u-boot/arch/sandbox/dts/test.dts

1594 lines
30 KiB
Text
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Devicetree file for running sandbox tests
*
* This includes lots of extra devices used by various tests.
*
* Note that SPL use the main sandbox.dts file
*/
/dts-v1/;
#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/gpio/sandbox-gpio.h>
#include <dt-bindings/input/input.h>
#include <dt-bindings/pinctrl/sandbox-pinmux.h>
#include <dt-bindings/mux/mux.h>
/ {
model = "sandbox";
compatible = "sandbox";
#address-cells = <1>;
#size-cells = <1>;
aliases {
console = &uart0;
ethernet0 = "/eth@10002000";
ethernet2 = &swp_0;
ethernet3 = &eth_3;
ethernet4 = &dsa_eth0;
ethernet5 = &eth_5;
gpio1 = &gpio_a;
gpio2 = &gpio_b;
gpio3 = &gpio_c;
i2c0 = "/i2c@0";
mmc0 = "/mmc0";
mmc1 = "/mmc1";
pci0 = &pci0;
pci1 = &pci1;
pci2 = &pci2;
remoteproc0 = &rproc_1;
remoteproc1 = &rproc_2;
rtc0 = &rtc_0;
rtc1 = &rtc_1;
spi0 = "/spi@0";
testfdt6 = "/e-test";
testbus3 = "/some-bus";
testfdt0 = "/some-bus/c-test@0";
testfdt12 = "/some-bus/c-test@1";
testfdt3 = "/b-test";
testfdt5 = "/some-bus/c-test@5";
testfdt8 = "/a-test";
testfdtm1 = &testfdtm1;
test: dm: Fix wrong aliases property names After importing v4.17-rc1 Linux commit 9130ba884640 ("scripts/dtc: Update to upstream version v1.4.6-9-gaadd0b65c987"), sandbox build reports below warnings: arch/sandbox/dts/test.dtb: Warning (alias_paths): /aliases: aliases property name must include only lowercase and '-' arch/sandbox/dts/test.dtb: Warning (alias_paths): /aliases: aliases property name must include only lowercase and '-' arch/sandbox/dts/test.dtb: Warning (alias_paths): /aliases: aliases property name must include only lowercase and '-' arch/sandbox/dts/test.dtb: Warning (alias_paths): /aliases: aliases property name must include only lowercase and '-' Silent them by applying the 's/_/-/' substitution in the names of the 'fdt_dummy0', 'fdt_dummy1', 'fdt_dummy2', 'fdt_dummy3' properties. Similar DTC warnings have been recently fixed in Linux kernel, e.g. via v4.17-rc1 commit d366c30d19f4 ("ARM: dts: STi: Fix aliases property name for STi boards"). If done alone, the DTS update generates a failure of the `ut dm fdt_translation` unit test in sandbox environment as seen below: $ ./u-boot -d arch/sandbox/dts/test.dtb ---<-snip->--- => ut dm fdt_translation Test: dm_test_fdt_translation: test-fdt.c test/dm/test-fdt.c:444, dm_test_fdt_translation(): 0 == uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, 1, &dev): Expected 0, got -19 Test: dm_test_fdt_translation: test-fdt.c (flat tree) test/dm/test-fdt.c:444, dm_test_fdt_translation(): 0 == uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, 1, &dev): Expected 0, got -19 Failures: 2 ---<-snip->--- Fix this issue in place, by updating the "name" string in the UCLASS_DRIVER(fdt_dummy) definition, so that it matches the newly updated aliases properties. After that, the test passes: $ ./u-boot -d arch/sandbox/dts/test.dtb ---<-snip->--- => ut dm fdt_translation Test: dm_test_fdt_translation: test-fdt.c Test: dm_test_fdt_translation: test-fdt.c (flat tree) Failures: 0 ---<-snip->--- Fixes: e8d5291824e2 ("core: ofnode: Fix translation for #size-cells == 0") Reported-by: Petr Vorel <pvorel@suse.cz> Signed-off-by: Eugeniu Rosca <erosca@de.adit-jv.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2018-05-19 12:13:55 +00:00
fdt-dummy0 = "/translation-test@8000/dev@0,0";
fdt-dummy1 = "/translation-test@8000/dev@1,100";
fdt-dummy2 = "/translation-test@8000/dev@2,200";
fdt-dummy3 = "/translation-test@8000/noxlatebus@3,300/dev@42";
usb0 = &usb_0;
usb1 = &usb_1;
usb2 = &usb_2;
axi0 = &axi;
osd0 = "/osd";
};
config {
environment {
from_fdt = "yes";
fdt_env_path = "";
};
};
reboot-mode0 {
compatible = "reboot-mode-gpio";
gpios = <&gpio_c 0 GPIO_ACTIVE_HIGH>, <&gpio_c 1 GPIO_ACTIVE_HIGH>;
u-boot,env-variable = "bootstatus";
mode-test = <0x01>;
mode-download = <0x03>;
};
reboot_mode1: reboot-mode@14 {
compatible = "reboot-mode-rtc";
rtc = <&rtc_0>;
reg = <0x30 4>;
u-boot,env-variable = "bootstatus";
big-endian;
mode-test = <0x21969147>;
mode-download = <0x51939147>;
};
audio: audio-codec {
compatible = "sandbox,audio-codec";
#sound-dai-cells = <1>;
};
buttons {
compatible = "gpio-keys";
btn1 {
gpios = <&gpio_a 3 0>;
label = "button1";
};
btn2 {
gpios = <&gpio_a 4 0>;
label = "button2";
};
};
buttons2 {
compatible = "adc-keys";
io-channels = <&adc 3>;
keyup-threshold-microvolt = <3000000>;
button-up {
label = "button3";
linux,code = <KEY_F3>;
press-threshold-microvolt = <1500000>;
};
button-down {
label = "button4";
linux,code = <KEY_F4>;
press-threshold-microvolt = <1000000>;
};
button-enter {
label = "button5";
linux,code = <KEY_F5>;
press-threshold-microvolt = <500000>;
};
};
cros_ec: cros-ec {
reg = <0 0>;
compatible = "google,cros-ec-sandbox";
/*
* This describes the flash memory within the EC. Note
* that the STM32L flash erases to 0, not 0xff.
*/
flash {
image-pos = <0x08000000>;
size = <0x20000>;
erase-value = <0>;
/* Information for sandbox */
ro {
image-pos = <0>;
size = <0xf000>;
};
wp-ro {
image-pos = <0xf000>;
size = <0x1000>;
used = <0x884>;
compress = "lz4";
uncomp-size = <0xcf8>;
hash {
algo = "sha256";
value = [00 01 02 03 04 05 06 07
08 09 0a 0b 0c 0d 0e 0f
10 11 12 13 14 15 16 17
18 19 1a 1b 1c 1d 1e 1f];
};
};
rw {
image-pos = <0x10000>;
size = <0x10000>;
};
};
cros_ec_pwm: cros-ec-pwm {
compatible = "google,cros-ec-pwm";
#pwm-cells = <1>;
};
};
dsi_host: dsi_host {
compatible = "sandbox,dsi-host";
};
a-test {
reg = <0 1>;
compatible = "denx,u-boot-fdt-test";
ping-expect = <0>;
ping-add = <0>;
u-boot,dm-pre-reloc;
test-gpios = <&gpio_a 1>, <&gpio_a 4>,
<&gpio_b 5 GPIO_ACTIVE_HIGH 3 2 1>,
<0>, <&gpio_a 12>;
test2-gpios = <&gpio_a 1>, <&gpio_a 4>,
<&gpio_b 6 GPIO_ACTIVE_LOW 3 2 1>,
<&gpio_b 7 GPIO_IN 3 2 1>,
<&gpio_b 8 GPIO_OUT 3 2 1>,
<&gpio_b 9 (GPIO_OUT|GPIO_OUT_ACTIVE) 3 2 1>;
test3-gpios =
<&gpio_c 0 (GPIO_OUT|GPIO_OPEN_DRAIN)>,
<&gpio_c 1 (GPIO_OUT|GPIO_OPEN_SOURCE)>,
<&gpio_c 2 GPIO_OUT>,
<&gpio_c 3 (GPIO_IN|GPIO_PULL_UP)>,
<&gpio_c 4 (GPIO_IN|GPIO_PULL_DOWN)>,
<&gpio_c 5 GPIO_IN>,
<&gpio_c 6 (GPIO_ACTIVE_LOW|GPIO_OUT|GPIO_OPEN_DRAIN)>,
<&gpio_c 7 (GPIO_ACTIVE_LOW|GPIO_OUT|GPIO_OPEN_SOURCE)>;
test4-gpios = <&gpio_a 14>, <&gpio_b 4 1 3 2 1>;
test5-gpios = <&gpio_a 19>;
int-value = <1234>;
uint-value = <(-1234)>;
int64-value = /bits/ 64 <0x1111222233334444>;
int-array = <5678 9123 4567>;
str-value = "test string";
interrupts-extended = <&irq 3 0>;
acpi,name = "GHIJ";
phandle-value = <&gpio_c 10>, <0xFFFFFFFF 20>, <&gpio_a 30>;
mux-controls = <&muxcontroller0 0>, <&muxcontroller0 1>,
<&muxcontroller0 2>, <&muxcontroller0 3>,
<&muxcontroller1>;
mux-control-names = "mux0", "mux1", "mux2", "mux3", "mux4";
mux-syscon = <&syscon3>;
display-timings {
timing0: 240x320 {
clock-frequency = <6500000>;
hactive = <240>;
vactive = <320>;
hfront-porch = <6>;
hback-porch = <7>;
hsync-len = <1>;
vback-porch = <5>;
vfront-porch = <8>;
vsync-len = <2>;
hsync-active = <1>;
vsync-active = <0>;
de-active = <1>;
pixelclk-active = <1>;
interlaced;
doublescan;
doubleclk;
};
timing1: 480x800 {
clock-frequency = <9000000>;
hactive = <480>;
vactive = <800>;
hfront-porch = <10>;
hback-porch = <59>;
hsync-len = <12>;
vback-porch = <15>;
vfront-porch = <17>;
vsync-len = <16>;
hsync-active = <0>;
vsync-active = <1>;
de-active = <0>;
pixelclk-active = <0>;
};
timing2: 800x480 {
clock-frequency = <33500000>;
hactive = <800>;
vactive = <480>;
hback-porch = <89>;
hfront-porch = <164>;
vback-porch = <23>;
vfront-porch = <10>;
hsync-len = <11>;
vsync-len = <13>;
};
};
};
junk {
reg = <1 1>;
compatible = "not,compatible";
};
no-compatible {
reg = <2 1>;
};
backlight: backlight {
compatible = "pwm-backlight";
enable-gpios = <&gpio_a 1>;
power-supply = <&ldo_1>;
pwms = <&pwm 0 1000>;
default-brightness-level = <5>;
brightness-levels = <0 16 32 64 128 170 202 234 255>;
};
bind-test {
compatible = "simple-bus";
bind-test-child1 {
compatible = "sandbox,phy";
#phy-cells = <1>;
};
bind-test-child2 {
compatible = "simple-bus";
};
};
b-test {
reg = <3 1>;
compatible = "denx,u-boot-fdt-test";
ping-expect = <3>;
ping-add = <3>;
mux-controls = <&muxcontroller0 0>;
mux-control-names = "mux0";
};
phy_provider0: gen_phy@0 {
compatible = "sandbox,phy";
#phy-cells = <1>;
};
phy_provider1: gen_phy@1 {
compatible = "sandbox,phy";
#phy-cells = <0>;
broken;
};
phy_provider2: gen_phy@2 {
compatible = "sandbox,phy";
#phy-cells = <0>;
};
gen_phy_user: gen_phy_user {
compatible = "simple-bus";
phys = <&phy_provider0 0>, <&phy_provider0 1>, <&phy_provider1>;
phy-names = "phy1", "phy2", "phy3";
};
gen_phy_user1: gen_phy_user1 {
compatible = "simple-bus";
phys = <&phy_provider0 0>, <&phy_provider2>;
phy-names = "phy1", "phy2";
};
some-bus {
#address-cells = <1>;
#size-cells = <0>;
compatible = "denx,u-boot-test-bus";
reg = <3 1>;
ping-expect = <4>;
ping-add = <4>;
c-test@5 {
compatible = "denx,u-boot-fdt-test";
reg = <5>;
ping-expect = <5>;
ping-add = <5>;
};
c-test@0 {
compatible = "denx,u-boot-fdt-test";
reg = <0>;
ping-expect = <6>;
ping-add = <6>;
};
c-test@1 {
compatible = "denx,u-boot-fdt-test";
reg = <1>;
ping-expect = <7>;
ping-add = <7>;
};
};
d-test {
reg = <3 1>;
ping-expect = <6>;
ping-add = <6>;
compatible = "google,another-fdt-test";
};
e-test {
reg = <3 1>;
ping-expect = <6>;
ping-add = <6>;
compatible = "google,another-fdt-test";
};
f-test {
compatible = "denx,u-boot-fdt-test";
};
g-test {
compatible = "denx,u-boot-fdt-test";
};
h-test {
compatible = "denx,u-boot-fdt-test1";
};
i-test {
compatible = "mediatek,u-boot-fdt-test";
#address-cells = <1>;
#size-cells = <0>;
subnode@0 {
reg = <0>;
};
subnode@1 {
reg = <1>;
};
subnode@2 {
reg = <2>;
};
};
devres-test {
compatible = "denx,u-boot-devres-test";
};
another-test {
reg = <0 2>;
compatible = "denx,u-boot-fdt-test";
test4-gpios = <&gpio_a 14>, <&gpio_b 4 1 3 2 1>;
test5-gpios = <&gpio_a 19>;
};
mmio-bus@0 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "denx,u-boot-test-bus";
dma-ranges = <0x10000000 0x00000000 0x00040000>;
subnode@0 {
compatible = "denx,u-boot-fdt-test";
};
};
mmio-bus@1 {
#address-cells = <1>;
#size-cells = <1>;
compatible = "denx,u-boot-test-bus";
subnode@0 {
compatible = "denx,u-boot-fdt-test";
};
};
acpi_test1: acpi-test {
compatible = "denx,u-boot-acpi-test";
acpi-ssdt-test-data = "ab";
acpi-dsdt-test-data = "hi";
child {
compatible = "denx,u-boot-acpi-test";
};
};
acpi_test2: acpi-test2 {
compatible = "denx,u-boot-acpi-test";
acpi-ssdt-test-data = "cd";
acpi-dsdt-test-data = "jk";
};
clocks {
clk_fixed: clk-fixed {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <1234>;
};
clk_fixed_factor: clk-fixed-factor {
compatible = "fixed-factor-clock";
#clock-cells = <0>;
clock-div = <3>;
clock-mult = <2>;
clocks = <&clk_fixed>;
};
osc {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <20000000>;
};
};
clk_sandbox: clk-sbox {
compatible = "sandbox,clk";
#clock-cells = <1>;
assigned-clocks = <&clk_sandbox 3>;
assigned-clock-rates = <321>;
};
clk-test {
compatible = "sandbox,clk-test";
clocks = <&clk_fixed>,
<&clk_sandbox 1>,
<&clk_sandbox 0>,
<&clk_sandbox 3>,
<&clk_sandbox 2>;
clock-names = "fixed", "i2c", "spi", "uart2", "uart1";
};
ccf: clk-ccf {
compatible = "sandbox,clk-ccf";
};
eth@10002000 {
compatible = "sandbox,eth";
reg = <0x10002000 0x1000>;
fake-host-hwaddr = [00 00 66 44 22 00];
};
eth_5: eth@10003000 {
compatible = "sandbox,eth";
reg = <0x10003000 0x1000>;
fake-host-hwaddr = [00 00 66 44 22 11];
};
eth_3: sbe5 {
compatible = "sandbox,eth";
reg = <0x10005000 0x1000>;
fake-host-hwaddr = [00 00 66 44 22 33];
};
eth@10004000 {
compatible = "sandbox,eth";
reg = <0x10004000 0x1000>;
fake-host-hwaddr = [00 00 66 44 22 22];
};
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
dsa_eth0: dsa-test-eth {
compatible = "sandbox,eth";
reg = <0x10006000 0x1000>;
fake-host-hwaddr = [00 00 66 44 22 66];
};
dsa-test {
compatible = "sandbox,dsa";
ports {
#address-cells = <1>;
#size-cells = <0>;
swp_0: port@0 {
reg = <0>;
label = "lan0";
phy-mode = "rgmii-rxid";
fixed-link {
speed = <100>;
full-duplex;
};
};
swp_1: port@1 {
reg = <1>;
label = "lan1";
phy-mode = "rgmii-txid";
fixed-link = <0 1 100 0 0>;
sandbox: Add a DSA sandbox driver and unit test The DSA sandbox driver is used for unit testing the DSA class code. It implements a simple 2 port switch plus 1 CPU port, and uses a very simple tag to identify the ports. The DSA sandbox device is connected via CPU port to a regular Ethernet sandbox device, called 'dsa-test-eth, managed by the existing eth sandbox driver. The 'dsa-test-eth' is not intended for testing the eth class code however, but it is used to emulate traffic through the 'lan0' and 'lan1' front pannel switch ports. To achieve this the dsa sandbox driver registers a tx handler for the 'dsa-test-eth' device. The switch ports, labeled as 'lan0' and 'lan1', are also registered as eth devices by the dsa class code this time. So pinging through these switch ports is as easy as: => setenv ethact lan0 => ping 1.2.3.5 Unit tests for the dsa class code were also added. The 'dsa_probe' test exercises most API functions from dsa.h. The 'dsa' unit test simply exercises ARP/ICMP traffic through the two switch ports, including tag injection and extraction, with the help of the dsa sandbox driver. I took care to minimize the impact on the existing eth unit tests, though some adjustments needed to be made with the addition of extra eth interfaces used by the dsa unit tests. The additional eth interfaces also require MAC addresses, these have been added to the sandbox default environment. Signed-off-by: Alex Marginean <alexandru.marginean@nxp.com> Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com> Reviewed-by: Simon Glass <sjg@chromium.org> Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Message-Id: <20210216224804.3355044-5-olteanv@gmail.com> Signed-off-by: Bin Meng <bmeng.cn@gmail.com> Reviewed-by: Priyanka Jain <priyanka.jain@nxp.com>
2021-03-14 12:14:57 +00:00
};
port@2 {
reg = <2>;
ethernet = <&dsa_eth0>;
fixed-link {
speed = <1000>;
full-duplex;
};
};
};
};
firmware {
sandbox_firmware: sandbox-firmware {
compatible = "sandbox,firmware";
};
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
sandbox-scmi-agent@0 {
compatible = "sandbox,scmi-agent";
#address-cells = <1>;
#size-cells = <0>;
clk_scmi0: protocol@14 {
reg = <0x14>;
#clock-cells = <1>;
};
reset_scmi0: protocol@16 {
reg = <0x16>;
#reset-cells = <1>;
};
protocol@17 {
reg = <0x17>;
regulators {
#address-cells = <1>;
#size-cells = <0>;
regul0_scmi0: reg@0 {
reg = <0>;
regulator-name = "sandbox-voltd0";
regulator-min-microvolt = <1100000>;
regulator-max-microvolt = <3300000>;
};
regul1_scmi0: reg@1 {
reg = <0x1>;
regulator-name = "sandbox-voltd1";
regulator-min-microvolt = <1800000>;
};
};
};
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
};
sandbox-scmi-agent@1 {
compatible = "sandbox,scmi-agent";
#address-cells = <1>;
#size-cells = <0>;
clk_scmi1: protocol@14 {
reg = <0x14>;
#clock-cells = <1>;
};
firmware: add SCMI agent uclass This change introduces SCMI agent uclass to interact with a firmware using the SCMI protocols [1]. SCMI agent uclass currently supports a single method to request processing of the SCMI message by an identified server. A SCMI message is made of a byte payload associated to a protocol ID and a message ID, all defined by the SCMI specification [1]. On return from process_msg() method, the caller gets the service response. SCMI agent uclass defines a post bind generic sequence for all devices. The sequence binds all the SCMI protocols listed in the FDT for that SCMI agent device. Currently none, but later change will introduce protocols. This change implements a simple sandbox device for the SCMI agent uclass. The sandbox nicely answers SCMI_NOT_SUPPORTED to SCMI messages. To prepare for further test support, the sandbox exposes a architecture function for test application to read the sandbox emulated devices state. Currently supports 2 SCMI agents, identified by an ID in the FDT device name. The simplistic DM test does nothing yet. SCMI agent uclass is designed for platforms that embed a SCMI server in a firmware hosted somewhere, for example in a companion co-processor or in the secure world of the executing processor. SCMI protocols allow an SCMI agent to discover and access external resources as clock, reset controllers and more. SCMI agent and server communicate following the SCMI specification [1]. This SCMI agent implementation complies with the DT bindings defined in the Linux kernel source tree regarding SCMI agent description since v5.8. Links: [1] https://developer.arm.com/architectures/system-architectures/software-standards/scmi Signed-off-by: Etienne Carriere <etienne.carriere@linaro.org> Cc: Simon Glass <sjg@chromium.org> Cc: Peng Fan <peng.fan@nxp.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Reviewed-by: Simon Glass <sjg@chromium.org>
2020-09-09 16:44:00 +00:00
protocol@10 {
reg = <0x10>;
};
};
};
pinctrl-gpio {
compatible = "sandbox,pinctrl-gpio";
gpio_a: base-gpios {
compatible = "sandbox,gpio";
gpio-controller;
#gpio-cells = <1>;
gpio-bank-name = "a";
sandbox,gpio-count = <20>;
hog_input_active_low {
gpio-hog;
input;
gpios = <10 GPIO_ACTIVE_LOW>;
};
hog_input_active_high {
gpio-hog;
input;
gpios = <11 GPIO_ACTIVE_HIGH>;
};
hog_output_low {
gpio-hog;
output-low;
gpios = <12 GPIO_ACTIVE_HIGH>;
};
hog_output_high {
gpio-hog;
output-high;
gpios = <13 GPIO_ACTIVE_HIGH>;
};
};
gpio_b: extra-gpios {
compatible = "sandbox,gpio";
gpio-controller;
#gpio-cells = <5>;
gpio-bank-name = "b";
sandbox,gpio-count = <10>;
};
gpio_c: pinmux-gpios {
compatible = "sandbox,gpio";
gpio-controller;
#gpio-cells = <2>;
gpio-bank-name = "c";
sandbox,gpio-count = <10>;
};
};
i2c@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0 1>;
compatible = "sandbox,i2c";
clock-frequency = <100000>;
pinctrl-names = "default";
pinctrl-0 = <&pinmux_i2c0_pins>;
eeprom@2c {
reg = <0x2c>;
compatible = "i2c-eeprom";
sandbox,emul = <&emul_eeprom>;
partitions {
compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;
bootcount_i2c: bootcount@10 {
reg = <10 2>;
};
};
};
rtc_0: rtc@43 {
reg = <0x43>;
compatible = "sandbox-rtc";
sandbox,emul = <&emul0>;
};
rtc_1: rtc@61 {
reg = <0x61>;
compatible = "sandbox-rtc";
sandbox,emul = <&emul1>;
};
i2c_emul: emul {
reg = <0xff>;
compatible = "sandbox,i2c-emul-parent";
emul_eeprom: emul-eeprom {
compatible = "sandbox,i2c-eeprom";
sandbox,filename = "i2c.bin";
sandbox,size = <256>;
};
emul0: emul0 {
compatible = "sandbox,i2c-rtc-emul";
};
emul1: emull {
compatible = "sandbox,i2c-rtc-emul";
};
};
sandbox_pmic: sandbox_pmic {
reg = <0x40>;
sandbox,emul = <&emul_pmic0>;
};
mc34708: pmic@41 {
reg = <0x41>;
sandbox,emul = <&emul_pmic1>;
};
};
bootcount@0 {
compatible = "u-boot,bootcount-rtc";
rtc = <&rtc_1>;
offset = <0x13>;
};
bootcount {
compatible = "u-boot,bootcount-i2c-eeprom";
i2c-eeprom = <&bootcount_i2c>;
};
bootcount_4@0 {
compatible = "u-boot,bootcount-syscon";
syscon = <&syscon0>;
reg = <0x0 0x04>, <0x0 0x04>;
reg-names = "syscon_reg", "offset";
};
bootcount_2@0 {
compatible = "u-boot,bootcount-syscon";
syscon = <&syscon0>;
reg = <0x0 0x04>, <0x0 0x02> ;
reg-names = "syscon_reg", "offset";
};
adc: adc@0 {
compatible = "sandbox,adc";
#io-channel-cells = <1>;
vdd-supply = <&buck2>;
vss-microvolts = <0>;
};
irq: irq {
compatible = "sandbox,irq";
interrupt-controller;
#interrupt-cells = <2>;
};
lcd {
u-boot,dm-pre-reloc;
compatible = "sandbox,lcd-sdl";
pinctrl-names = "default";
pinctrl-0 = <&pinmux_lcd_pins>;
xres = <1366>;
yres = <768>;
};
leds {
compatible = "gpio-leds";
iracibble {
gpios = <&gpio_a 1 0>;
label = "sandbox:red";
};
martinet {
gpios = <&gpio_a 2 0>;
label = "sandbox:green";
};
default_on {
gpios = <&gpio_a 5 0>;
label = "sandbox:default_on";
default-state = "on";
};
default_off {
gpios = <&gpio_a 6 0>;
/* label intentionally omitted */
default-state = "off";
};
};
gpio-wdt {
gpios = <&gpio_a 7 0>;
compatible = "linux,wdt-gpio";
hw_margin_ms = <100>;
always-running;
};
mbox: mbox {
compatible = "sandbox,mbox";
#mbox-cells = <1>;
};
mbox-test {
compatible = "sandbox,mbox-test";
mboxes = <&mbox 100>, <&mbox 1>;
mbox-names = "other", "test";
};
cpus {
timebase-frequency = <2000000>;
cpu-test1 {
timebase-frequency = <3000000>;
compatible = "sandbox,cpu_sandbox";
u-boot,dm-pre-reloc;
};
cpu-test2 {
compatible = "sandbox,cpu_sandbox";
u-boot,dm-pre-reloc;
};
cpu-test3 {
compatible = "sandbox,cpu_sandbox";
u-boot,dm-pre-reloc;
};
};
chipid: chipid {
compatible = "sandbox,soc";
};
i2s: i2s {
compatible = "sandbox,i2s";
#sound-dai-cells = <1>;
sandbox,silent; /* Don't emit sounds while testing */
};
nop-test_0 {
compatible = "sandbox,nop_sandbox1";
nop-test_1 {
compatible = "sandbox,nop_sandbox2";
bind = "True";
};
nop-test_2 {
compatible = "sandbox,nop_sandbox2";
bind = "False";
};
};
misc-test {
compatible = "sandbox,misc_sandbox";
};
mmc2 {
compatible = "sandbox,mmc";
non-removable;
};
mmc1 {
compatible = "sandbox,mmc";
};
mmc0 {
compatible = "sandbox,mmc";
};
pch {
compatible = "sandbox,pch";
};
pci0: pci@0 {
compatible = "sandbox,pci";
device_type = "pci";
bus-range = <0x00 0xff>;
#address-cells = <3>;
#size-cells = <2>;
ranges = <0x02000000 0 0x10000000 0x10000000 0 0x2000000
0x01000000 0 0x20000000 0x20000000 0 0x2000>;
pci@0,0 {
compatible = "pci-generic";
reg = <0x0000 0 0 0 0>;
pci: sandbox: Move the emulators into their own node Sandbox pci works using emulation drivers which are currently children of the pci device: pci-controller { pci@1f,0 { compatible = "pci-generic"; reg = <0xf800 0 0 0 0>; emul@1f,0 { compatible = "sandbox,swap-case"; }; }; }; In this case the emulation device is attached to pci device on address f800 (device 1f, function 0) and provides the swap-case functionality. However this is not ideal, since every device on a PCI bus has a child device. This is only really the case for sandbox, but we want to avoid special-case code for sandbox. Worse, child devices cannot be probed before their parents. This forces us to use 'find' rather than 'get' to obtain the emulator device. In fact the emulator devices are never probed. There is code in sandbox_pci_emul_post_probe() which tries to track when emulators are active, but at present this does not work. A better approach seems to be to add a separate node elsewhere in the device tree, an 'emulation parent'. This could be given a bogus address (such as -1) to hide the emulators away from the 'pci' command, but it seems better to keep it at the root node to avoid such hacks. Then we can use a phandle to point from the device to the correct emulator, and only on sandbox. The code to find an emulator does not interfere with normal pci operation. Add a new UCLASS_PCI_EMUL_PARENT uclass which allows finding an emulator given a bus, and finding a bus given an emulator. Update the existing device trees and the code for finding an emulator. This brings PCI emulators more into line with I2C. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> [bmeng: fix 3 typos in the commit message; encode bus number in the labels of swap_case_emul nodes; mention commit 4345998ae9df in sandbox_pci_get_emul()] Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
2019-09-25 14:56:10 +00:00
sandbox,emul = <&swap_case_emul0_0>;
};
pci@1,0 {
compatible = "pci-generic";
/* reg 0 is at 0x14, using FDT_PCI_SPACE_MEM32 */
reg = <0x02000814 0 0 0 0
0x01000810 0 0 0 0>;
pci: sandbox: Move the emulators into their own node Sandbox pci works using emulation drivers which are currently children of the pci device: pci-controller { pci@1f,0 { compatible = "pci-generic"; reg = <0xf800 0 0 0 0>; emul@1f,0 { compatible = "sandbox,swap-case"; }; }; }; In this case the emulation device is attached to pci device on address f800 (device 1f, function 0) and provides the swap-case functionality. However this is not ideal, since every device on a PCI bus has a child device. This is only really the case for sandbox, but we want to avoid special-case code for sandbox. Worse, child devices cannot be probed before their parents. This forces us to use 'find' rather than 'get' to obtain the emulator device. In fact the emulator devices are never probed. There is code in sandbox_pci_emul_post_probe() which tries to track when emulators are active, but at present this does not work. A better approach seems to be to add a separate node elsewhere in the device tree, an 'emulation parent'. This could be given a bogus address (such as -1) to hide the emulators away from the 'pci' command, but it seems better to keep it at the root node to avoid such hacks. Then we can use a phandle to point from the device to the correct emulator, and only on sandbox. The code to find an emulator does not interfere with normal pci operation. Add a new UCLASS_PCI_EMUL_PARENT uclass which allows finding an emulator given a bus, and finding a bus given an emulator. Update the existing device trees and the code for finding an emulator. This brings PCI emulators more into line with I2C. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> [bmeng: fix 3 typos in the commit message; encode bus number in the labels of swap_case_emul nodes; mention commit 4345998ae9df in sandbox_pci_get_emul()] Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
2019-09-25 14:56:10 +00:00
sandbox,emul = <&swap_case_emul0_1>;
};
p2sb-pci@2,0 {
compatible = "sandbox,p2sb";
reg = <0x02001010 0 0 0 0>;
sandbox,emul = <&p2sb_emul>;
adder {
intel,p2sb-port-id = <3>;
compatible = "sandbox,adder";
};
};
pci@1e,0 {
compatible = "sandbox,pmc";
reg = <0xf000 0 0 0 0>;
sandbox,emul = <&pmc_emul1e>;
acpi-base = <0x400>;
gpe0-dwx-mask = <0xf>;
gpe0-dwx-shift-base = <4>;
gpe0-dw = <6 7 9>;
gpe0-sts = <0x20>;
gpe0-en = <0x30>;
};
pci@1f,0 {
compatible = "pci-generic";
/* reg 0 is at 0x10, using FDT_PCI_SPACE_IO */
reg = <0x0100f810 0 0 0 0>;
pci: sandbox: Move the emulators into their own node Sandbox pci works using emulation drivers which are currently children of the pci device: pci-controller { pci@1f,0 { compatible = "pci-generic"; reg = <0xf800 0 0 0 0>; emul@1f,0 { compatible = "sandbox,swap-case"; }; }; }; In this case the emulation device is attached to pci device on address f800 (device 1f, function 0) and provides the swap-case functionality. However this is not ideal, since every device on a PCI bus has a child device. This is only really the case for sandbox, but we want to avoid special-case code for sandbox. Worse, child devices cannot be probed before their parents. This forces us to use 'find' rather than 'get' to obtain the emulator device. In fact the emulator devices are never probed. There is code in sandbox_pci_emul_post_probe() which tries to track when emulators are active, but at present this does not work. A better approach seems to be to add a separate node elsewhere in the device tree, an 'emulation parent'. This could be given a bogus address (such as -1) to hide the emulators away from the 'pci' command, but it seems better to keep it at the root node to avoid such hacks. Then we can use a phandle to point from the device to the correct emulator, and only on sandbox. The code to find an emulator does not interfere with normal pci operation. Add a new UCLASS_PCI_EMUL_PARENT uclass which allows finding an emulator given a bus, and finding a bus given an emulator. Update the existing device trees and the code for finding an emulator. This brings PCI emulators more into line with I2C. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> [bmeng: fix 3 typos in the commit message; encode bus number in the labels of swap_case_emul nodes; mention commit 4345998ae9df in sandbox_pci_get_emul()] Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
2019-09-25 14:56:10 +00:00
sandbox,emul = <&swap_case_emul0_1f>;
};
};
pci-emul0 {
compatible = "sandbox,pci-emul-parent";
swap_case_emul0_0: emul0@0,0 {
compatible = "sandbox,swap-case";
};
swap_case_emul0_1: emul0@1,0 {
compatible = "sandbox,swap-case";
use-ea;
};
swap_case_emul0_1f: emul0@1f,0 {
compatible = "sandbox,swap-case";
};
p2sb_emul: emul@2,0 {
compatible = "sandbox,p2sb-emul";
};
pmc_emul1e: emul@1e,0 {
compatible = "sandbox,pmc-emul";
};
};
pci1: pci@1 {
compatible = "sandbox,pci";
device_type = "pci";
bus-range = <0x00 0xff>;
#address-cells = <3>;
#size-cells = <2>;
ranges = <0x02000000 0 0x30000000 0x30000000 0 0x2000 // MEM0
0x02000000 0 0x31000000 0x31000000 0 0x2000 // MEM1
0x01000000 0 0x40000000 0x40000000 0 0x2000>;
sandbox,dev-info = <0x08 0x00 0x1234 0x5678
0x0c 0x00 0x1234 0x5678
0x10 0x00 0x1234 0x5678>;
pci@10,0 {
reg = <0x8000 0 0 0 0>;
};
};
pci2: pci@2 {
compatible = "sandbox,pci";
device_type = "pci";
bus-range = <0x00 0xff>;
#address-cells = <3>;
#size-cells = <2>;
ranges = <0x02000000 0 0x50000000 0x50000000 0 0x2000
0x01000000 0 0x60000000 0x60000000 0 0x2000>;
sandbox,dev-info = <0x08 0x00 0x1234 0x5678>;
pci@1f,0 {
compatible = "pci-generic";
reg = <0xf800 0 0 0 0>;
pci: sandbox: Move the emulators into their own node Sandbox pci works using emulation drivers which are currently children of the pci device: pci-controller { pci@1f,0 { compatible = "pci-generic"; reg = <0xf800 0 0 0 0>; emul@1f,0 { compatible = "sandbox,swap-case"; }; }; }; In this case the emulation device is attached to pci device on address f800 (device 1f, function 0) and provides the swap-case functionality. However this is not ideal, since every device on a PCI bus has a child device. This is only really the case for sandbox, but we want to avoid special-case code for sandbox. Worse, child devices cannot be probed before their parents. This forces us to use 'find' rather than 'get' to obtain the emulator device. In fact the emulator devices are never probed. There is code in sandbox_pci_emul_post_probe() which tries to track when emulators are active, but at present this does not work. A better approach seems to be to add a separate node elsewhere in the device tree, an 'emulation parent'. This could be given a bogus address (such as -1) to hide the emulators away from the 'pci' command, but it seems better to keep it at the root node to avoid such hacks. Then we can use a phandle to point from the device to the correct emulator, and only on sandbox. The code to find an emulator does not interfere with normal pci operation. Add a new UCLASS_PCI_EMUL_PARENT uclass which allows finding an emulator given a bus, and finding a bus given an emulator. Update the existing device trees and the code for finding an emulator. This brings PCI emulators more into line with I2C. Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Bin Meng <bmeng.cn@gmail.com> Tested-by: Bin Meng <bmeng.cn@gmail.com> [bmeng: fix 3 typos in the commit message; encode bus number in the labels of swap_case_emul nodes; mention commit 4345998ae9df in sandbox_pci_get_emul()] Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
2019-09-25 14:56:10 +00:00
sandbox,emul = <&swap_case_emul2_1f>;
};
};
pci-emul2 {
compatible = "sandbox,pci-emul-parent";
swap_case_emul2_1f: emul2@1f,0 {
compatible = "sandbox,swap-case";
};
};
pci_ep: pci_ep {
compatible = "sandbox,pci_ep";
};
probing {
compatible = "simple-bus";
test1 {
compatible = "denx,u-boot-probe-test";
};
test2 {
compatible = "denx,u-boot-probe-test";
};
test3 {
compatible = "denx,u-boot-probe-test";
};
test4 {
compatible = "denx,u-boot-probe-test";
first-syscon = <&syscon0>;
second-sys-ctrl = <&another_system_controller>;
third-syscon = <&syscon2>;
};
};
pwrdom: power-domain {
compatible = "sandbox,power-domain";
#power-domain-cells = <1>;
};
power-domain-test {
compatible = "sandbox,power-domain-test";
power-domains = <&pwrdom 2>;
};
pwm: pwm {
compatible = "sandbox,pwm";
#pwm-cells = <2>;
pinctrl-names = "default";
pinctrl-0 = <&pinmux_pwm_pins>;
};
pwm2 {
compatible = "sandbox,pwm";
#pwm-cells = <2>;
};
ram {
compatible = "sandbox,ram";
};
reset@0 {
compatible = "sandbox,warm-reset";
};
reset@1 {
compatible = "sandbox,reset";
};
resetc: reset-ctl {
compatible = "sandbox,reset-ctl";
#reset-cells = <1>;
};
reset-ctl-test {
compatible = "sandbox,reset-ctl-test";
resets = <&resetc 100>, <&resetc 2>, <&resetc 20>, <&resetc 40>;
reset-names = "other", "test", "test2", "test3";
};
rng {
compatible = "sandbox,sandbox-rng";
};
rproc_1: rproc@1 {
compatible = "sandbox,test-processor";
remoteproc-name = "remoteproc-test-dev1";
};
rproc_2: rproc@2 {
compatible = "sandbox,test-processor";
internal-memory-mapped;
remoteproc-name = "remoteproc-test-dev2";
};
panel {
compatible = "simple-panel";
backlight = <&backlight 0 100>;
};
smem@0 {
compatible = "sandbox,smem";
};
sound {
compatible = "sandbox,sound";
cpu {
sound-dai = <&i2s 0>;
};
codec {
sound-dai = <&audio 0>;
};
};
spi@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0 1>;
compatible = "sandbox,spi";
cs-gpios = <0>, <0>, <&gpio_a 0>;
pinctrl-names = "default";
pinctrl-0 = <&pinmux_spi0_pins>;
spi.bin@0 {
reg = <0>;
compatible = "spansion,m25p16", "jedec,spi-nor";
spi-max-frequency = <40000000>;
sandbox,filename = "spi.bin";
};
spi.bin@1 {
reg = <1>;
compatible = "spansion,m25p16", "jedec,spi-nor";
spi-max-frequency = <50000000>;
sandbox,filename = "spi.bin";
spi-cpol;
spi-cpha;
};
};
syscon0: syscon@0 {
compatible = "sandbox,syscon0";
reg = <0x10 16>;
};
another_system_controller: syscon@1 {
compatible = "sandbox,syscon1";
reg = <0x20 5
0x28 6
0x30 7
0x38 8>;
};
syscon2: syscon@2 {
compatible = "simple-mfd", "syscon";
reg = <0x40 5
0x48 6
0x50 7
0x58 8>;
};
syscon3: syscon@3 {
compatible = "simple-mfd", "syscon";
reg = <0x000100 0x10>;
muxcontroller0: a-mux-controller {
compatible = "mmio-mux";
#mux-control-cells = <1>;
mux-reg-masks = <0x0 0x30>, /* 0: reg 0x0, bits 5:4 */
<0xc 0x1E>, /* 1: reg 0xc, bits 4:1 */
<0x4 0xFF>; /* 2: reg 0x4, bits 7:0 */
idle-states = <MUX_IDLE_AS_IS>, <0x02>, <0x73>;
u-boot,mux-autoprobe;
};
};
muxcontroller1: emul-mux-controller {
compatible = "mux-emul";
#mux-control-cells = <0>;
u-boot,mux-autoprobe;
idle-state = <0xabcd>;
};
testfdtm0 {
compatible = "denx,u-boot-fdtm-test";
};
testfdtm1: testfdtm1 {
compatible = "denx,u-boot-fdtm-test";
};
testfdtm2 {
compatible = "denx,u-boot-fdtm-test";
};
timer@0 {
compatible = "sandbox,timer";
clock-frequency = <1000000>;
};
timer@1 {
compatible = "sandbox,timer";
sandbox,timebase-frequency-fallback;
};
tpm2 {
compatible = "sandbox,tpm2";
};
uart0: serial {
compatible = "sandbox,serial";
u-boot,dm-pre-reloc;
pinctrl-names = "default";
pinctrl-0 = <&pinmux_uart0_pins>;
};
usb_0: usb@0 {
compatible = "sandbox,usb";
status = "disabled";
hub {
compatible = "sandbox,usb-hub";
#address-cells = <1>;
#size-cells = <0>;
flash-stick {
reg = <0>;
compatible = "sandbox,usb-flash";
};
};
};
usb_1: usb@1 {
compatible = "sandbox,usb";
hub {
compatible = "usb-hub";
usb,device-class = <9>;
#address-cells = <1>;
#size-cells = <0>;
hub-emul {
compatible = "sandbox,usb-hub";
#address-cells = <1>;
#size-cells = <0>;
flash-stick@0 {
reg = <0>;
compatible = "sandbox,usb-flash";
sandbox,filepath = "testflash.bin";
};
flash-stick@1 {
reg = <1>;
compatible = "sandbox,usb-flash";
sandbox,filepath = "testflash1.bin";
};
flash-stick@2 {
reg = <2>;
compatible = "sandbox,usb-flash";
sandbox,filepath = "testflash2.bin";
};
keyb@3 {
reg = <3>;
compatible = "sandbox,usb-keyb";
};
};
usbstor@1 {
reg = <1>;
};
usbstor@3 {
reg = <3>;
};
};
};
usb_2: usb@2 {
compatible = "sandbox,usb";
status = "disabled";
};
spmi: spmi@0 {
compatible = "sandbox,spmi";
#address-cells = <0x1>;
#size-cells = <0x1>;
ranges;
pm8916@0 {
compatible = "qcom,spmi-pmic";
reg = <0x0 0x1>;
#address-cells = <0x1>;
#size-cells = <0x1>;
ranges;
spmi_gpios: gpios@c000 {
compatible = "qcom,pm8916-gpio";
reg = <0xc000 0x400>;
gpio-controller;
gpio-count = <4>;
#gpio-cells = <2>;
gpio-bank-name="spmi";
};
};
};
wdt0: wdt@0 {
compatible = "sandbox,wdt";
hw_margin_ms = <200>;
};
axi: axi@0 {
compatible = "sandbox,axi";
#address-cells = <0x1>;
#size-cells = <0x1>;
store@0 {
compatible = "sandbox,sandbox_store";
reg = <0x0 0x400>;
};
};
chosen {
#address-cells = <1>;
#size-cells = <1>;
setting = "sunrise ohoka";
other-node = "/some-bus/c-test@5";
int-values = <0x1937 72993>;
u-boot,acpi-ssdt-order = <&acpi_test2 &acpi_test1>;
chosen-test {
compatible = "denx,u-boot-fdt-test";
reg = <9 1>;
};
};
translation-test@8000 {
compatible = "simple-bus";
reg = <0x8000 0x4000>;
#address-cells = <0x2>;
#size-cells = <0x1>;
ranges = <0 0x0 0x8000 0x1000
1 0x100 0x9000 0x1000
2 0x200 0xA000 0x1000
3 0x300 0xB000 0x1000
>;
dma-ranges = <0 0x000 0x10000000 0x1000
1 0x100 0x20000000 0x1000
>;
dev@0,0 {
compatible = "denx,u-boot-fdt-dummy";
reg = <0 0x0 0x1000>;
reg-names = "sandbox-dummy-0";
};
dev@1,100 {
compatible = "denx,u-boot-fdt-dummy";
reg = <1 0x100 0x1000>;
};
dev@2,200 {
compatible = "denx,u-boot-fdt-dummy";
reg = <2 0x200 0x1000>;
};
noxlatebus@3,300 {
compatible = "simple-bus";
reg = <3 0x300 0x1000>;
#address-cells = <0x1>;
#size-cells = <0x0>;
dev@42 {
compatible = "denx,u-boot-fdt-dummy";
reg = <0x42>;
};
};
};
osd {
compatible = "sandbox,sandbox_osd";
};
2018-09-30 22:16:51 +00:00
sandbox_tee {
compatible = "sandbox,tee";
};
sandbox_virtio1 {
compatible = "sandbox,virtio1";
};
sandbox_virtio2 {
compatible = "sandbox,virtio2";
};
sandbox_scmi {
compatible = "sandbox,scmi-devices";
clocks = <&clk_scmi0 7>, <&clk_scmi0 3>, <&clk_scmi1 1>;
resets = <&reset_scmi0 3>;
regul0-supply = <&regul0_scmi0>;
regul1-supply = <&regul1_scmi0>;
};
pinctrl {
compatible = "sandbox,pinctrl";
pinctrl-names = "default", "alternate";
pinctrl-0 = <&pinctrl_gpios>, <&pinctrl_i2s>;
pinctrl-1 = <&pinctrl_spi>, <&pinctrl_i2c>;
pinctrl_gpios: gpios {
gpio0 {
pins = "P5";
function = "GPIO";
bias-pull-up;
input-disable;
};
gpio1 {
pins = "P6";
function = "GPIO";
output-high;
drive-open-drain;
};
gpio2 {
pinmux = <SANDBOX_PINMUX(7, SANDBOX_PINMUX_GPIO)>;
bias-pull-down;
input-enable;
};
gpio3 {
pinmux = <SANDBOX_PINMUX(8, SANDBOX_PINMUX_GPIO)>;
bias-disable;
};
};
pinctrl_i2c: i2c {
groups {
groups = "I2C_UART";
function = "I2C";
};
pins {
pins = "P0", "P1";
drive-open-drain;
};
};
pinctrl_i2s: i2s {
groups = "SPI_I2S";
function = "I2S";
};
pinctrl_spi: spi {
groups = "SPI_I2S";
function = "SPI";
cs {
pinmux = <SANDBOX_PINMUX(5, SANDBOX_PINMUX_CS)>,
<SANDBOX_PINMUX(6, SANDBOX_PINMUX_CS)>;
};
};
};
pinctrl-single-no-width {
compatible = "pinctrl-single";
reg = <0x0000 0x238>;
#pinctrl-cells = <1>;
pinctrl-single,function-mask = <0x7f>;
};
pinctrl-single-pins {
compatible = "pinctrl-single";
reg = <0x0000 0x238>;
#pinctrl-cells = <1>;
pinctrl-single,register-width = <32>;
pinctrl-single,function-mask = <0x7f>;
pinmux_pwm_pins: pinmux_pwm_pins {
pinctrl-single,pins = < 0x48 0x06 >;
};
pinmux_spi0_pins: pinmux_spi0_pins {
pinctrl-single,pins = <
0x190 0x0c
0x194 0x0c
0x198 0x23
0x19c 0x0c
>;
};
pinmux_uart0_pins: pinmux_uart0_pins {
pinctrl-single,pins = <
0x70 0x30
0x74 0x00
>;
};
};
pinctrl-single-bits {
compatible = "pinctrl-single";
reg = <0x0000 0x50>;
#pinctrl-cells = <2>;
pinctrl-single,bit-per-mux;
pinctrl-single,register-width = <32>;
pinctrl-single,function-mask = <0xf>;
pinmux_i2c0_pins: pinmux_i2c0_pins {
pinctrl-single,bits = <
0x10 0x00002200 0x0000ff00
>;
};
pinmux_lcd_pins: pinmux_lcd_pins {
pinctrl-single,bits = <
0x40 0x22222200 0xffffff00
0x44 0x22222222 0xffffffff
0x48 0x00000022 0x000000ff
0x48 0x02000000 0x0f000000
0x4c 0x02000022 0x0f0000ff
>;
};
};
hwspinlock@0 {
compatible = "sandbox,hwspinlock";
};
dma: dma {
compatible = "sandbox,dma";
#dma-cells = <1>;
dmas = <&dma 0>, <&dma 1>, <&dma 2>;
dma-names = "m2m", "tx0", "rx0";
};
/*
* keep mdio-mux ahead of mdio so that the mux is removed first at the
* end of the test. If parent mdio is removed first, clean-up of the
* mux will trigger a 2nd probe of parent-mdio, leaving parent-mdio
* active at the end of the test. That it turn doesn't allow the mdio
* class to be destroyed, triggering an error.
*/
mdio-mux-test {
compatible = "sandbox,mdio-mux";
#address-cells = <1>;
#size-cells = <0>;
mdio-parent-bus = <&mdio>;
mdio-ch-test@0 {
reg = <0>;
};
mdio-ch-test@1 {
reg = <1>;
};
};
mdio: mdio-test {
compatible = "sandbox,mdio";
};
pm-bus-test {
compatible = "simple-pm-bus";
clocks = <&clk_sandbox 4>;
power-domains = <&pwrdom 1>;
};
resetc2: syscon-reset {
compatible = "syscon-reset";
#reset-cells = <1>;
regmap = <&syscon0>;
offset = <1>;
mask = <0x27FFFFFF>;
assert-high = <0>;
};
syscon-reset-test {
compatible = "sandbox,misc_sandbox";
resets = <&resetc2 15>, <&resetc2 30>, <&resetc2 60>;
reset-names = "valid", "no_mask", "out_of_range";
};
sysinfo {
compatible = "sandbox,sysinfo-sandbox";
};
sysinfo-gpio {
compatible = "gpio-sysinfo";
gpios = <&gpio_a 15>, <&gpio_a 16>, <&gpio_a 17>;
revisions = <19>, <5>;
names = "rev_a", "foo";
};
some_regmapped-bus {
#address-cells = <0x1>;
#size-cells = <0x1>;
ranges = <0x0 0x0 0x10>;
compatible = "simple-bus";
regmap-test_0 {
reg = <0 0x10>;
compatible = "sandbox,regmap_test";
};
};
};
#include "sandbox_pmic.dtsi"
#include "cros-ec-keyboard.dtsi"