u-boot/arch/arm/mach-imx/imx8/cpu.c

539 lines
11 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018 NXP
*/
#include <common.h>
#include <clk.h>
#include <cpu.h>
#include <cpu_func.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <thermal.h>
#include <asm/arch/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>
DECLARE_GLOBAL_DATA_PTR;
#define BT_PASSOVER_TAG 0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
struct pass_over_info_t *p =
(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;
if (p->barker != BT_PASSOVER_TAG ||
p->len != sizeof(struct pass_over_info_t))
return NULL;
return p;
}
int arch_cpu_init(void)
{
#ifdef CONFIG_SPL_BUILD
struct pass_over_info_t *pass_over;
if (is_soc_rev(CHIP_REV_A)) {
pass_over = get_pass_over_info();
if (pass_over && pass_over->g_ap_mu == 0) {
/*
* When ap_mu is 0, means the U-Boot booted
* from first container
*/
sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
}
}
#endif
return 0;
}
int arch_cpu_init_dm(void)
{
struct udevice *devp;
int node, ret;
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");
ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
if (ret) {
printf("could not get scu %d\n", ret);
return ret;
}
if (is_imx8qm()) {
ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
SC_PM_PW_MODE_ON);
if (ret)
return ret;
}
return 0;
}
int print_bootinfo(void)
{
enum boot_device bt_dev = get_boot_device();
puts("Boot: ");
switch (bt_dev) {
case SD1_BOOT:
puts("SD0\n");
break;
case SD2_BOOT:
puts("SD1\n");
break;
case SD3_BOOT:
puts("SD2\n");
break;
case MMC1_BOOT:
puts("MMC0\n");
break;
case MMC2_BOOT:
puts("MMC1\n");
break;
case MMC3_BOOT:
puts("MMC2\n");
break;
case FLEXSPI_BOOT:
puts("FLEXSPI\n");
break;
case SATA_BOOT:
puts("SATA\n");
break;
case NAND_BOOT:
puts("NAND\n");
break;
case USB_BOOT:
puts("USB\n");
break;
default:
printf("Unknown device %u\n", bt_dev);
break;
}
return 0;
}
enum boot_device get_boot_device(void)
{
enum boot_device boot_dev = SD1_BOOT;
sc_rsrc_t dev_rsrc;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
boot_dev = MMC1_BOOT;
break;
case SC_R_SDHC_1:
boot_dev = SD2_BOOT;
break;
case SC_R_SDHC_2:
boot_dev = SD3_BOOT;
break;
case SC_R_NAND:
boot_dev = NAND_BOOT;
break;
case SC_R_FSPI_0:
boot_dev = FLEXSPI_BOOT;
break;
case SC_R_SATA_0:
boot_dev = SATA_BOOT;
break;
case SC_R_USB_0:
case SC_R_USB_1:
case SC_R_USB_2:
boot_dev = USB_BOOT;
break;
default:
break;
}
return boot_dev;
}
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return CONFIG_SYS_MMC_ENV_DEV;
}
int mmc_get_env_dev(void)
{
sc_rsrc_t dev_rsrc;
int devno;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
devno = 0;
break;
case SC_R_SDHC_1:
devno = 1;
break;
case SC_R_SDHC_2:
devno = 2;
break;
default:
/* If not boot from sd/mmc, use default value */
return CONFIG_SYS_MMC_ENV_DEV;
}
return board_mmc_get_env_dev(devno);
}
#endif
#define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */
static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
sc_faddr_t *addr_end)
{
sc_faddr_t start, end;
int ret;
bool owned;
owned = sc_rm_is_memreg_owned(-1, mr);
if (owned) {
ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
if (ret) {
printf("Memreg get info failed, %d\n", ret);
return -EINVAL;
}
debug("0x%llx -- 0x%llx\n", start, end);
*addr_start = start;
*addr_end = end;
return 0;
}
return -EINVAL;
}
phys_size_t get_effective_memsize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
/* Find the memory region runs the U-Boot */
if (start >= PHYS_SDRAM_1 && start <= end1 &&
(start <= CONFIG_SYS_TEXT_BASE &&
end >= CONFIG_SYS_TEXT_BASE)) {
if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
PHYS_SDRAM_1_SIZE))
return (end - PHYS_SDRAM_1 + 1);
else
return PHYS_SDRAM_1_SIZE;
}
}
}
return PHYS_SDRAM_1_SIZE;
}
int dram_init(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
if ((end + 1) <= end1)
gd->ram_size += end - start + 1;
else
gd->ram_size += end1 - start;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
if ((end + 1) <= end2)
gd->ram_size += end - start + 1;
else
gd->ram_size += end2 - start;
}
}
}
/* If error, set to the default value */
if (!gd->ram_size) {
gd->ram_size = PHYS_SDRAM_1_SIZE;
gd->ram_size += PHYS_SDRAM_2_SIZE;
}
return 0;
}
static void dram_bank_sort(int current_bank)
{
phys_addr_t start;
phys_size_t size;
while (current_bank > 0) {
if (gd->bd->bi_dram[current_bank - 1].start >
gd->bd->bi_dram[current_bank].start) {
start = gd->bd->bi_dram[current_bank - 1].start;
size = gd->bd->bi_dram[current_bank - 1].size;
gd->bd->bi_dram[current_bank - 1].start =
gd->bd->bi_dram[current_bank].start;
gd->bd->bi_dram[current_bank - 1].size =
gd->bd->bi_dram[current_bank].size;
gd->bd->bi_dram[current_bank].start = start;
gd->bd->bi_dram[current_bank].size = size;
}
current_bank--;
}
}
int dram_init_banksize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int i = 0;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
if (start > end) /* Small memory region, no use it */
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end1)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end1 - start;
dram_bank_sort(i);
i++;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end2)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end2 - start;
dram_bank_sort(i);
i++;
}
}
}
/* If error, set to the default value */
if (!i) {
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
}
return 0;
}
static u64 get_block_attrs(sc_faddr_t addr_start)
{
u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
if ((addr_start >= PHYS_SDRAM_1 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
(addr_start >= PHYS_SDRAM_2 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
return attr;
}
static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
sc_faddr_t end1, end2;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
if ((addr_end + 1) > end1)
return end1 - addr_start;
} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
if ((addr_end + 1) > end2)
return end2 - addr_start;
}
return (addr_end - addr_start + 1);
}
#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16
static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;
void enable_caches(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end;
int err, i;
/* Create map for registers access from 0x1c000000 to 0x80000000*/
imx8_mem_map[0].virt = 0x1c000000UL;
imx8_mem_map[0].phys = 0x1c000000UL;
imx8_mem_map[0].size = 0x64000000UL;
imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
i = 1;
for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
imx8_mem_map[i].virt = start;
imx8_mem_map[i].phys = start;
imx8_mem_map[i].size = get_block_size(start, end);
imx8_mem_map[i].attrs = get_block_attrs(start);
i++;
}
}
if (i < MAX_MEM_MAP_REGIONS) {
imx8_mem_map[i].size = 0;
imx8_mem_map[i].attrs = 0;
} else {
puts("Error, need more MEM MAP REGIONS reserved\n");
icache_enable();
return;
}
for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
imx8_mem_map[i].size, imx8_mem_map[i].attrs);
}
icache_enable();
dcache_enable();
}
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
/*
* For each memory region, the max table size:
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
*/
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
#endif
#if defined(CONFIG_IMX8QM)
#define FUSE_MAC0_WORD0 452
#define FUSE_MAC0_WORD1 453
#define FUSE_MAC1_WORD0 454
#define FUSE_MAC1_WORD1 455
#elif defined(CONFIG_IMX8QXP)
#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711
#endif
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 word[2], val[2] = {};
int i, ret;
if (dev_id == 0) {
word[0] = FUSE_MAC0_WORD0;
word[1] = FUSE_MAC0_WORD1;
} else {
word[0] = FUSE_MAC1_WORD0;
word[1] = FUSE_MAC1_WORD1;
}
for (i = 0; i < 2; i++) {
ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
if (ret < 0)
goto err;
}
mac[0] = val[0];
mac[1] = val[0] >> 8;
mac[2] = val[0] >> 16;
mac[3] = val[0] >> 24;
mac[4] = val[1];
mac[5] = val[1] >> 8;
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
err:
printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}
u32 get_cpu_rev(void)
{
u32 id = 0, rev = 0;
int ret;
ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
if (ret)
return 0;
rev = (id >> 5) & 0xf;
id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */
return (id << 12) | rev;
}