u-boot/arch/arm/mach-imx/cmd_nandbcb.c

1582 lines
37 KiB
C
Raw Normal View History

/*
* i.MX nand boot control block(bcb).
*
* Based on the common/imx-bbu-nand-fcb.c from barebox and imx kobs-ng
*
* Copyright (C) 2017 Jagan Teki <jagan@amarulasolutions.com>
* Copyright (C) 2016 Sergey Kubushyn <ksi@koi8.net>
*
* Reconstucted by Han Xu <han.xu@nxp.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <log.h>
#include <malloc.h>
#include <nand.h>
#include <dm/devres.h>
#include <linux/bug.h>
#include <asm/io.h>
#include <jffs2/jffs2.h>
#include <linux/bch.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/imx-nandbcb.h>
#include <asm/mach-imx/imximage.cfg>
#include <mxs_nand.h>
#include <linux/mtd/mtd.h>
#include <nand.h>
#include <fuse.h>
#include "../../../cmd/legacy-mtd-utils.h"
/* FCB related flags */
/* FCB layout with leading 12B reserved */
#define FCB_LAYOUT_RESV_12B BIT(0)
/* FCB layout with leading 32B meta data */
#define FCB_LAYOUT_META_32B BIT(1)
/* FCB encrypted by Hamming code */
#define FCB_ENCODE_HAMMING BIT(2)
/* FCB encrypted by 40bit BCH */
#define FCB_ENCODE_BCH_40b BIT(3)
/* FCB encrypted by 62bit BCH */
#define FCB_ENCODE_BCH_62b BIT(4)
/* FCB encrypted by BCH */
#define FCB_ENCODE_BCH (FCB_ENCODE_BCH_40b | FCB_ENCODE_BCH_62b)
/* FCB data was randomized */
#define FCB_RANDON_ENABLED BIT(5)
/* Firmware related flags */
/* No 1K padding */
#define FIRMWARE_NEED_PADDING BIT(8)
/* Extra firmware*/
#define FIRMWARE_EXTRA_ONE BIT(9)
/* Secondary firmware on fixed address */
#define FIRMWARE_SECONDARY_FIXED_ADDR BIT(10)
/* Boot search related flags */
#define BT_SEARCH_CNT_FROM_FUSE BIT(16)
struct platform_config {
int misc_flags;
};
static struct platform_config plat_config;
/* imx6q/dl/solo */
static struct platform_config imx6qdl_plat_config = {
.misc_flags = FCB_LAYOUT_RESV_12B |
FCB_ENCODE_HAMMING |
FIRMWARE_NEED_PADDING,
};
static struct platform_config imx6sx_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FIRMWARE_NEED_PADDING |
FCB_RANDON_ENABLED,
};
static struct platform_config imx7d_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FIRMWARE_NEED_PADDING |
FCB_RANDON_ENABLED,
};
/* imx6ul/ull/ulz */
static struct platform_config imx6ul_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_40b |
FIRMWARE_NEED_PADDING,
};
static struct platform_config imx8mq_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FIRMWARE_NEED_PADDING |
FCB_RANDON_ENABLED |
FIRMWARE_EXTRA_ONE,
};
/* all other imx8mm */
static struct platform_config imx8mm_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FIRMWARE_NEED_PADDING |
FCB_RANDON_ENABLED,
};
/* imx8mn */
static struct platform_config imx8mn_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FCB_RANDON_ENABLED |
FIRMWARE_SECONDARY_FIXED_ADDR |
BT_SEARCH_CNT_FROM_FUSE,
};
/* imx8qx/qm */
static struct platform_config imx8q_plat_config = {
.misc_flags = FCB_LAYOUT_META_32B |
FCB_ENCODE_BCH_62b |
FCB_RANDON_ENABLED |
FIRMWARE_SECONDARY_FIXED_ADDR |
BT_SEARCH_CNT_FROM_FUSE,
};
/* boot search related variables and definitions */
static int g_boot_search_count = 4;
static int g_boot_secondary_offset;
static int g_boot_search_stride;
static int g_pages_per_stride;
/* mtd config structure */
struct boot_config {
int dev;
struct mtd_info *mtd;
loff_t maxsize;
loff_t input_size;
loff_t offset;
loff_t boot_stream1_address;
loff_t boot_stream2_address;
size_t boot_stream1_size;
size_t boot_stream2_size;
size_t max_boot_stream_size;
int stride_size_in_byte;
int search_area_size_in_bytes;
int search_area_size_in_pages;
int secondary_boot_stream_off_in_MB;
};
/* boot_stream config structure */
struct boot_stream_config {
char bs_label[32];
loff_t bs_addr;
size_t bs_size;
void *bs_buf;
loff_t next_bs_addr;
bool need_padding;
};
/* FW index */
#define FW1_ONLY 1
#define FW2_ONLY 2
#define FW_ALL FW1_ONLY | FW2_ONLY
#define FW_INX(x) (1 << (x))
/* NAND convert macros */
#define CONV_TO_PAGES(x) ((u32)(x) / (u32)(mtd->writesize))
#define CONV_TO_BLOCKS(x) ((u32)(x) / (u32)(mtd->erasesize))
#define GETBIT(v, n) (((v) >> (n)) & 0x1)
#define IMX8MQ_SPL_SZ 0x3e000
#define IMX8MQ_HDMI_FW_SZ 0x19c00
static int nandbcb_get_info(int argc, char * const argv[],
struct boot_config *boot_cfg)
{
int dev;
struct mtd_info *mtd;
dev = nand_curr_device;
if (dev < 0) {
printf("failed to get nand_curr_device, run nand device\n");
return CMD_RET_FAILURE;
}
mtd = get_nand_dev_by_index(dev);
if (!mtd) {
printf("failed to get mtd info\n");
return CMD_RET_FAILURE;
}
boot_cfg->dev = dev;
boot_cfg->mtd = mtd;
return CMD_RET_SUCCESS;
}
static int nandbcb_get_size(int argc, char * const argv[], int num,
struct boot_config *boot_cfg)
{
int dev;
loff_t offset, size, maxsize;
struct mtd_info *mtd;
dev = boot_cfg->dev;
mtd = boot_cfg->mtd;
size = 0;
if (mtd_arg_off_size(argc - num, argv + num, &dev, &offset, &size,
&maxsize, MTD_DEV_TYPE_NAND, mtd->size))
return CMD_RET_FAILURE;
boot_cfg->maxsize = maxsize;
boot_cfg->offset = offset;
debug("max: %llx, offset: %llx\n", maxsize, offset);
if (size && size != maxsize)
boot_cfg->input_size = size;
return CMD_RET_SUCCESS;
}
static int nandbcb_set_boot_config(int argc, char * const argv[],
struct boot_config *boot_cfg)
{
struct mtd_info *mtd;
loff_t maxsize;
loff_t boot_stream1_address, boot_stream2_address, max_boot_stream_size;
if (!boot_cfg->mtd) {
printf("Didn't get the mtd info, quit\n");
return CMD_RET_FAILURE;
}
mtd = boot_cfg->mtd;
/*
* By default
* set the search count as 4
* set each FCB/DBBT/Firmware offset at the beginning of blocks
* customers may change the value as needed
*/
/* if need more compact layout, change these values */
/* g_boot_search_count was set as 4 at the definition*/
/* g_pages_per_stride was set as block size */
g_pages_per_stride = mtd->erasesize / mtd->writesize;
g_boot_search_stride = mtd->writesize * g_pages_per_stride;
boot_cfg->stride_size_in_byte = g_boot_search_stride * mtd->writesize;
boot_cfg->search_area_size_in_bytes =
g_boot_search_count * g_boot_search_stride;
boot_cfg->search_area_size_in_pages =
boot_cfg->search_area_size_in_bytes / mtd->writesize;
/* after FCB/DBBT, split the rest of area for two Firmwares */
if (!boot_cfg->maxsize) {
printf("Didn't get the maxsize, quit\n");
return CMD_RET_FAILURE;
}
maxsize = boot_cfg->maxsize;
/* align to page boundary */
maxsize = ((u32)(maxsize + mtd->writesize - 1)) / (u32)mtd->writesize
* mtd->writesize;
boot_stream1_address = 2 * boot_cfg->search_area_size_in_bytes;
boot_stream2_address = ((maxsize - boot_stream1_address) / 2 +
boot_stream1_address);
if (g_boot_secondary_offset)
boot_stream2_address =
(loff_t)g_boot_secondary_offset * 1024 * 1024;
max_boot_stream_size = boot_stream2_address - boot_stream1_address;
/* sanity check */
if (max_boot_stream_size <= 0) {
debug("st1_addr: %llx, st2_addr: %llx, max: %llx\n",
boot_stream1_address, boot_stream2_address,
max_boot_stream_size);
printf("something wrong with firmware address settings\n");
return CMD_RET_FAILURE;
}
boot_cfg->boot_stream1_address = boot_stream1_address;
boot_cfg->boot_stream2_address = boot_stream2_address;
boot_cfg->max_boot_stream_size = max_boot_stream_size;
/* set the boot_stream size as the input size now */
if (boot_cfg->input_size) {
boot_cfg->boot_stream1_size = boot_cfg->input_size;
boot_cfg->boot_stream2_size = boot_cfg->input_size;
}
return CMD_RET_SUCCESS;
}
static int nandbcb_check_space(struct boot_config *boot_cfg)
{
size_t maxsize = boot_cfg->maxsize;
size_t max_boot_stream_size = boot_cfg->max_boot_stream_size;
loff_t boot_stream2_address = boot_cfg->boot_stream2_address;
if (boot_cfg->boot_stream1_size &&
boot_cfg->boot_stream1_size > max_boot_stream_size) {
printf("boot stream1 doesn't fit, check partition size or settings\n");
return CMD_RET_FAILURE;
}
if (boot_cfg->boot_stream2_size &&
boot_cfg->boot_stream2_size > maxsize - boot_stream2_address) {
printf("boot stream2 doesn't fit, check partition size or settings\n");
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
#if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
static uint8_t reverse_bit(uint8_t b)
{
b = (b & 0xf0) >> 4 | (b & 0x0f) << 4;
b = (b & 0xcc) >> 2 | (b & 0x33) << 2;
b = (b & 0xaa) >> 1 | (b & 0x55) << 1;
return b;
}
static void encode_bch_ecc(void *buf, struct fcb_block *fcb, int eccbits)
{
int i, j, m = 13;
int blocksize = 128;
int numblocks = 8;
int ecc_buf_size = (m * eccbits + 7) / 8;
struct bch_control *bch = init_bch(m, eccbits, 0);
u8 *ecc_buf = kzalloc(ecc_buf_size, GFP_KERNEL);
u8 *tmp_buf = kzalloc(blocksize * numblocks, GFP_KERNEL);
u8 *psrc, *pdst;
/*
* The blocks here are bit aligned. If eccbits is a multiple of 8,
* we just can copy bytes. Otherwiese we must move the blocks to
* the next free bit position.
*/
WARN_ON(eccbits % 8);
memcpy(tmp_buf, fcb, sizeof(*fcb));
for (i = 0; i < numblocks; i++) {
memset(ecc_buf, 0, ecc_buf_size);
psrc = tmp_buf + i * blocksize;
pdst = buf + i * (blocksize + ecc_buf_size);
/* copy data byte aligned to destination buf */
memcpy(pdst, psrc, blocksize);
/*
* imx-kobs use a modified encode_bch which reverse the
* bit order of the data before calculating bch.
* Do this in the buffer and use the bch lib here.
*/
for (j = 0; j < blocksize; j++)
psrc[j] = reverse_bit(psrc[j]);
encode_bch(bch, psrc, blocksize, ecc_buf);
/* reverse ecc bit */
for (j = 0; j < ecc_buf_size; j++)
ecc_buf[j] = reverse_bit(ecc_buf[j]);
/* Here eccbuf is byte aligned and we can just copy it */
memcpy(pdst + blocksize, ecc_buf, ecc_buf_size);
}
kfree(ecc_buf);
kfree(tmp_buf);
free_bch(bch);
}
#else
static u8 calculate_parity_13_8(u8 d)
{
u8 p = 0;
p |= (GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 3) ^ GETBIT(d, 2)) << 0;
p |= (GETBIT(d, 7) ^ GETBIT(d, 5) ^ GETBIT(d, 4) ^ GETBIT(d, 2) ^
GETBIT(d, 1)) << 1;
p |= (GETBIT(d, 7) ^ GETBIT(d, 6) ^ GETBIT(d, 5) ^ GETBIT(d, 1) ^
GETBIT(d, 0)) << 2;
p |= (GETBIT(d, 7) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 0)) << 3;
p |= (GETBIT(d, 6) ^ GETBIT(d, 4) ^ GETBIT(d, 3) ^ GETBIT(d, 2) ^
GETBIT(d, 1) ^ GETBIT(d, 0)) << 4;
return p;
}
static void encode_hamming_13_8(void *_src, void *_ecc, size_t size)
{
int i;
u8 *src = _src;
u8 *ecc = _ecc;
for (i = 0; i < size; i++)
ecc[i] = calculate_parity_13_8(src[i]);
}
#endif
static u32 calc_chksum(void *buf, size_t size)
{
u32 chksum = 0;
u8 *bp = buf;
size_t i;
for (i = 0; i < size; i++)
chksum += bp[i];
return ~chksum;
}
static void fill_fcb(struct fcb_block *fcb, struct boot_config *boot_cfg)
{
struct mtd_info *mtd = boot_cfg->mtd;
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
struct mxs_nand_layout l;
mxs_nand_get_layout(mtd, &l);
fcb->fingerprint = FCB_FINGERPRINT;
fcb->version = FCB_VERSION_1;
fcb->datasetup = 80;
fcb->datahold = 60;
fcb->addr_setup = 25;
fcb->dsample_time = 6;
fcb->pagesize = mtd->writesize;
fcb->oob_pagesize = mtd->writesize + mtd->oobsize;
fcb->sectors = mtd->erasesize / mtd->writesize;
fcb->meta_size = l.meta_size;
fcb->nr_blocks = l.nblocks;
fcb->ecc_nr = l.data0_size;
fcb->ecc_level = l.ecc0;
fcb->ecc_size = l.datan_size;
fcb->ecc_type = l.eccn;
fcb->bchtype = l.gf_len;
/* DBBT search area starts from the next block after all FCB */
fcb->dbbt_start = boot_cfg->search_area_size_in_pages;
fcb->bb_byte = nand_info->bch_geometry.block_mark_byte_offset;
fcb->bb_start_bit = nand_info->bch_geometry.block_mark_bit_offset;
fcb->phy_offset = mtd->writesize;
fcb->disbbm = 0;
fcb->fw1_start = CONV_TO_PAGES(boot_cfg->boot_stream1_address);
fcb->fw2_start = CONV_TO_PAGES(boot_cfg->boot_stream2_address);
fcb->fw1_pages = CONV_TO_PAGES(boot_cfg->boot_stream1_size);
fcb->fw2_pages = CONV_TO_PAGES(boot_cfg->boot_stream2_size);
fcb->checksum = calc_chksum((void *)fcb + 4, sizeof(*fcb) - 4);
}
static int fill_dbbt_data(struct mtd_info *mtd, void *buf, int num_blocks)
{
int n, n_bad_blocks = 0;
u32 *bb = buf + 0x8;
u32 *n_bad_blocksp = buf + 0x4;
for (n = 0; n < num_blocks; n++) {
loff_t offset = (loff_t)n * mtd->erasesize;
if (mtd_block_isbad(mtd, offset)) {
n_bad_blocks++;
*bb = n;
bb++;
}
}
*n_bad_blocksp = n_bad_blocks;
return n_bad_blocks;
}
/*
* return 1 - bad block
* return 0 - read successfully
* return < 0 - read failed
*/
static int read_fcb(struct boot_config *boot_cfg, struct fcb_block *fcb,
loff_t off)
{
struct mtd_info *mtd;
void *fcb_raw_page;
size_t size;
int ret = 0;
mtd = boot_cfg->mtd;
fcb_raw_page = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
if (!fcb_raw_page) {
debug("failed to allocate fcb_raw_page\n");
ret = -ENOMEM;
return ret;
}
/*
* User BCH hardware to decode ECC for FCB
*/
if (plat_config.misc_flags & FCB_ENCODE_BCH) {
size = sizeof(struct fcb_block);
/* switch nand BCH to FCB compatible settings */
if (plat_config.misc_flags & FCB_ENCODE_BCH_62b)
mxs_nand_mode_fcb_62bit(mtd);
else if (plat_config.misc_flags & FCB_ENCODE_BCH_40b)
mxs_nand_mode_fcb_40bit(mtd);
ret = nand_read_skip_bad(mtd, off, &size, NULL, mtd->size, (u_char *)fcb);
/* switch BCH back */
mxs_nand_mode_normal(mtd);
printf("NAND FCB read from 0x%llx offset 0x%zx read: %s\n",
off, size, ret ? "ERROR" : "OK");
} else if (plat_config.misc_flags & FCB_ENCODE_HAMMING) {
/* raw read*/
mtd_oob_ops_t ops = {
.datbuf = (u8 *)fcb_raw_page,
.oobbuf = ((u8 *)fcb_raw_page) + mtd->writesize,
.len = mtd->writesize,
.ooblen = mtd->oobsize,
.mode = MTD_OPS_RAW
};
ret = mtd_read_oob(mtd, off, &ops);
printf("NAND FCB read from 0x%llx offset 0x%zx read: %s\n",
off, ops.len, ret ? "ERROR" : "OK");
}
if (ret)
goto fcb_raw_page_err;
if ((plat_config.misc_flags & FCB_ENCODE_HAMMING) &&
(plat_config.misc_flags & FCB_LAYOUT_RESV_12B))
memcpy(fcb, fcb_raw_page + 12, sizeof(struct fcb_block));
/* TODO: check if it can pass Hamming check */
fcb_raw_page_err:
kfree(fcb_raw_page);
return ret;
}
static int write_fcb(struct boot_config *boot_cfg, struct fcb_block *fcb)
{
struct mtd_info *mtd;
void *fcb_raw_page = NULL;
int i, ret = 0;
loff_t off;
size_t size;
mtd = boot_cfg->mtd;
/*
* We prepare raw page only for i.MX6, for i.MX7 we
* leverage BCH hw module instead
*/
if ((plat_config.misc_flags & FCB_ENCODE_HAMMING) &&
(plat_config.misc_flags & FCB_LAYOUT_RESV_12B)) {
fcb_raw_page = kzalloc(mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!fcb_raw_page) {
debug("failed to allocate fcb_raw_page\n");
ret = -ENOMEM;
return ret;
}
#if defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
/* 40 bit BCH, for i.MX6UL(L) */
encode_bch_ecc(fcb_raw_page + 32, fcb, 40);
#else
memcpy(fcb_raw_page + 12, fcb, sizeof(struct fcb_block));
encode_hamming_13_8(fcb_raw_page + 12,
fcb_raw_page + 12 + 512, 512);
#endif
/*
* Set the first and second byte of OOB data to 0xFF,
* not 0x00. These bytes are used as the Manufacturers Bad
* Block Marker (MBBM). Since the FCB is mostly written to
* the first page in a block, a scan for
* factory bad blocks will detect these blocks as bad, e.g.
* when function nand_scan_bbt() is executed to build a new
* bad block table.
*/
memset(fcb_raw_page + mtd->writesize, 0xFF, 2);
}
/* start writing FCB from the very beginning */
off = 0;
for (i = 0; i < g_boot_search_count; i++) {
if (mtd_block_isbad(mtd, off)) {
printf("Block %d is bad, skipped\n", i);
off += mtd->erasesize;
continue;
}
/*
* User BCH hardware module to generate ECC for FCB
*/
if (plat_config.misc_flags & FCB_ENCODE_BCH) {
size = sizeof(struct fcb_block);
/* switch nand BCH to FCB compatible settings */
if (plat_config.misc_flags & FCB_ENCODE_BCH_62b)
mxs_nand_mode_fcb_62bit(mtd);
else if (plat_config.misc_flags & FCB_ENCODE_BCH_40b)
mxs_nand_mode_fcb_40bit(mtd);
ret = nand_write(mtd, off, &size, (u_char *)fcb);
/* switch BCH back */
mxs_nand_mode_normal(mtd);
printf("NAND FCB write to 0x%zx offset 0x%llx written: %s\n",
size, off, ret ? "ERROR" : "OK");
} else if (plat_config.misc_flags & FCB_ENCODE_HAMMING) {
/* raw write */
mtd_oob_ops_t ops = {
.datbuf = (u8 *)fcb_raw_page,
.oobbuf = ((u8 *)fcb_raw_page) +
mtd->writesize,
.len = mtd->writesize,
.ooblen = mtd->oobsize,
.mode = MTD_OPS_RAW
};
ret = mtd_write_oob(mtd, off, &ops);
printf("NAND FCB write to 0x%llx offset 0x%zx written: %s\n", off, ops.len, ret ? "ERROR" : "OK");
}
if (ret)
goto fcb_raw_page_err;
/* next writing location */
off += g_boot_search_stride;
}
fcb_raw_page_err:
kfree(fcb_raw_page);
return ret;
}
/*
* return 1 - bad block
* return 0 - read successfully
* return < 0 - read failed
*/
static int read_dbbt(struct boot_config *boot_cfg, struct dbbt_block *dbbt,
void *dbbt_data_page, loff_t off)
{
size_t size;
size_t actual_size;
struct mtd_info *mtd;
loff_t to;
int ret;
mtd = boot_cfg->mtd;
size = sizeof(struct dbbt_block);
ret = nand_read_skip_bad(mtd, off, &size, &actual_size, mtd->size, (u_char *)dbbt);
printf("NAND DBBT read from 0x%llx offset 0x%zx read: %s\n",
off, size, ret ? "ERROR" : "OK");
if (ret)
return ret;
/* dbbtpages == 0 if no bad blocks */
if (dbbt->dbbtpages > 0) {
to = off + 4 * mtd->writesize + actual_size - size;
size = mtd->writesize;
ret = nand_read_skip_bad(mtd, to, &size, NULL, mtd->size, dbbt_data_page);
printf("DBBT data read from 0x%llx offset 0x%zx read: %s\n",
to, size, ret ? "ERROR" : "OK");
if (ret)
return ret;
}
return 0;
}
static int write_dbbt(struct boot_config *boot_cfg, struct dbbt_block *dbbt,
void *dbbt_data_page)
{
int i;
loff_t off, to;
size_t size;
struct mtd_info *mtd;
int ret;
mtd = boot_cfg->mtd;
/* start writing DBBT after all FCBs */
off = boot_cfg->search_area_size_in_bytes;
size = mtd->writesize;
for (i = 0; i < g_boot_search_count; i++) {
if (mtd_block_isbad(mtd, off)) {
printf("Block %d is bad, skipped\n",
(int)(i + CONV_TO_BLOCKS(off)));
off += mtd->erasesize;
continue;
}
ret = nand_write(mtd, off, &size, (u_char *)dbbt);
printf("NAND DBBT write to 0x%llx offset 0x%zx written: %s\n",
off, size, ret ? "ERROR" : "OK");
if (ret)
return ret;
/* dbbtpages == 0 if no bad blocks */
if (dbbt->dbbtpages > 0) {
to = off + 4 * mtd->writesize;
ret = nand_write(mtd, to, &size, dbbt_data_page);
printf("DBBT data write to 0x%llx offset 0x%zx written: %s\n",
to, size, ret ? "ERROR" : "OK");
if (ret)
return ret;
}
/* next writing location */
off += g_boot_search_stride;
}
return 0;
}
/* reuse the check_skip_len from nand_util.c with minor change*/
static int check_skip_length(struct boot_config *boot_cfg, loff_t offset,
size_t length, size_t *used)
{
struct mtd_info *mtd = boot_cfg->mtd;
size_t maxsize = boot_cfg->maxsize;
size_t len_excl_bad = 0;
int ret = 0;
while (len_excl_bad < length) {
size_t block_len, block_off;
loff_t block_start;
if (offset >= maxsize)
return -1;
block_start = offset & ~(loff_t)(mtd->erasesize - 1);
block_off = offset & (mtd->erasesize - 1);
block_len = mtd->erasesize - block_off;
if (!nand_block_isbad(mtd, block_start))
len_excl_bad += block_len;
else
ret = 1;
offset += block_len;
*used += block_len;
}
/* If the length is not a multiple of block_len, adjust. */
if (len_excl_bad > length)
*used -= (len_excl_bad - length);
return ret;
}
static int nandbcb_get_next_good_blk_addr(struct boot_config *boot_cfg,
struct boot_stream_config *bs_cfg)
{
struct mtd_info *mtd = boot_cfg->mtd;
loff_t offset = bs_cfg->bs_addr;
size_t length = bs_cfg->bs_size;
size_t used = 0;
int ret;
ret = check_skip_length(boot_cfg, offset, length, &used);
if (ret < 0)
return ret;
/* get next image address */
bs_cfg->next_bs_addr = (u32)(offset + used + mtd->erasesize - 1)
/ (u32)mtd->erasesize * mtd->erasesize;
return ret;
}
static int nandbcb_write_bs_skip_bad(struct boot_config *boot_cfg,
struct boot_stream_config *bs_cfg)
{
struct mtd_info *mtd;
void *buf;
loff_t offset, maxsize;
size_t size;
size_t length;
int ret;
bool padding_flag = false;
mtd = boot_cfg->mtd;
offset = bs_cfg->bs_addr;
maxsize = boot_cfg->maxsize;
size = bs_cfg->bs_size;
/* some boot images may need leading offset */
if (bs_cfg->need_padding &&
(plat_config.misc_flags & FIRMWARE_NEED_PADDING))
padding_flag = 1;
if (padding_flag)
length = ALIGN(size + FLASH_OFFSET_STANDARD, mtd->writesize);
else
length = ALIGN(size, mtd->writesize);
buf = kzalloc(length, GFP_KERNEL);
if (!buf) {
printf("failed to allocate buffer for firmware\n");
ret = -ENOMEM;
return ret;
}
if (padding_flag)
memcpy(buf + FLASH_OFFSET_STANDARD, bs_cfg->bs_buf, size);
else
memcpy(buf, bs_cfg->bs_buf, size);
ret = nand_write_skip_bad(mtd, offset, &length, NULL, maxsize,
(u_char *)buf, WITH_WR_VERIFY);
printf("Write %s @0x%llx offset, 0x%zx bytes written: %s\n",
bs_cfg->bs_label, offset, length, ret ? "ERROR" : "OK");
if (ret)
/* write image failed, quit */
goto err;
/* get next good blk address if needed */
if (bs_cfg->need_padding) {
ret = nandbcb_get_next_good_blk_addr(boot_cfg, bs_cfg);
if (ret < 0) {
printf("Next image cannot fit in NAND partition\n");
goto err;
}
}
/* now we know how the exact image size written to NAND */
bs_cfg->bs_size = length;
return 0;
err:
kfree(buf);
return ret;
}
static int nandbcb_write_fw(struct boot_config *boot_cfg, u_char *buf,
int index)
{
int i;
loff_t offset;
size_t size;
loff_t next_bs_addr;
struct boot_stream_config bs_cfg;
int ret;
for (i = 0; i < 2; ++i) {
if (!(FW_INX(i) & index))
continue;
if (i == 0) {
offset = boot_cfg->boot_stream1_address;
size = boot_cfg->boot_stream1_size;
} else {
offset = boot_cfg->boot_stream2_address;
size = boot_cfg->boot_stream2_size;
}
/* write Firmware*/
if (!(plat_config.misc_flags & FIRMWARE_EXTRA_ONE)) {
memset(&bs_cfg, 0, sizeof(struct boot_stream_config));
sprintf(bs_cfg.bs_label, "firmware%d", i);
bs_cfg.bs_addr = offset;
bs_cfg.bs_size = size;
bs_cfg.bs_buf = buf;
bs_cfg.need_padding = 1;
ret = nandbcb_write_bs_skip_bad(boot_cfg, &bs_cfg);
if (ret)
return ret;
/* update the boot stream size */
if (i == 0)
boot_cfg->boot_stream1_size = bs_cfg.bs_size;
else
boot_cfg->boot_stream2_size = bs_cfg.bs_size;
} else {
/* some platforms need extra firmware */
memset(&bs_cfg, 0, sizeof(struct boot_stream_config));
sprintf(bs_cfg.bs_label, "fw%d_part%d", i, 1);
bs_cfg.bs_addr = offset;
bs_cfg.bs_size = IMX8MQ_HDMI_FW_SZ;
bs_cfg.bs_buf = buf;
bs_cfg.need_padding = 1;
ret = nandbcb_write_bs_skip_bad(boot_cfg, &bs_cfg);
if (ret)
return ret;
/* update the boot stream size */
if (i == 0)
boot_cfg->boot_stream1_size = bs_cfg.bs_size;
else
boot_cfg->boot_stream2_size = bs_cfg.bs_size;
/* get next image address */
next_bs_addr = bs_cfg.next_bs_addr;
memset(&bs_cfg, 0, sizeof(struct boot_stream_config));
sprintf(bs_cfg.bs_label, "fw%d_part%d", i, 2);
bs_cfg.bs_addr = next_bs_addr;
bs_cfg.bs_size = IMX8MQ_SPL_SZ;
bs_cfg.bs_buf = (u_char *)(buf + IMX8MQ_HDMI_FW_SZ);
bs_cfg.need_padding = 0;
ret = nandbcb_write_bs_skip_bad(boot_cfg, &bs_cfg);
if (ret)
return ret;
}
}
return 0;
}
static int nandbcb_init(struct boot_config *boot_cfg, u_char *buf)
{
struct mtd_info *mtd;
nand_erase_options_t opts;
struct fcb_block *fcb;
struct dbbt_block *dbbt;
void *dbbt_page, *dbbt_data_page;
int ret;
loff_t maxsize, off;
mtd = boot_cfg->mtd;
maxsize = boot_cfg->maxsize;
off = boot_cfg->offset;
/* erase */
memset(&opts, 0, sizeof(opts));
opts.offset = off;
opts.length = maxsize - 1;
ret = nand_erase_opts(mtd, &opts);
if (ret) {
printf("%s: erase failed (ret = %d)\n", __func__, ret);
return ret;
}
/*
* Reference documentation from i.MX6DQRM section 8.5.2.2
*
* Nand Boot Control Block(BCB) contains two data structures,
* - Firmware Configuration Block(FCB)
* - Discovered Bad Block Table(DBBT)
*
* FCB contains,
* - nand timings
* - DBBT search page address,
* - start page address of primary firmware
* - start page address of secondary firmware
*
* setup fcb:
* - number of blocks = mtd partition size / mtd erasesize
* - two firmware blocks, primary and secondary
* - first 4 block for FCB/DBBT
* - rest split in half for primary and secondary firmware
* - same firmware write twice
*/
/* write Firmware*/
ret = nandbcb_write_fw(boot_cfg, buf, FW_ALL);
if (ret)
goto err;
/* fill fcb */
fcb = kzalloc(sizeof(*fcb), GFP_KERNEL);
if (!fcb) {
debug("failed to allocate fcb\n");
ret = -ENOMEM;
return ret;
}
fill_fcb(fcb, boot_cfg);
ret = write_fcb(boot_cfg, fcb);
/* fill dbbt */
dbbt_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_page) {
debug("failed to allocate dbbt_page\n");
ret = -ENOMEM;
goto fcb_err;
}
dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page) {
debug("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
goto dbbt_page_err;
}
dbbt = dbbt_page;
dbbt->checksum = 0;
dbbt->fingerprint = DBBT_FINGERPRINT;
dbbt->version = DBBT_VERSION_1;
ret = fill_dbbt_data(mtd, dbbt_data_page, CONV_TO_BLOCKS(maxsize));
if (ret < 0)
goto dbbt_data_page_err;
else if (ret > 0)
dbbt->dbbtpages = 1;
/* write dbbt */
ret = write_dbbt(boot_cfg, dbbt, dbbt_data_page);
if (ret < 0)
printf("failed to write FCB/DBBT\n");
dbbt_data_page_err:
kfree(dbbt_data_page);
dbbt_page_err:
kfree(dbbt_page);
fcb_err:
kfree(fcb);
err:
return ret;
}
static int do_nandbcb_bcbonly(int argc, char *const argv[])
{
struct fcb_block *fcb;
struct dbbt_block *dbbt;
struct mtd_info *mtd;
nand_erase_options_t opts;
size_t maxsize;
loff_t off;
void *dbbt_page, *dbbt_data_page;
int ret;
struct boot_config cfg;
if (argc < 4)
return CMD_RET_USAGE;
memset(&cfg, 0, sizeof(struct boot_config));
if (nandbcb_get_info(argc, argv, &cfg))
return CMD_RET_FAILURE;
/* only get the partition info */
if (nandbcb_get_size(2, argv, 1, &cfg))
return CMD_RET_FAILURE;
if (nandbcb_set_boot_config(argc, argv, &cfg))
return CMD_RET_FAILURE;
mtd = cfg.mtd;
cfg.boot_stream1_address = hextoul(argv[2], NULL);
cfg.boot_stream1_size = hextoul(argv[3], NULL);
cfg.boot_stream1_size = ALIGN(cfg.boot_stream1_size, mtd->writesize);
if (argc > 5) {
cfg.boot_stream2_address = hextoul(argv[4], NULL);
cfg.boot_stream2_size = hextoul(argv[5], NULL);
cfg.boot_stream2_size = ALIGN(cfg.boot_stream2_size,
mtd->writesize);
}
/* sanity check */
nandbcb_check_space(&cfg);
maxsize = cfg.maxsize;
off = cfg.offset;
/* erase the previous FCB/DBBT */
memset(&opts, 0, sizeof(opts));
opts.offset = off;
opts.length = g_boot_search_stride * 2;
ret = nand_erase_opts(mtd, &opts);
if (ret) {
printf("%s: erase failed (ret = %d)\n", __func__, ret);
return CMD_RET_FAILURE;
}
/* fill fcb */
fcb = kzalloc(sizeof(*fcb), GFP_KERNEL);
if (!fcb) {
printf("failed to allocate fcb\n");
ret = -ENOMEM;
return CMD_RET_FAILURE;
}
fill_fcb(fcb, &cfg);
/* write fcb */
ret = write_fcb(&cfg, fcb);
/* fill dbbt */
dbbt_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_page) {
printf("failed to allocate dbbt_page\n");
ret = -ENOMEM;
goto fcb_err;
}
dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page) {
printf("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
goto dbbt_page_err;
}
dbbt = dbbt_page;
dbbt->checksum = 0;
dbbt->fingerprint = DBBT_FINGERPRINT;
dbbt->version = DBBT_VERSION_1;
ret = fill_dbbt_data(mtd, dbbt_data_page, CONV_TO_BLOCKS(maxsize));
if (ret < 0)
goto dbbt_data_page_err;
else if (ret > 0)
dbbt->dbbtpages = 1;
/* write dbbt */
ret = write_dbbt(&cfg, dbbt, dbbt_data_page);
dbbt_data_page_err:
kfree(dbbt_data_page);
dbbt_page_err:
kfree(dbbt_page);
fcb_err:
kfree(fcb);
if (ret < 0) {
printf("failed to write FCB/DBBT\n");
return CMD_RET_FAILURE;
}
return CMD_RET_SUCCESS;
}
/* dump data which is read from NAND chip */
void dump_structure(struct boot_config *boot_cfg, struct fcb_block *fcb,
struct dbbt_block *dbbt, void *dbbt_data_page)
{
int i;
struct mtd_info *mtd = boot_cfg->mtd;
#define P1(x) printf(" %s = 0x%08x\n", #x, fcb->x)
printf("FCB\n");
P1(checksum);
P1(fingerprint);
P1(version);
#undef P1
#define P1(x) printf(" %s = %d\n", #x, fcb->x)
P1(datasetup);
P1(datahold);
P1(addr_setup);
P1(dsample_time);
P1(pagesize);
P1(oob_pagesize);
P1(sectors);
P1(nr_nand);
P1(nr_die);
P1(celltype);
P1(ecc_type);
P1(ecc_nr);
P1(ecc_size);
P1(ecc_level);
P1(meta_size);
P1(nr_blocks);
P1(ecc_type_sdk);
P1(ecc_nr_sdk);
P1(ecc_size_sdk);
P1(ecc_level_sdk);
P1(nr_blocks_sdk);
P1(meta_size_sdk);
P1(erase_th);
P1(bootpatch);
P1(patch_size);
P1(fw1_start);
P1(fw2_start);
P1(fw1_pages);
P1(fw2_pages);
P1(dbbt_start);
P1(bb_byte);
P1(bb_start_bit);
P1(phy_offset);
P1(bchtype);
P1(readlatency);
P1(predelay);
P1(cedelay);
P1(postdelay);
P1(cmdaddpause);
P1(datapause);
P1(tmspeed);
P1(busytimeout);
P1(disbbm);
P1(spare_offset);
#if !defined(CONFIG_MX6) || defined(CONFIG_MX6SX) || \
defined(CONFIG_MX6UL) || defined(CONFIG_MX6ULL)
P1(onfi_sync_enable);
P1(onfi_sync_speed);
P1(onfi_sync_nand_data);
P1(disbbm_search);
P1(disbbm_search_limit);
P1(read_retry_enable);
#endif
#undef P1
#define P1(x) printf(" %s = 0x%08x\n", #x, dbbt->x)
printf("DBBT :\n");
P1(checksum);
P1(fingerprint);
P1(version);
#undef P1
#define P1(x) printf(" %s = %d\n", #x, dbbt->x)
P1(dbbtpages);
#undef P1
for (i = 0; i < dbbt->dbbtpages; ++i)
printf("%d ", *((u32 *)(dbbt_data_page + i)));
if (!(plat_config.misc_flags & FIRMWARE_EXTRA_ONE)) {
printf("Firmware: image #0 @ 0x%x size 0x%x\n",
fcb->fw1_start, fcb->fw1_pages * mtd->writesize);
printf("Firmware: image #1 @ 0x%x size 0x%x\n",
fcb->fw2_start, fcb->fw2_pages * mtd->writesize);
} else {
printf("Firmware: image #0 @ 0x%x size 0x%x\n",
fcb->fw1_start, fcb->fw1_pages * mtd->writesize);
printf("Firmware: image #1 @ 0x%x size 0x%x\n",
fcb->fw2_start, fcb->fw2_pages * mtd->writesize);
/* TODO: Add extra image information */
}
}
static bool check_fingerprint(void *data, int fingerprint)
{
int off = 4;
return (*(int *)(data + off) == fingerprint);
}
static int fuse_secondary_boot(u32 bank, u32 word, u32 mask, u32 off)
{
int err;
u32 val;
int ret;
err = fuse_read(bank, word, &val);
if (err)
return 0;
val = (val & mask) >> off;
if (val > 10)
return 0;
switch (val) {
case 0:
ret = 4;
break;
case 1:
ret = 1;
break;
default:
ret = 2 << val;
break;
}
return ret;
};
static int fuse_to_search_count(u32 bank, u32 word, u32 mask, u32 off)
{
int err;
u32 val;
int ret;
/* by default, the boot search count from fuse should be 2 */
err = fuse_read(bank, word, &val);
if (err)
return 2;
val = (val & mask) >> off;
switch (val) {
case 0:
ret = 2;
break;
case 1:
case 2:
case 3:
ret = 1 << val;
break;
default:
ret = 2;
}
return ret;
}
static int nandbcb_dump(struct boot_config *boot_cfg)
{
int i;
loff_t off;
struct mtd_info *mtd = boot_cfg->mtd;
struct fcb_block fcb, fcb_copy;
struct dbbt_block dbbt, dbbt_copy;
void *dbbt_data_page, *dbbt_data_page_copy;
bool fcb_not_found, dbbt_not_found;
int ret = 0;
dbbt_data_page = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page) {
printf("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
return ret;
}
dbbt_data_page_copy = kzalloc(mtd->writesize, GFP_KERNEL);
if (!dbbt_data_page_copy) {
printf("failed to allocate dbbt_data_page\n");
ret = -ENOMEM;
goto dbbt_page_err;
}
/* read fcb */
fcb_not_found = 1;
off = 0;
for (i = 0; i < g_boot_search_count; ++i) {
if (fcb_not_found) {
ret = read_fcb(boot_cfg, &fcb, off);
if (ret < 0)
goto dbbt_page_copy_err;
else if (ret == 1)
continue;
else if (ret == 0)
if (check_fingerprint(&fcb, FCB_FINGERPRINT))
fcb_not_found = 0;
} else {
ret = read_fcb(boot_cfg, &fcb_copy, off);
if (ret < 0)
goto dbbt_page_copy_err;
if (memcmp(&fcb, &fcb_copy,
sizeof(struct fcb_block))) {
printf("FCB copies are not identical\n");
ret = -EINVAL;
goto dbbt_page_copy_err;
}
}
/* next read location */
off += g_boot_search_stride;
}
/* read dbbt*/
dbbt_not_found = 1;
off = boot_cfg->search_area_size_in_bytes;
for (i = 0; i < g_boot_search_count; ++i) {
if (dbbt_not_found) {
ret = read_dbbt(boot_cfg, &dbbt, dbbt_data_page, off);
if (ret < 0)
goto dbbt_page_copy_err;
else if (ret == 1)
continue;
else if (ret == 0)
if (check_fingerprint(&dbbt, DBBT_FINGERPRINT))
dbbt_not_found = 0;
} else {
ret = read_dbbt(boot_cfg, &dbbt_copy,
dbbt_data_page_copy, off);
if (ret < 0)
goto dbbt_page_copy_err;
if (memcmp(&dbbt, &dbbt_copy,
sizeof(struct dbbt_block))) {
printf("DBBT copies are not identical\n");
ret = -EINVAL;
goto dbbt_page_copy_err;
}
if (dbbt.dbbtpages > 0 &&
memcmp(dbbt_data_page, dbbt_data_page_copy,
mtd->writesize)) {
printf("DBBT data copies are not identical\n");
ret = -EINVAL;
goto dbbt_page_copy_err;
}
}
/* next read location */
off += g_boot_search_stride;
}
dump_structure(boot_cfg, &fcb, &dbbt, dbbt_data_page);
dbbt_page_copy_err:
kfree(dbbt_data_page_copy);
dbbt_page_err:
kfree(dbbt_data_page);
return ret;
}
static int do_nandbcb_dump(int argc, char * const argv[])
{
struct boot_config cfg;
int ret;
if (argc != 2)
return CMD_RET_USAGE;
memset(&cfg, 0, sizeof(struct boot_config));
if (nandbcb_get_info(argc, argv, &cfg))
return CMD_RET_FAILURE;
if (nandbcb_get_size(argc, argv, 1, &cfg))
return CMD_RET_FAILURE;
if (nandbcb_set_boot_config(argc, argv, &cfg))
return CMD_RET_FAILURE;
ret = nandbcb_dump(&cfg);
if (ret)
return ret;
return ret;
}
static int do_nandbcb_init(int argc, char * const argv[])
{
u_char *buf;
size_t size;
loff_t addr;
char *endp;
int ret;
struct boot_config cfg;
if (argc != 4)
return CMD_RET_USAGE;
memset(&cfg, 0, sizeof(struct boot_config));
if (nandbcb_get_info(argc, argv, &cfg))
return CMD_RET_FAILURE;
if (nandbcb_get_size(argc, argv, 2, &cfg))
return CMD_RET_FAILURE;
size = cfg.boot_stream1_size;
if (nandbcb_set_boot_config(argc, argv, &cfg))
return CMD_RET_FAILURE;
addr = hextoul(argv[1], &endp);
if (*argv[1] == 0 || *endp != 0)
return CMD_RET_FAILURE;
buf = map_physmem(addr, size, MAP_WRBACK);
if (!buf) {
puts("failed to map physical memory\n");
return CMD_RET_FAILURE;
}
ret = nandbcb_init(&cfg, buf);
return ret == 0 ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
}
static int do_nandbcb(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
const char *cmd;
int ret = 0;
if (argc < 3)
goto usage;
/* check the platform config first */
if (is_mx6sx()) {
plat_config = imx6sx_plat_config;
} else if (is_mx7()) {
plat_config = imx7d_plat_config;
} else if (is_mx6ul() || is_mx6ull()) {
plat_config = imx6ul_plat_config;
} else if (is_mx6() && !is_mx6sx() && !is_mx6ul() && !is_mx6ull()) {
plat_config = imx6qdl_plat_config;
} else if (is_imx8mq()) {
plat_config = imx8mq_plat_config;
} else if (is_imx8mm()) {
plat_config = imx8mm_plat_config;
} else if (is_imx8mn() || is_imx8mp()) {
plat_config = imx8mn_plat_config;
} else if (is_imx8qm() || is_imx8qxp()) {
plat_config = imx8q_plat_config;
} else {
printf("ERROR: Unknown platform\n");
return CMD_RET_FAILURE;
}
if ((plat_config.misc_flags) & BT_SEARCH_CNT_FROM_FUSE) {
if (is_imx8qxp())
g_boot_search_count = fuse_to_search_count(0, 720, 0xc0, 6);
if (is_imx8mn() || is_imx8mp())
g_boot_search_count = fuse_to_search_count(2, 2, 0x6000, 13);
printf("search count set to %d from fuse\n",
g_boot_search_count);
}
if (plat_config.misc_flags & FIRMWARE_SECONDARY_FIXED_ADDR) {
if (is_imx8mn())
g_boot_secondary_offset = fuse_secondary_boot(2, 1, 0xff0000, 16);
}
cmd = argv[1];
--argc;
++argv;
if (strcmp(cmd, "init") == 0) {
ret = do_nandbcb_init(argc, argv);
goto done;
}
if (strcmp(cmd, "dump") == 0) {
ret = do_nandbcb_dump(argc, argv);
goto done;
}
if (strcmp(cmd, "bcbonly") == 0) {
ret = do_nandbcb_bcbonly(argc, argv);
goto done;
}
done:
if (ret != -1)
return ret;
usage:
return CMD_RET_USAGE;
}
#ifdef CONFIG_SYS_LONGHELP
static char nandbcb_help_text[] =
"init addr off|partition len - update 'len' bytes starting at\n"
" 'off|part' to memory address 'addr', skipping bad blocks\n"
"nandbcb bcbonly off|partition fw1-off fw1-size [fw2-off fw2-size]\n"
" - write BCB only (FCB and DBBT)\n"
" where `fwx-size` is fw sizes in bytes, `fw1-off`\n"
" and `fw2-off` - firmware offsets\n"
" FIY, BCB isn't erased automatically, so mtd erase should\n"
" be called in advance before writing new BCB:\n"
" > mtd erase mx7-bcb\n"
"nandbcb dump off|partition - dump/verify boot structures\n";
#endif
U_BOOT_CMD(nandbcb, 7, 1, do_nandbcb,
"i.MX NAND Boot Control Blocks write",
nandbcb_help_text
);