev);
if (!phy_dev->link)
printf("%s: No link\n", phy_dev->dev->name);
else
port->init = 1;
} else {
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
}
}
static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
{
unsigned char mac_bcast[ETH_ALEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int err;
err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
if (err) {
dev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
return err;
}
err = mvpp2_prs_mac_da_accept(port->priv, port->id,
port->dev_addr, true);
if (err) {
dev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
return err;
}
err = mvpp2_prs_def_flow(port);
if (err) {
dev_err(dev, "mvpp2_prs_def_flow failed\n");
return err;
}
/* Allocate the Rx/Tx queues */
err = mvpp2_setup_rxqs(port);
if (err) {
dev_err(port->phy_dev->dev, "cannot allocate Rx queues\n");
return err;
}
err = mvpp2_setup_txqs(port);
if (err) {
dev_err(port->phy_dev->dev, "cannot allocate Tx queues\n");
return err;
}
if (port->phyaddr < PHY_MAX_ADDR) {
mvpp2_phy_connect(dev, port);
mvpp2_link_event(port);
} else {
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
}
mvpp2_start_dev(port);
return 0;
}
/* No Device ops here in U-Boot */
/* Driver initialization */
static void mvpp2_port_power_up(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
/* On PPv2.2 the GoP / interface configuration has already been done */
if (priv->hw_version == MVPP21)
mvpp2_port_mii_set(port);
mvpp2_port_periodic_xon_disable(port);
if (priv->hw_version == MVPP21)
mvpp2_port_fc_adv_enable(port);
mvpp2_port_reset(port);
}
/* Initialize port HW */
static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
struct mvpp2_txq_pcpu *txq_pcpu;
int queue, cpu, err;
if (port->first_rxq + rxq_number >
MVPP2_MAX_PORTS * priv->max_port_rxqs)
return -EINVAL;
/* Disable port */
mvpp2_egress_disable(port);
if (priv->hw_version == MVPP21)
mvpp2_port_disable(port);
else
gop_port_enable(port, 0);
port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
GFP_KERNEL);
if (!port->txqs)
return -ENOMEM;
/* Associate physical Tx queues to this port and initialize.
* The mapping is predefined.
*/
for (queue = 0; queue < txq_number; queue++) {
int queue_phy_id = mvpp2_txq_phys(port->id, queue);
struct mvpp2_tx_queue *txq;
txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
if (!txq)
return -ENOMEM;
txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
GFP_KERNEL);
if (!txq->pcpu)
return -ENOMEM;
txq->id = queue_phy_id;
txq->log_id = queue;
txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->cpu = cpu;
}
port->txqs[queue] = txq;
}
port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
GFP_KERNEL);
if (!port->rxqs)
return -ENOMEM;
/* Allocate and initialize Rx queue for this port */
for (queue = 0; queue < rxq_number; queue++) {
struct mvpp2_rx_queue *rxq;
/* Map physical Rx queue to port's logical Rx queue */
rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
if (!rxq)
return -ENOMEM;
/* Map this Rx queue to a physical queue */
rxq->id = port->first_rxq + queue;
rxq->port = port->id;
rxq->logic_rxq = queue;
port->rxqs[queue] = rxq;
}
/* Create Rx descriptor rings */
for (queue = 0; queue < rxq_number; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->size = port->rx_ring_size;
rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
rxq->time_coal = MVPP2_RX_COAL_USEC;
}
mvpp2_ingress_disable(port);
/* Port default configuration */
mvpp2_defaults_set(port);
/* Port's classifier configuration */
mvpp2_cls_oversize_rxq_set(port);
mvpp2_cls_port_config(port);
/* Provide an initial Rx packet size */
port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
/* Initialize pools for swf */
err = mvpp2_swf_bm_pool_init(port);
if (err)
return err;
return 0;
}
static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
{
int port_node = dev_of_offset(dev);
int phy_node;
u32 id;
u32 phyaddr = 0;
int fixed_link = 0;
int ret;
phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
fixed_link = fdt_subnode_offset(gd->fdt_blob, port_node, "fixed-link");
if (phy_node > 0) {
int parent;
if (fixed_link != -FDT_ERR_NOTFOUND) {
/* phy_addr is set to invalid value for fixed links */
phyaddr = PHY_MAX_ADDR;
} else {
phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node,
"reg", 0);
if (phyaddr < 0) {
dev_err(dev, "could not find phy address\n");
return -1;
}
}
parent = fdt_parent_offset(gd->fdt_blob, phy_node);
ret = uclass_get_device_by_of_offset(UCLASS_MDIO, parent,
&port->mdio_dev);
if (ret)
return ret;
} else {
/* phy_addr is set to invalid value */
phyaddr = PHY_MAX_ADDR;
}
port->phy_interface = dev_read_phy_mode(dev);
if (port->phy_interface == PHY_INTERFACE_MODE_NA) {
dev_err(dev, "incorrect phy mode\n");
return -EINVAL;
}
id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
if (id == -1) {
dev_err(dev, "missing port-id value\n");
return -EINVAL;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "phy-reset-gpios", 0,
&port->phy_reset_gpio, GPIOD_IS_OUT);
gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
&port->phy_tx_disable_gpio, GPIOD_IS_OUT);
#endif
port->id = id;
if (port->priv->hw_version == MVPP21)
port->first_rxq = port->id * rxq_number;
else
port->first_rxq = port->id * port->priv->max_port_rxqs;
port->phyaddr = phyaddr;
return 0;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
/* Port GPIO initialization */
static void mvpp2_gpio_init(struct mvpp2_port *port)
{
if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
dm_gpio_set_value(&port->phy_reset_gpio, 1);
mdelay(10);
dm_gpio_set_value(&port->phy_reset_gpio, 0);
}
if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
}
#endif
/* Ports initialization */
static int mvpp2_port_probe(struct udevice *dev,
struct mvpp2_port *port,
int port_node,
struct mvpp2 *priv)
{
int err;
port->tx_ring_size = MVPP2_MAX_TXD;
port->rx_ring_size = MVPP2_MAX_RXD;
err = mvpp2_port_init(dev, port);
if (err < 0) {
dev_err(dev, "failed to init port %d\n", port->id);
return err;
}
mvpp2_port_power_up(port);
#if CONFIG_IS_ENABLED(DM_GPIO)
mvpp2_gpio_init(port);
#endif
priv->port_list[port->id] = port;
priv->num_ports++;
return 0;
}
/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
struct mvpp2 *priv)
{
u32 win_enable;
int i;
for (i = 0; i < 6; i++) {
mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
if (i < 4)
mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
}
win_enable = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvpp2_write(priv, MVPP2_WIN_BASE(i),
(cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
dram->mbus_dram_target_id);
mvpp2_write(priv, MVPP2_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable |= (1 << i);
}
mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}
/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
if (priv->hw_version == MVPP22) {
if (port == 0) {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
} else if (port == 1) {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
} else {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
}
} else {
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP21_RX_FIFO_PORT_DATA_SIZE);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP21_RX_FIFO_PORT_ATTR_SIZE);
}
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
/* Initialize Tx FIFO's */
static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
{
int port, val;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
/* Port 0 supports 10KB TX FIFO */
if (port == 0) {
val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
MVPP22_TX_FIFO_SIZE_MASK;
} else {
val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
MVPP22_TX_FIFO_SIZE_MASK;
}
mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
}
}
static void mvpp2_axi_init(struct mvpp2 *priv)
{
u32 val, rdval, wrval;
mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
/* AXI Bridge Configuration */
rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
/* BM */
mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
/* Descriptors */
mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
/* Buffer Data */
mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
val = MVPP22_AXI_CODE_CACHE_NON_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}
/* Initialize network controller common part HW */
static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
{
const struct mbus_dram_target_info *dram_target_info;
int err, i;
u32 val;
/* Checks for hardware constraints (U-Boot uses only one rxq) */
if ((rxq_number > priv->max_port_rxqs) ||
(txq_number > MVPP2_MAX_TXQ)) {
dev_err(dev, "invalid queue size parameter\n");
return -EINVAL;
}
if (priv->hw_version == MVPP22)
mvpp2_axi_init(priv);
else {
/* MBUS windows configuration */
dram_target_info = mvebu_mbus_dram_info();
if (dram_target_info)
mvpp2_conf_mbus_windows(dram_target_info, priv);
}
if (priv->hw_version == MVPP21) {
/* Disable HW PHY polling */
val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
} else {
/* Enable HW PHY polling */
val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
val |= MVPP22_SMI_POLLING_EN;
writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
}
/* Allocate and initialize aggregated TXQs */
priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
sizeof(struct mvpp2_tx_queue),
GFP_KERNEL);
if (!priv->aggr_txqs)
return -ENOMEM;
for_each_present_cpu(i) {
priv->aggr_txqs[i].id = i;
priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
MVPP2_AGGR_TXQ_SIZE, i, priv);
if (err < 0)
return err;
}
/* Rx Fifo Init */
mvpp2_rx_fifo_init(priv);
/* Tx Fifo Init */
if (priv->hw_version == MVPP22)
mvpp2_tx_fifo_init(priv);
if (priv->hw_version == MVPP21)
writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
/* Allow cache snoop when transmiting packets */
mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
/* Buffer Manager initialization */
err = mvpp2_bm_init(dev, priv);
if (err < 0)
return err;
/* Parser default initialization */
err = mvpp2_prs_default_init(dev, priv);
if (err < 0)
return err;
/* Classifier default initialization */
mvpp2_cls_init(priv);
return 0;
}
static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2_rx_desc *rx_desc;
struct mvpp2_bm_pool *bm_pool;
dma_addr_t dma_addr;
u32 bm, rx_status;
int pool, rx_bytes, err;
int rx_received;
struct mvpp2_rx_queue *rxq;
u8 *data;
if (port->phyaddr < PHY_MAX_ADDR)
if (!port->phy_dev->link)
return 0;
/* Process RX packets */
rxq = port->rxqs[0];
/* Get number of received packets and clamp the to-do */
rx_received = mvpp2_rxq_received(port, rxq->id);
/* Return if no packets are received */
if (!rx_received)
return 0;
rx_desc = mvpp2_rxq_next_desc_get(rxq);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
rx_bytes -= MVPP2_MH_SIZE;
dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
bm = mvpp2_bm_cookie_build(port, rx_desc);
pool = mvpp2_bm_cookie_pool_get(bm);
bm_pool = &port->priv->bm_pools[pool];
/* In case of an error, release the requested buffer pointer
* to the Buffer Manager. This request process is controlled
* by the hardware, and the information about the buffer is
* comprised by the RX descriptor.
*/
if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
mvpp2_rx_error(port, rx_desc);
/* Return the buffer to the pool */
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
return 0;
}
err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
if (err) {
dev_err(port->phy_dev->dev, "failed to refill BM pools\n");
return 0;
}
/* Update Rx queue management counters */
mb();
mvpp2_rxq_status_update(port, rxq->id, 1, 1);
/* give packet to stack - skip on first n bytes */
data = (u8 *)dma_addr + 2 + 32;
if (rx_bytes <= 0)
return 0;
/*
* No cache invalidation needed here, since the rx_buffer's are
* located in a uncached memory region
*/
*packetp = data;
return rx_bytes;
}
static int mvpp2_send(struct udevice *dev, void *packet, int length)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2_tx_queue *txq, *aggr_txq;
struct mvpp2_tx_desc *tx_desc;
int tx_done;
int timeout;
if (port->phyaddr < PHY_MAX_ADDR)
if (!port->phy_dev->link)
return 0;
txq = port->txqs[0];
aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
/* Get a descriptor for the first part of the packet */
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, length);
mvpp2_txdesc_offset_set(port, tx_desc,
(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
mvpp2_txdesc_dma_addr_set(port, tx_desc,
(dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
/* First and Last descriptor */
net: mvpp2: add and use accessors for TX/RX descriptors The PPv2.2 IP has a different TX and RX descriptor layout compared to PPv2.1. In order to prepare for the introduction of PPv2.2 support in mvpp2, this commit adds accessors for the different fields of the TX and RX descriptors, and changes the code to use them. For now, the mvpp2_port argument passed to the accessors is not used, but it will be used in follow-up to update the descriptor according to the version of the IP being used. Apart from the mechanical changes to use the newly introduced accessors, a few other changes, needed to use the accessors, are made: - The mvpp2_txq_inc_put() function now takes a mvpp2_port as first argument, as it is needed to use the accessors. - Similarly, the mvpp2_bm_cookie_build() gains a mvpp2_port first argument, for the same reason. - In mvpp2_rx_error(), instead of accessing the RX descriptor in each case of the switch, we introduce a local variable to store the packet size. - Similarly, in mvpp2_buff_hdr_rx(), we introduce a local "cookie" variable to store the RX descriptor cookie, rather than accessing it from the descriptor each time. - In mvpp2_tx_frag_process() and mvpp2_tx() instead of accessing the packet size from the TX descriptor, we use the actual value available in the function, which is used to set the TX descriptor packet size a few lines before. Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Signed-off-by: Stefan Roese <sr@denx.de> Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-15 14:35:00 +00:00
mvpp2_txdesc_cmd_set(port, tx_desc,
MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
| MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
/* Flush tx data */
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + ALIGN(length, PKTALIGN));
/* Enable transmit */
mb();
mvpp2_aggr_txq_pend_desc_add(port, 1);
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
timeout = 0;
do {
if (timeout++ > 10000) {
printf("timeout: packet not sent from aggregated to phys TXQ\n");
return 0;
}
tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
} while (tx_done);
timeout = 0;
do {
if (timeout++ > 10000) {
printf("timeout: packet not sent\n");
return 0;
}
tx_done = mvpp2_txq_sent_desc_proc(port, txq);
} while (!tx_done);
return 0;
}
static int mvpp2_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct mvpp2_port *port = dev_get_priv(dev);
/* Load current MAC address */
memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
/* Reconfigure parser accept the original MAC address */
mvpp2_prs_update_mac_da(port, port->dev_addr);
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
mvpp2_port_power_up(port);
default:
break;
}
mvpp2_open(dev, port);
return 0;
}
static void mvpp2_stop(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
mvpp2_stop_dev(port);
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
}
static int mvpp2_write_hwaddr(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
return mvpp2_prs_update_mac_da(port, port->dev_addr);
}
static int mvpp2_base_probe(struct udevice *dev)
{
struct mvpp2 *priv = dev_get_priv(dev);
void *bd_space;
u32 size = 0;
int i;
/* Save hw-version */
priv->hw_version = dev_get_driver_data(dev);
/*
* U-Boot special buffer handling:
*
* Allocate buffer area for descs and rx_buffers. This is only
* done once for all interfaces. As only one interface can
* be active. Make this area DMA-safe by disabling the D-cache
*/
if (!buffer_loc_init) {
/* Align buffer area for descs and rx_buffers to 1MiB */
bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
mmu_set_region_dcache_behaviour((unsigned long)bd_space,
BD_SPACE, DCACHE_OFF);
buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
buffer_loc.tx_descs =
(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
buffer_loc.rx_descs =
(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
buffer_loc.bm_pool[i] =
(unsigned long *)((unsigned long)bd_space + size);
if (priv->hw_version == MVPP21)
size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
else
size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
}
for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
buffer_loc.rx_buffer[i] =
(unsigned long *)((unsigned long)bd_space + size);
size += RX_BUFFER_SIZE;
}
/* Clear the complete area so that all descriptors are cleared */
memset(bd_space, 0, size);
buffer_loc_init = 1;
}
/* Save base addresses for later use */
priv->base = devfdt_get_addr_index_ptr(dev, 0);
if (!priv->base)
return -EINVAL;
if (priv->hw_version == MVPP21) {
priv->lms_base = devfdt_get_addr_index_ptr(dev, 1);
if (!priv->lms_base)
return -EINVAL;
} else {
priv->iface_base = devfdt_get_addr_index_ptr(dev, 1);
if (!priv->iface_base)
return -EINVAL;
/* Store common base addresses for all ports */
priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
}
if (priv->hw_version == MVPP21)
priv->max_port_rxqs = 8;
else
priv->max_port_rxqs = 32;
return 0;
}
static int mvpp2_probe(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2 *priv = dev_get_priv(dev->parent);
int err;
/* Only call the probe function for the parent once */
if (!priv->probe_done)
err = mvpp2_base_probe(dev->parent);
port->priv = priv;
err = phy_info_parse(dev, port);
if (err)
return err;
/*
* We need the port specific io base addresses at this stage, since
* gop_port_init() accesses these registers
*/
if (priv->hw_version == MVPP21) {
int priv_common_regs_num = 2;
port->base = devfdt_get_addr_index_ptr(
dev->parent, priv_common_regs_num + port->id);
if (!port->base)
return -EINVAL;
} else {
port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"gop-port-id", -1);
if (port->id == -1) {
dev_err(dev, "missing gop-port-id value\n");
return -EINVAL;
}
port->base = priv->iface_base + MVPP22_PORT_BASE +
port->gop_id * MVPP22_PORT_OFFSET;
/* GoP Init */
gop_port_init(port);
}
if (!priv->probe_done) {
/* Initialize network controller */
err = mvpp2_init(dev, priv);
if (err < 0) {
dev_err(dev, "failed to initialize controller\n");
return err;
}
priv->num_ports = 0;
priv->probe_done = 1;
}
err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
if (err)
return err;
if (priv->hw_version == MVPP22) {
priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
port->phy_interface);
/* Netcomplex configurations for all ports */
gop_netc_init(priv, MV_NETC_FIRST_PHASE);
gop_netc_init(priv, MV_NETC_SECOND_PHASE);
}
return 0;
}
/*
* Empty BM pool and stop its activity before the OS is started
*/
static int mvpp2_remove(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2 *priv = port->priv;
int i;
priv->num_ports--;
if (priv->num_ports)
return 0;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
return 0;
}
static const struct eth_ops mvpp2_ops = {
.start = mvpp2_start,
.send = mvpp2_send,
.recv = mvpp2_recv,
.stop = mvpp2_stop,
.write_hwaddr = mvpp2_write_hwaddr
};
static struct driver mvpp2_driver = {
.name = "mvpp2",
.id = UCLASS_ETH,
.probe = mvpp2_probe,
.remove = mvpp2_remove,
.ops = &mvpp2_ops,
.priv_auto = sizeof(struct mvpp2_port),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ACTIVE_DMA,
};
/*
* Use a MISC device to bind the n instances (child nodes) of the
* network base controller in UCLASS_ETH.
*/
static int mvpp2_base_bind(struct udevice *parent)
{
const void *blob = gd->fdt_blob;
int node = dev_of_offset(parent);
struct uclass_driver *drv;
struct udevice *dev;
struct eth_pdata *plat;
char *name;
int subnode;
u32 id;
int base_id_add;
/* Lookup eth driver */
drv = lists_uclass_lookup(UCLASS_ETH);
if (!drv) {
puts("Cannot find eth driver\n");
return -ENOENT;
}
base_id_add = base_id;
fdt_for_each_subnode(subnode, blob, node) {
/* Increment base_id for all subnodes, also the disabled ones */
base_id++;
/* Skip disabled ports */
if (!fdtdec_get_is_enabled(blob, subnode))
continue;
plat = calloc(1, sizeof(*plat));
if (!plat)
return -ENOMEM;
id = fdtdec_get_int(blob, subnode, "port-id", -1);
id += base_id_add;
name = calloc(1, 16);
if (!name) {
free(plat);
return -ENOMEM;
}
sprintf(name, "mvpp2-%d", id);
/* Create child device UCLASS_ETH and bind it */
device_bind(parent, &mvpp2_driver, name, plat,
offset_to_ofnode(subnode), &dev);
}
return 0;
}
static const struct udevice_id mvpp2_ids[] = {
{
.compatible = "marvell,armada-375-pp2",
.data = MVPP21,
},
{
.compatible = "marvell,armada-7k-pp22",
.data = MVPP22,
},
{ }
};
U_BOOT_DRIVER(mvpp2_base) = {
.name = "mvpp2_base",
.id = UCLASS_MISC,
.of_match = mvpp2_ids,
.bind = mvpp2_base_bind,
.priv_auto = sizeof(struct mvpp2),
};