u-boot/arch/arm/mach-k3/common.c

668 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* K3: Common Architecture initialization
*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <image.h>
#include <init.h>
#include <log.h>
#include <spl.h>
#include <asm/global_data.h>
#include "common.h"
#include <dm.h>
#include <remoteproc.h>
#include <asm/cache.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <fdt_support.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <fs_loader.h>
#include <fs.h>
#include <env.h>
#include <elf.h>
#include <soc.h>
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
enum {
IMAGE_ID_ATF,
IMAGE_ID_OPTEE,
IMAGE_ID_SPL,
IMAGE_ID_DM_FW,
IMAGE_AMT,
};
#if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS)
static const char *image_os_match[IMAGE_AMT] = {
"arm-trusted-firmware",
"tee",
"U-Boot",
"DM",
};
#endif
static struct image_info fit_image_info[IMAGE_AMT];
#endif
struct ti_sci_handle *get_ti_sci_handle(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_FIRMWARE,
DM_DRIVER_GET(ti_sci), &dev);
if (ret)
panic("Failed to get SYSFW (%d)\n", ret);
return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev);
}
void k3_sysfw_print_ver(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
char fw_desc[sizeof(ti_sci->version.firmware_description) + 1];
/*
* Output System Firmware version info. Note that since the
* 'firmware_description' field is not guaranteed to be zero-
* terminated we manually add a \0 terminator if needed. Further
* note that we intentionally no longer rely on the extended
* printf() formatter '%.*s' to not having to require a more
* full-featured printf() implementation.
*/
strncpy(fw_desc, ti_sci->version.firmware_description,
sizeof(ti_sci->version.firmware_description));
fw_desc[sizeof(fw_desc) - 1] = '\0';
printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n",
ti_sci->version.abi_major, ti_sci->version.abi_minor,
ti_sci->version.firmware_revision, fw_desc);
}
void mmr_unlock(phys_addr_t base, u32 partition)
{
/* Translate the base address */
phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
/* Unlock the requested partition if locked using two-step sequence */
writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
}
bool is_rom_loaded_sysfw(struct rom_extended_boot_data *data)
{
if (strncmp(data->header, K3_ROM_BOOT_HEADER_MAGIC, 7))
return false;
return data->num_components > 1;
}
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_K3_EARLY_CONS
int early_console_init(void)
{
struct udevice *dev;
int ret;
gd->baudrate = CONFIG_BAUDRATE;
ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX,
&dev);
if (ret) {
printf("Error getting serial dev for early console! (%d)\n",
ret);
return ret;
}
gd->cur_serial_dev = dev;
gd->flags |= GD_FLG_SERIAL_READY;
gd->have_console = 1;
return 0;
}
#endif
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
void init_env(void)
{
#ifdef CONFIG_SPL_ENV_SUPPORT
char *part;
env_init();
env_relocate();
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
part = env_get("bootpart");
env_set("storage_interface", "mmc");
env_set("fw_dev_part", part);
break;
case BOOT_DEVICE_SPI:
env_set("storage_interface", "ubi");
env_set("fw_ubi_mtdpart", "UBI");
env_set("fw_ubi_volume", "UBI0");
break;
default:
printf("%s from device %u not supported!\n",
__func__, spl_boot_device());
return;
}
#endif
}
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
{
struct udevice *fsdev;
char *name = NULL;
int size = 0;
if (!IS_ENABLED(CONFIG_FS_LOADER))
return 0;
*loadaddr = 0;
#ifdef CONFIG_SPL_ENV_SUPPORT
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
name = env_get(name_fw);
*loadaddr = env_get_hex(name_loadaddr, *loadaddr);
break;
default:
printf("Loading rproc fw image from device %u not supported!\n",
spl_boot_device());
return 0;
}
#endif
if (!*loadaddr)
return 0;
if (!get_fs_loader(&fsdev)) {
size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr,
0, 0);
}
return size;
}
void release_resources_for_core_shutdown(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
struct ti_sci_dev_ops *dev_ops = &ti_sci->ops.dev_ops;
struct ti_sci_proc_ops *proc_ops = &ti_sci->ops.proc_ops;
int ret;
u32 i;
/* Iterate through list of devices to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_device_ids); i++) {
u32 id = put_device_ids[i];
ret = dev_ops->put_device(ti_sci, id);
if (ret)
panic("Failed to put device %u (%d)\n", id, ret);
}
/* Iterate through list of cores to put (shutdown) */
for (i = 0; i < ARRAY_SIZE(put_core_ids); i++) {
u32 id = put_core_ids[i];
/*
* Queue up the core shutdown request. Note that this call
* needs to be followed up by an actual invocation of an WFE
* or WFI CPU instruction.
*/
ret = proc_ops->proc_shutdown_no_wait(ti_sci, id);
if (ret)
panic("Failed sending core %u shutdown message (%d)\n",
id, ret);
}
}
void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
typedef void __noreturn (*image_entry_noargs_t)(void);
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
u32 loadaddr = 0;
int ret, size = 0, shut_cpu = 0;
/* Release all the exclusive devices held by SPL before starting ATF */
ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci);
ret = rproc_init();
if (ret)
panic("rproc failed to be initialized (%d)\n", ret);
init_env();
if (!fit_image_info[IMAGE_ID_DM_FW].image_start) {
size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load",
&loadaddr);
}
/*
* It is assumed that remoteproc device 1 is the corresponding
* Cortex-A core which runs ATF. Make sure DT reflects the same.
*/
if (!fit_image_info[IMAGE_ID_ATF].image_start)
fit_image_info[IMAGE_ID_ATF].image_start =
spl_image->entry_point;
ret = rproc_load(1, fit_image_info[IMAGE_ID_ATF].image_start, 0x200);
if (ret)
panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret);
#if (CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS) && IS_ENABLED(CONFIG_SYS_K3_SPL_ATF))
/* Authenticate ATF */
void *image_addr = (void *)fit_image_info[IMAGE_ID_ATF].image_start;
debug("%s: Authenticating image: addr=%lx, size=%ld, os=%s\n", __func__,
fit_image_info[IMAGE_ID_ATF].image_start,
fit_image_info[IMAGE_ID_ATF].image_len,
image_os_match[IMAGE_ID_ATF]);
ti_secure_image_post_process(&image_addr,
(size_t *)&fit_image_info[IMAGE_ID_ATF].image_len);
/* Authenticate OPTEE */
image_addr = (void *)fit_image_info[IMAGE_ID_OPTEE].image_start;
debug("%s: Authenticating image: addr=%lx, size=%ld, os=%s\n", __func__,
fit_image_info[IMAGE_ID_OPTEE].image_start,
fit_image_info[IMAGE_ID_OPTEE].image_len,
image_os_match[IMAGE_ID_OPTEE]);
ti_secure_image_post_process(&image_addr,
(size_t *)&fit_image_info[IMAGE_ID_OPTEE].image_len);
#endif
if (!fit_image_info[IMAGE_ID_DM_FW].image_len &&
!(size > 0 && valid_elf_image(loadaddr))) {
shut_cpu = 1;
goto start_arm64;
}
if (!fit_image_info[IMAGE_ID_DM_FW].image_start) {
loadaddr = load_elf_image_phdr(loadaddr);
} else {
loadaddr = fit_image_info[IMAGE_ID_DM_FW].image_start;
if (valid_elf_image(loadaddr))
loadaddr = load_elf_image_phdr(loadaddr);
}
debug("%s: jumping to address %x\n", __func__, loadaddr);
start_arm64:
/* Add an extra newline to differentiate the ATF logs from SPL */
printf("Starting ATF on ARM64 core...\n\n");
ret = rproc_start(1);
if (ret)
panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret);
if (shut_cpu) {
debug("Shutting down...\n");
release_resources_for_core_shutdown();
while (1)
asm volatile("wfe");
}
image_entry_noargs_t image_entry = (image_entry_noargs_t)loadaddr;
image_entry();
}
#endif
#if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS)
void board_fit_image_post_process(const void *fit, int node, void **p_image,
size_t *p_size)
{
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
int len;
int i;
const char *os;
u32 addr;
os = fdt_getprop(fit, node, "os", &len);
addr = fdt_getprop_u32_default_node(fit, node, 0, "entry", -1);
debug("%s: processing image: addr=%x, size=%d, os=%s\n", __func__,
addr, *p_size, os);
for (i = 0; i < IMAGE_AMT; i++) {
if (!strcmp(os, image_os_match[i])) {
fit_image_info[i].image_start = addr;
fit_image_info[i].image_len = *p_size;
debug("%s: matched image for ID %d\n", __func__, i);
break;
}
}
/*
* Only DM and the DTBs are being authenticated here,
* rest will be authenticated when A72 cluster is up
*/
if ((i != IMAGE_ID_ATF) && (i != IMAGE_ID_OPTEE))
#endif
{
ti_secure_image_check_binary(p_image, p_size);
ti_secure_image_post_process(p_image, p_size);
}
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
else
ti_secure_image_check_binary(p_image, p_size);
#endif
}
#endif
#if defined(CONFIG_OF_LIBFDT)
int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name)
{
u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2];
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
int ret, node, subnode, len, prev_node;
u32 range[4], addr, size;
const fdt32_t *sub_reg;
ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end);
msmc_size = msmc_end - msmc_start + 1;
debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__,
msmc_start, msmc_size);
/* find or create "msmc_sram node */
ret = fdt_path_offset(blob, parent_path);
if (ret < 0)
return ret;
node = fdt_find_or_add_subnode(blob, ret, node_name);
if (node < 0)
return node;
ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram");
if (ret < 0)
return ret;
reg[0] = cpu_to_fdt64(msmc_start);
reg[1] = cpu_to_fdt64(msmc_size);
ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg));
if (ret < 0)
return ret;
fdt_setprop_cell(blob, node, "#address-cells", 1);
fdt_setprop_cell(blob, node, "#size-cells", 1);
range[0] = 0;
range[1] = cpu_to_fdt32(msmc_start >> 32);
range[2] = cpu_to_fdt32(msmc_start & 0xffffffff);
range[3] = cpu_to_fdt32(msmc_size);
ret = fdt_setprop(blob, node, "ranges", range, sizeof(range));
if (ret < 0)
return ret;
subnode = fdt_first_subnode(blob, node);
prev_node = 0;
/* Look for invalid subnodes and delete them */
while (subnode >= 0) {
sub_reg = fdt_getprop(blob, subnode, "reg", &len);
addr = fdt_read_number(sub_reg, 1);
sub_reg++;
size = fdt_read_number(sub_reg, 1);
debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__,
subnode, addr, size);
if (addr + size > msmc_size ||
!strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) ||
!strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) {
fdt_del_node(blob, subnode);
debug("%s: deleting subnode %d\n", __func__, subnode);
if (!prev_node)
subnode = fdt_first_subnode(blob, node);
else
subnode = fdt_next_subnode(blob, prev_node);
} else {
prev_node = subnode;
subnode = fdt_next_subnode(blob, prev_node);
}
}
return 0;
}
#if defined(CONFIG_OF_SYSTEM_SETUP)
int ft_system_setup(void *blob, struct bd_info *bd)
{
int ret;
ret = fdt_fixup_msmc_ram(blob, "/bus@100000", "sram@70000000");
if (ret < 0)
ret = fdt_fixup_msmc_ram(blob, "/interconnect@100000",
"sram@70000000");
if (ret)
printf("%s: fixing up msmc ram failed %d\n", __func__, ret);
return ret;
}
#endif
#endif
arm: K3: j721e: Add basic support for J721E SoC definition The J721E SoC belongs to the K3 Multicore SoC architecture platform, providing advanced system integration to enable lower system costs of automotive applications such as infotainment, cluster, premium Audio, Gateway, industrial and a range of broad market applications. This SoC is designed around reducing the system cost by eliminating the need of an external system MCU and is targeted towards ASIL-B/C certification/requirements in addition to allowing complex software and system use-cases. Some highlights of this SoC are: * Dual Cortex-A72s in a single cluster, three clusters of lockstep capable dual Cortex-R5F MCUs, Deep-learning Matrix Multiply Accelerator(MMA), C7x floating point Vector DSP, Two C66x floating point DSPs. * 3D GPU PowerVR Rogue 8XE GE8430 * Vision Processing Accelerator (VPAC) with image signal processor and Depth and Motion Processing Accelerator (DMPAC) * Two Gigabit Industrial Communication Subsystems (ICSSG), each with dual PRUs and dual RTUs * Two CSI2.0 4L RX plus one CSI2.0 4L TX, one eDP/DP, One DSI Tx, and up to two DPI interfaces. * Integrated Ethernet switch supporting up to a total of 8 external ports in addition to legacy Ethernet switch of up to 2 ports. * System MMU (SMMU) Version 3.0 and advanced virtualisation capabilities. * Upto 4 PCIe-GEN3 controllers, 2 USB3.0 Dual-role device subsystems, 16 MCANs, 12 McASP, eMMC and SD, UFS, OSPI/HyperBus memory controller, QSPI, I3C and I2C, eCAP/eQEP, eHRPWM, MLB among other peripherals. * Two hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL management. * Configurable L3 Cache and IO-coherent architecture with high data throughput capable distributed DMA architecture under NAVSS * Centralized System Controller for Security, Power, and Resource Management (DMSC) See J721E Technical Reference Manual (SPRUIL1, May 2019) for further details: http://www.ti.com/lit/pdf/spruil1 Add base support for J721E SoC Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com> Signed-off-by: Andreas Dannenberg <dannenberg@ti.com> Signed-off-by: Nishanth Menon <nm@ti.com>
2019-06-13 04:59:42 +00:00
#ifndef CONFIG_SYSRESET
void reset_cpu(void)
arm: K3: j721e: Add basic support for J721E SoC definition The J721E SoC belongs to the K3 Multicore SoC architecture platform, providing advanced system integration to enable lower system costs of automotive applications such as infotainment, cluster, premium Audio, Gateway, industrial and a range of broad market applications. This SoC is designed around reducing the system cost by eliminating the need of an external system MCU and is targeted towards ASIL-B/C certification/requirements in addition to allowing complex software and system use-cases. Some highlights of this SoC are: * Dual Cortex-A72s in a single cluster, three clusters of lockstep capable dual Cortex-R5F MCUs, Deep-learning Matrix Multiply Accelerator(MMA), C7x floating point Vector DSP, Two C66x floating point DSPs. * 3D GPU PowerVR Rogue 8XE GE8430 * Vision Processing Accelerator (VPAC) with image signal processor and Depth and Motion Processing Accelerator (DMPAC) * Two Gigabit Industrial Communication Subsystems (ICSSG), each with dual PRUs and dual RTUs * Two CSI2.0 4L RX plus one CSI2.0 4L TX, one eDP/DP, One DSI Tx, and up to two DPI interfaces. * Integrated Ethernet switch supporting up to a total of 8 external ports in addition to legacy Ethernet switch of up to 2 ports. * System MMU (SMMU) Version 3.0 and advanced virtualisation capabilities. * Upto 4 PCIe-GEN3 controllers, 2 USB3.0 Dual-role device subsystems, 16 MCANs, 12 McASP, eMMC and SD, UFS, OSPI/HyperBus memory controller, QSPI, I3C and I2C, eCAP/eQEP, eHRPWM, MLB among other peripherals. * Two hardware accelerator block containing AES/DES/SHA/MD5 called SA2UL management. * Configurable L3 Cache and IO-coherent architecture with high data throughput capable distributed DMA architecture under NAVSS * Centralized System Controller for Security, Power, and Resource Management (DMSC) See J721E Technical Reference Manual (SPRUIL1, May 2019) for further details: http://www.ti.com/lit/pdf/spruil1 Add base support for J721E SoC Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com> Signed-off-by: Andreas Dannenberg <dannenberg@ti.com> Signed-off-by: Nishanth Menon <nm@ti.com>
2019-06-13 04:59:42 +00:00
{
}
#endif
enum k3_device_type get_device_type(void)
{
u32 sys_status = readl(K3_SEC_MGR_SYS_STATUS);
u32 sys_dev_type = (sys_status & SYS_STATUS_DEV_TYPE_MASK) >>
SYS_STATUS_DEV_TYPE_SHIFT;
u32 sys_sub_type = (sys_status & SYS_STATUS_SUB_TYPE_MASK) >>
SYS_STATUS_SUB_TYPE_SHIFT;
switch (sys_dev_type) {
case SYS_STATUS_DEV_TYPE_GP:
return K3_DEVICE_TYPE_GP;
case SYS_STATUS_DEV_TYPE_TEST:
return K3_DEVICE_TYPE_TEST;
case SYS_STATUS_DEV_TYPE_EMU:
return K3_DEVICE_TYPE_EMU;
case SYS_STATUS_DEV_TYPE_HS:
if (sys_sub_type == SYS_STATUS_SUB_TYPE_VAL_FS)
return K3_DEVICE_TYPE_HS_FS;
else
return K3_DEVICE_TYPE_HS_SE;
default:
return K3_DEVICE_TYPE_BAD;
}
}
#if defined(CONFIG_DISPLAY_CPUINFO)
static const char *get_device_type_name(void)
{
enum k3_device_type type = get_device_type();
switch (type) {
case K3_DEVICE_TYPE_GP:
return "GP";
case K3_DEVICE_TYPE_TEST:
return "TEST";
case K3_DEVICE_TYPE_EMU:
return "EMU";
case K3_DEVICE_TYPE_HS_FS:
return "HS-FS";
case K3_DEVICE_TYPE_HS_SE:
return "HS-SE";
default:
return "BAD";
}
}
int print_cpuinfo(void)
{
struct udevice *soc;
char name[64];
int ret;
printf("SoC: ");
ret = soc_get(&soc);
if (ret) {
printf("UNKNOWN\n");
return 0;
}
ret = soc_get_family(soc, name, 64);
if (!ret) {
printf("%s ", name);
}
ret = soc_get_revision(soc, name, 64);
if (!ret) {
printf("%s ", name);
}
printf("%s\n", get_device_type_name());
return 0;
}
#endif
#ifdef CONFIG_ARM64
void board_prep_linux(struct bootm_headers *images)
{
debug("Linux kernel Image start = 0x%lx end = 0x%lx\n",
images->os.start, images->os.end);
__asm_flush_dcache_range(images->os.start,
ROUND(images->os.end,
CONFIG_SYS_CACHELINE_SIZE));
}
#endif
#ifdef CONFIG_CPU_V7R
void disable_linefill_optimization(void)
{
u32 actlr;
/*
* On K3 devices there are 2 conditions where R5F can deadlock:
* 1.When software is performing series of store operations to
* cacheable write back/write allocate memory region and later
* on software execute barrier operation (DSB or DMB). R5F may
* hang at the barrier instruction.
* 2.When software is performing a mix of load and store operations
* within a tight loop and store operations are all writing to
* cacheable write back/write allocates memory regions, R5F may
* hang at one of the load instruction.
*
* To avoid the above two conditions disable linefill optimization
* inside Cortex R5F.
*/
asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr));
actlr |= (1 << 13); /* Set DLFO bit */
asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr));
}
#endif
void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size)
{
struct ti_sci_msg_fwl_region region;
struct ti_sci_fwl_ops *fwl_ops;
struct ti_sci_handle *ti_sci;
size_t i, j;
ti_sci = get_ti_sci_handle();
fwl_ops = &ti_sci->ops.fwl_ops;
for (i = 0; i < fwl_data_size; i++) {
for (j = 0; j < fwl_data[i].regions; j++) {
region.fwl_id = fwl_data[i].fwl_id;
region.region = j;
region.n_permission_regs = 3;
fwl_ops->get_fwl_region(ti_sci, &region);
/* Don't disable the background regions */
if (region.control != 0 &&
((region.control & K3_BACKGROUND_FIREWALL_BIT) ==
0)) {
pr_debug("Attempting to disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
region.control = 0;
if (fwl_ops->set_fwl_region(ti_sci, &region))
pr_err("Could not disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
}
}
}
}
void spl_enable_dcache(void)
{
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
phys_addr_t ram_top = CFG_SYS_SDRAM_BASE;
dram_init();
/* reserve TLB table */
gd->arch.tlb_size = PGTABLE_SIZE;
ram_top += get_effective_memsize();
/* keep ram_top in the 32-bit address space */
if (ram_top >= 0x100000000)
ram_top = (phys_addr_t) 0x100000000;
gd->arch.tlb_addr = ram_top - gd->arch.tlb_size;
debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
dcache_enable();
#endif
}
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
void spl_board_prepare_for_boot(void)
{
dcache_disable();
}
void spl_board_prepare_for_linux(void)
{
dcache_disable();
}
#endif
int misc_init_r(void)
{
if (IS_ENABLED(CONFIG_TI_AM65_CPSW_NUSS)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(am65_cpsw_nuss),
&dev);
if (ret)
printf("Failed to probe am65_cpsw_nuss driver\n");
}
/* Default FIT boot on HS-SE devices */
if (get_device_type() == K3_DEVICE_TYPE_HS_SE)
env_set("boot_fit", "1");
return 0;
}
/**
* do_board_detect() - Detect board description
*
* Function to detect board description. This is expected to be
* overridden in the SoC family board file where desired.
*/
void __weak do_board_detect(void)
{
}