u-boot/drivers/ddr/marvell/axp/ddr3_axp.h

513 lines
16 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#ifndef __DDR3_AXP_H
#define __DDR3_AXP_H
#define MV_78XX0_Z1_REV 0x0
#define MV_78XX0_A0_REV 0x1
#define MV_78XX0_B0_REV 0x2
#define SAR_DDR3_FREQ_MASK 0xFE00000
#define SAR_CPU_FAB_GET(cpu, fab) (((cpu & 0x7) << 21) | ((fab & 0xF) << 24))
#define MAX_CS 4
#define MIN_DIMM_ADDR 0x50
#define FAR_END_DIMM_ADDR 0x50
#define MAX_DIMM_ADDR 0x60
#ifndef CONFIG_SYS_SDRAM_SIZE
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
#define SDRAM_CS_SIZE 0xFFFFFFF
#else
#define SDRAM_CS_SIZE ((CONFIG_SYS_SDRAM_SIZE >> 10) - 1)
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
#endif
#define SDRAM_CS_BASE 0x0
#define SDRAM_DIMM_SIZE 0x80000000
#define CPU_CONFIGURATION_REG(id) (0x21800 + (id * 0x100))
#define CPU_MRVL_ID_OFFSET 0x10
#define SAR1_CPU_CORE_MASK 0x00000018
#define SAR1_CPU_CORE_OFFSET 3
/* Only enable ECC if the board selects it */
#ifdef CONFIG_BOARD_ECC_SUPPORT
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
#define ECC_SUPPORT
#endif
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
#define NEW_FABRIC_TWSI_ADDR 0x4E
#ifdef CONFIG_DB_784MP_GP
arm: mvebu: drivers/ddr: Add DDR3 driver with training code from Marvell bin_hdr This patch adds the DDR3 setup and training code taken from the Marvell U-Boot repository. This code used to be included as a binary (bin_hdr) into the AXP boot image. Not linked with the main U-Boot. With this code addition and the following serdes/PHY setup code, the Armada-XP support in mainline U-Boot is finally self-contained. So the complete image for booting can be built from mainline U-Boot. Without any additional external inclusion. Hopefully other MVEBU SoC's will follow here. Support for some SoC's has been removed in this version. This is: MV_MSYS: The code referred to by the MV_MSYS define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F68XX (A38x): The code referred to by the MV88F68XX define (A38x) is currently unused. And its partial and not sufficient for this device in this stage. So lets remove it to make the code clearer and increase the readability. MV88F66XX (ALP): The code referred to by the MV88F66XX define is currently unused. And its not really planned to support this in mainline. So lets remove it to make the code clearer and increase the readability. MV88F78X60_Z1: The code referred to by the MV88F78X60_Z1 define is currently unused. As the Z1 revision of the AXP is not supported in mainline anymore. So lets remove it to make the code clearer and increase the readability. Remove support for Z1 & A0 AXP revisions (steppings). The current stepping is B0 and this is the only one that is actively supported in this code version. Tested on AXP using a SPD DIMM setup on the Marvell DB-MV784MP-GP board and on a custom fixed DDR configuration board (maxbcm). Note: This code has undergone many hours of coding-style cleanup and refactoring. It still is not checkpatch clean though, I'm afraid. As the factoring of the code has so many levels of indentation that many lines are longer than 80 chars. This might be some task to tackly later on. Signed-off-by: Stefan Roese <sr@denx.de> Reviewed-by: Luka Perkov <luka.perkov@sartura.hr>
2015-01-19 10:33:40 +00:00
#define BUS_WIDTH_ECC_TWSI_ADDR 0x4E
#else
#define BUS_WIDTH_ECC_TWSI_ADDR 0x4F
#endif
#define MV_MAX_DDR3_STATIC_SIZE 50
#define MV_DDR3_MODES_NUMBER 30
#define RESUME_RL_PATTERNS_ADDR (0xFE0000)
#define RESUME_RL_PATTERNS_SIZE (0x100)
#define RESUME_TRAINING_VALUES_ADDR (RESUME_RL_PATTERNS_ADDR + RESUME_RL_PATTERNS_SIZE)
#define RESUME_TRAINING_VALUES_MAX (0xCD0)
#define BOOT_INFO_ADDR (RESUME_RL_PATTERNS_ADDR + 0x1000)
#define CHECKSUM_RESULT_ADDR (BOOT_INFO_ADDR + 0x1000)
#define NUM_OF_REGISTER_ADDR (CHECKSUM_RESULT_ADDR + 4)
#define SUSPEND_MAGIC_WORD (0xDEADB002)
#define REGISTER_LIST_END (0xFFFFFFFF)
/*
* Registers offset
*/
#define REG_SAMPLE_RESET_LOW_ADDR 0x18230
#define REG_SAMPLE_RESET_HIGH_ADDR 0x18234
#define REG_SAMPLE_RESET_CPU_FREQ_OFFS 21
#define REG_SAMPLE_RESET_CPU_FREQ_MASK 0x00E00000
#define REG_SAMPLE_RESET_FAB_OFFS 24
#define REG_SAMPLE_RESET_FAB_MASK 0xF000000
#define REG_SAMPLE_RESET_TCLK_OFFS 28
#define REG_SAMPLE_RESET_CPU_ARCH_OFFS 31
#define REG_SAMPLE_RESET_HIGH_CPU_FREQ_OFFS 20
/* MISC */
/*
* In mainline U-Boot we're re-configuring the mvebu base address
* register to 0xf1000000. So need to use this value for the DDR
* training code as well.
*/
#define INTER_REGS_BASE SOC_REGS_PHY_BASE
/* DDR */
#define REG_SDRAM_CONFIG_ADDR 0x1400
#define REG_SDRAM_CONFIG_MASK 0x9FFFFFFF
#define REG_SDRAM_CONFIG_RFRS_MASK 0x3FFF
#define REG_SDRAM_CONFIG_WIDTH_OFFS 15
#define REG_SDRAM_CONFIG_REGDIMM_OFFS 17
#define REG_SDRAM_CONFIG_ECC_OFFS 18
#define REG_SDRAM_CONFIG_IERR_OFFS 19
#define REG_SDRAM_CONFIG_PUPRSTDIV_OFFS 28
#define REG_SDRAM_CONFIG_RSTRD_OFFS 30
#define REG_DUNIT_CTRL_LOW_ADDR 0x1404
#define REG_DUNIT_CTRL_LOW_2T_OFFS 3
#define REG_DUNIT_CTRL_LOW_2T_MASK 0x3
#define REG_DUNIT_CTRL_LOW_DPDE_OFFS 14
#define REG_SDRAM_TIMING_LOW_ADDR 0x1408
#define REG_SDRAM_TIMING_HIGH_ADDR 0x140C
#define REG_SDRAM_TIMING_H_R2R_OFFS 7
#define REG_SDRAM_TIMING_H_R2R_MASK 0x3
#define REG_SDRAM_TIMING_H_R2W_W2R_OFFS 9
#define REG_SDRAM_TIMING_H_R2W_W2R_MASK 0x3
#define REG_SDRAM_TIMING_H_W2W_OFFS 11
#define REG_SDRAM_TIMING_H_W2W_MASK 0x1F
#define REG_SDRAM_TIMING_H_R2R_H_OFFS 19
#define REG_SDRAM_TIMING_H_R2R_H_MASK 0x7
#define REG_SDRAM_TIMING_H_R2W_W2R_H_OFFS 22
#define REG_SDRAM_TIMING_H_R2W_W2R_H_MASK 0x7
#define REG_SDRAM_ADDRESS_CTRL_ADDR 0x1410
#define REG_SDRAM_ADDRESS_SIZE_OFFS 2
#define REG_SDRAM_ADDRESS_SIZE_HIGH_OFFS 18
#define REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS 4
#define REG_SDRAM_OPEN_PAGES_ADDR 0x1414
#define REG_SDRAM_OPERATION_CS_OFFS 8
#define REG_SDRAM_OPERATION_ADDR 0x1418
#define REG_SDRAM_OPERATION_CWA_DELAY_SEL_OFFS 24
#define REG_SDRAM_OPERATION_CWA_DATA_OFFS 20
#define REG_SDRAM_OPERATION_CWA_DATA_MASK 0xF
#define REG_SDRAM_OPERATION_CWA_RC_OFFS 16
#define REG_SDRAM_OPERATION_CWA_RC_MASK 0xF
#define REG_SDRAM_OPERATION_CMD_MR0 0xF03
#define REG_SDRAM_OPERATION_CMD_MR1 0xF04
#define REG_SDRAM_OPERATION_CMD_MR2 0xF08
#define REG_SDRAM_OPERATION_CMD_MR3 0xF09
#define REG_SDRAM_OPERATION_CMD_RFRS 0xF02
#define REG_SDRAM_OPERATION_CMD_CWA 0xF0E
#define REG_SDRAM_OPERATION_CMD_RFRS_DONE 0xF
#define REG_SDRAM_OPERATION_CMD_MASK 0xF
#define REG_SDRAM_OPERATION_CS_OFFS 8
#define REG_OUDDR3_TIMING_ADDR 0x142C
#define REG_SDRAM_MODE_ADDR 0x141C
#define REG_SDRAM_EXT_MODE_ADDR 0x1420
#define REG_DDR_CONT_HIGH_ADDR 0x1424
#define REG_ODT_TIME_LOW_ADDR 0x1428
#define REG_ODT_ON_CTL_RD_OFFS 12
#define REG_ODT_OFF_CTL_RD_OFFS 16
#define REG_SDRAM_ERROR_ADDR 0x1454
#define REG_SDRAM_AUTO_PWR_SAVE_ADDR 0x1474
#define REG_ODT_TIME_HIGH_ADDR 0x147C
#define REG_SDRAM_INIT_CTRL_ADDR 0x1480
#define REG_SDRAM_INIT_CTRL_OFFS 0
#define REG_SDRAM_INIT_CKE_ASSERT_OFFS 2
#define REG_SDRAM_INIT_RESET_DEASSERT_OFFS 3
#define REG_SDRAM_ODT_CTRL_LOW_ADDR 0x1494
#define REG_SDRAM_ODT_CTRL_HIGH_ADDR 0x1498
/*#define REG_SDRAM_ODT_CTRL_HIGH_OVRD_MASK 0xFFFFFF55 */
#define REG_SDRAM_ODT_CTRL_HIGH_OVRD_MASK 0x0
#define REG_SDRAM_ODT_CTRL_HIGH_OVRD_ENA 0x3
#define REG_DUNIT_ODT_CTRL_ADDR 0x149C
#define REG_DUNIT_ODT_CTRL_OVRD_OFFS 8
#define REG_DUNIT_ODT_CTRL_OVRD_VAL_OFFS 9
#define REG_DRAM_FIFO_CTRL_ADDR 0x14A0
#define REG_DRAM_AXI_CTRL_ADDR 0x14A8
#define REG_DRAM_AXI_CTRL_AXIDATABUSWIDTH_OFFS 0
#define REG_METAL_MASK_ADDR 0x14B0
#define REG_METAL_MASK_MASK 0xDFFFFFFF
#define REG_METAL_MASK_RETRY_OFFS 0
#define REG_DRAM_ADDR_CTRL_DRIVE_STRENGTH_ADDR 0x14C0
#define REG_DRAM_DATA_DQS_DRIVE_STRENGTH_ADDR 0x14C4
#define REG_DRAM_VER_CAL_MACHINE_CTRL_ADDR 0x14c8
#define REG_DRAM_MAIN_PADS_CAL_ADDR 0x14CC
#define REG_DRAM_HOR_CAL_MACHINE_CTRL_ADDR 0x17c8
#define REG_CS_SIZE_SCRATCH_ADDR 0x1504
#define REG_DYNAMIC_POWER_SAVE_ADDR 0x1520
#define REG_DDR_IO_ADDR 0x1524
#define REG_DDR_IO_CLK_RATIO_OFFS 15
#define REG_DFS_ADDR 0x1528
#define REG_DFS_DLLNEXTSTATE_OFFS 0
#define REG_DFS_BLOCK_OFFS 1
#define REG_DFS_SR_OFFS 2
#define REG_DFS_ATSR_OFFS 3
#define REG_DFS_RECONF_OFFS 4
#define REG_DFS_CL_NEXT_STATE_OFFS 8
#define REG_DFS_CL_NEXT_STATE_MASK 0xF
#define REG_DFS_CWL_NEXT_STATE_OFFS 12
#define REG_DFS_CWL_NEXT_STATE_MASK 0x7
#define REG_READ_DATA_SAMPLE_DELAYS_ADDR 0x1538
#define REG_READ_DATA_SAMPLE_DELAYS_MASK 0x1F
#define REG_READ_DATA_SAMPLE_DELAYS_OFFS 8
#define REG_READ_DATA_READY_DELAYS_ADDR 0x153C
#define REG_READ_DATA_READY_DELAYS_MASK 0x1F
#define REG_READ_DATA_READY_DELAYS_OFFS 8
#define START_BURST_IN_ADDR 1
#define REG_DRAM_TRAINING_SHADOW_ADDR 0x18488
#define REG_DRAM_TRAINING_ADDR 0x15B0
#define REG_DRAM_TRAINING_LOW_FREQ_OFFS 0
#define REG_DRAM_TRAINING_PATTERNS_OFFS 4
#define REG_DRAM_TRAINING_MED_FREQ_OFFS 2
#define REG_DRAM_TRAINING_WL_OFFS 3
#define REG_DRAM_TRAINING_RL_OFFS 6
#define REG_DRAM_TRAINING_DQS_RX_OFFS 15
#define REG_DRAM_TRAINING_DQS_TX_OFFS 16
#define REG_DRAM_TRAINING_CS_OFFS 20
#define REG_DRAM_TRAINING_RETEST_OFFS 24
#define REG_DRAM_TRAINING_DFS_FREQ_OFFS 27
#define REG_DRAM_TRAINING_DFS_REQ_OFFS 29
#define REG_DRAM_TRAINING_ERROR_OFFS 30
#define REG_DRAM_TRAINING_AUTO_OFFS 31
#define REG_DRAM_TRAINING_RETEST_PAR 0x3
#define REG_DRAM_TRAINING_RETEST_MASK 0xF8FFFFFF
#define REG_DRAM_TRAINING_CS_MASK 0xFF0FFFFF
#define REG_DRAM_TRAINING_PATTERNS_MASK 0xFF0F0000
#define REG_DRAM_TRAINING_1_ADDR 0x15B4
#define REG_DRAM_TRAINING_1_TRNBPOINT_OFFS 16
#define REG_DRAM_TRAINING_2_ADDR 0x15B8
#define REG_DRAM_TRAINING_2_OVERRUN_OFFS 17
#define REG_DRAM_TRAINING_2_FIFO_RST_OFFS 4
#define REG_DRAM_TRAINING_2_RL_MODE_OFFS 3
#define REG_DRAM_TRAINING_2_WL_MODE_OFFS 2
#define REG_DRAM_TRAINING_2_ECC_MUX_OFFS 1
#define REG_DRAM_TRAINING_2_SW_OVRD_OFFS 0
#define REG_DRAM_TRAINING_PATTERN_BASE_ADDR 0x15BC
#define REG_DRAM_TRAINING_PATTERN_BASE_OFFS 3
#define REG_TRAINING_DEBUG_2_ADDR 0x15C4
#define REG_TRAINING_DEBUG_2_OFFS 16
#define REG_TRAINING_DEBUG_2_MASK 0x3
#define REG_TRAINING_DEBUG_3_ADDR 0x15C8
#define REG_TRAINING_DEBUG_3_OFFS 3
#define REG_TRAINING_DEBUG_3_MASK 0x7
#define MR_CS_ADDR_OFFS 4
#define REG_DDR3_MR0_ADDR 0x15D0
#define REG_DDR3_MR0_CS_ADDR 0x1870
#define REG_DDR3_MR0_CL_MASK 0x74
#define REG_DDR3_MR0_CL_OFFS 2
#define REG_DDR3_MR0_CL_HIGH_OFFS 3
#define CL_MASK 0xF
#define REG_DDR3_MR1_ADDR 0x15D4
#define REG_DDR3_MR1_CS_ADDR 0x1874
#define REG_DDR3_MR1_RTT_MASK 0xFFFFFDBB
#define REG_DDR3_MR1_DLL_ENA_OFFS 0
#define REG_DDR3_MR1_RTT_DISABLED 0x0
#define REG_DDR3_MR1_RTT_RZQ2 0x40
#define REG_DDR3_MR1_RTT_RZQ4 0x2
#define REG_DDR3_MR1_RTT_RZQ6 0x42
#define REG_DDR3_MR1_RTT_RZQ8 0x202
#define REG_DDR3_MR1_RTT_RZQ12 0x4
#define REG_DDR3_MR1_OUTBUF_WL_MASK 0xFFFFEF7F /* WL-disabled,OB-enabled */
#define REG_DDR3_MR1_OUTBUF_DIS_OFFS 12 /* Output Buffer Disabled */
#define REG_DDR3_MR1_WL_ENA_OFFS 7
#define REG_DDR3_MR1_WL_ENA 0x80 /* WL Enabled */
#define REG_DDR3_MR1_ODT_MASK 0xFFFFFDBB
#define REG_DDR3_MR2_ADDR 0x15D8
#define REG_DDR3_MR2_CS_ADDR 0x1878
#define REG_DDR3_MR2_CWL_OFFS 3
#define REG_DDR3_MR2_CWL_MASK 0x7
#define REG_DDR3_MR2_ODT_MASK 0xFFFFF9FF
#define REG_DDR3_MR3_ADDR 0x15DC
#define REG_DDR3_MR3_CS_ADDR 0x187C
#define REG_DDR3_RANK_CTRL_ADDR 0x15E0
#define REG_DDR3_RANK_CTRL_CS_ENA_MASK 0xF
#define REG_DDR3_RANK_CTRL_MIRROR_OFFS 4
#define REG_ZQC_CONF_ADDR 0x15E4
#define REG_DRAM_PHY_CONFIG_ADDR 0x15EC
#define REG_DRAM_PHY_CONFIG_MASK 0x3FFFFFFF
#define REG_ODPG_CNTRL_ADDR 0x1600
#define REG_ODPG_CNTRL_OFFS 21
#define REG_PHY_LOCK_MASK_ADDR 0x1670
#define REG_PHY_LOCK_MASK_MASK 0xFFFFF000
#define REG_PHY_LOCK_STATUS_ADDR 0x1674
#define REG_PHY_LOCK_STATUS_LOCK_OFFS 9
#define REG_PHY_LOCK_STATUS_LOCK_MASK 0xFFF
#define REG_PHY_LOCK_APLL_ADLL_STATUS_MASK 0x7FF
#define REG_PHY_REGISTRY_FILE_ACCESS_ADDR 0x16A0
#define REG_PHY_REGISTRY_FILE_ACCESS_OP_WR 0xC0000000
#define REG_PHY_REGISTRY_FILE_ACCESS_OP_RD 0x80000000
#define REG_PHY_REGISTRY_FILE_ACCESS_OP_DONE 0x80000000
#define REG_PHY_BC_OFFS 27
#define REG_PHY_CNTRL_OFFS 26
#define REG_PHY_CS_OFFS 16
#define REG_PHY_DQS_REF_DLY_OFFS 10
#define REG_PHY_PHASE_OFFS 8
#define REG_PHY_PUP_OFFS 22
#define REG_TRAINING_WL_ADDR 0x16AC
#define REG_TRAINING_WL_CS_MASK 0xFFFFFFFC
#define REG_TRAINING_WL_UPD_OFFS 2
#define REG_TRAINING_WL_CS_DONE_OFFS 3
#define REG_TRAINING_WL_RATIO_MASK 0xFFFFFF0F
#define REG_TRAINING_WL_1TO1 0x50
#define REG_TRAINING_WL_2TO1 0x10
#define REG_TRAINING_WL_DELAYEXP_MASK 0x20000000
#define REG_TRAINING_WL_RESULTS_MASK 0x000001FF
#define REG_TRAINING_WL_RESULTS_OFFS 20
#define REG_REGISTERED_DRAM_CTRL_ADDR 0x16D0
#define REG_REGISTERED_DRAM_CTRL_SR_FLOAT_OFFS 15
#define REG_REGISTERED_DRAM_CTRL_PARITY_MASK 0x3F
/* DLB*/
#define REG_STATIC_DRAM_DLB_CONTROL 0x1700
#define DLB_BUS_OPTIMIZATION_WEIGHTS_REG 0x1704
#define DLB_AGING_REGISTER 0x1708
#define DLB_EVICTION_CONTROL_REG 0x170c
#define DLB_EVICTION_TIMERS_REGISTER_REG 0x1710
#define DLB_ENABLE 0x1
#define DLB_WRITE_COALESING (0x1 << 2)
#define DLB_AXI_PREFETCH_EN (0x1 << 3)
#define DLB_MBUS_PREFETCH_EN (0x1 << 4)
#define PREFETCH_NLNSZTR (0x1 << 6)
/* CPU */
#define REG_BOOTROM_ROUTINE_ADDR 0x182D0
#define REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS 12
#define REG_DRAM_INIT_CTRL_STATUS_ADDR 0x18488
#define REG_DRAM_INIT_CTRL_TRN_CLK_OFFS 16
#define REG_CPU_DIV_CLK_CTRL_0_NEW_RATIO 0x000200FF
#define REG_DRAM_INIT_CTRL_STATUS_2_ADDR 0x1488
#define REG_CPU_DIV_CLK_CTRL_0_ADDR 0x18700
#define REG_CPU_DIV_CLK_CTRL_1_ADDR 0x18704
#define REG_CPU_DIV_CLK_CTRL_2_ADDR 0x18708
#define REG_CPU_DIV_CLK_CTRL_3_ADDR 0x1870C
#define REG_CPU_DIV_CLK_CTRL_3_FREQ_MASK 0xFFFFC0FF
#define REG_CPU_DIV_CLK_CTRL_3_FREQ_OFFS 8
#define REG_CPU_DIV_CLK_CTRL_4_ADDR 0x18710
#define REG_CPU_DIV_CLK_STATUS_0_ADDR 0x18718
#define REG_CPU_DIV_CLK_ALL_STABLE_OFFS 8
#define REG_CPU_PLL_CTRL_0_ADDR 0x1871C
#define REG_CPU_PLL_STATUS_0_ADDR 0x18724
#define REG_CORE_DIV_CLK_CTRL_ADDR 0x18740
#define REG_CORE_DIV_CLK_STATUS_ADDR 0x18744
#define REG_DDRPHY_APLL_CTRL_ADDR 0x18780
#define REG_DDRPHY_APLL_CTRL_2_ADDR 0x18784
#define REG_SFABRIC_CLK_CTRL_ADDR 0x20858
#define REG_SFABRIC_CLK_CTRL_SMPL_OFFS 8
/* DRAM Windows */
#define REG_XBAR_WIN_19_CTRL_ADDR 0x200e8
#define REG_XBAR_WIN_4_CTRL_ADDR 0x20040
#define REG_XBAR_WIN_4_BASE_ADDR 0x20044
#define REG_XBAR_WIN_4_REMAP_ADDR 0x20048
#define REG_FASTPATH_WIN_0_CTRL_ADDR 0x20184
#define REG_XBAR_WIN_7_REMAP_ADDR 0x20078
/* SRAM */
#define REG_CDI_CONFIG_ADDR 0x20220
#define REG_SRAM_WINDOW_0_ADDR 0x20240
#define REG_SRAM_WINDOW_0_ENA_OFFS 0
#define REG_SRAM_WINDOW_1_ADDR 0x20244
#define REG_SRAM_L2_ENA_ADDR 0x8500
#define REG_SRAM_CLEAN_BY_WAY_ADDR 0x87BC
/* PMU */
#define REG_PMU_I_F_CTRL_ADDR 0x1C090
#define REG_PMU_DUNIT_BLK_OFFS 16
#define REG_PMU_DUNIT_RFRS_OFFS 20
#define REG_PMU_DUNIT_ACK_OFFS 24
/* MBUS*/
#define MBUS_UNITS_PRIORITY_CONTROL_REG (MV_MBUS_REGS_OFFSET + 0x420)
#define FABRIC_UNITS_PRIORITY_CONTROL_REG (MV_MBUS_REGS_OFFSET + 0x424)
#define MBUS_UNITS_PREFETCH_CONTROL_REG (MV_MBUS_REGS_OFFSET + 0x428)
#define FABRIC_UNITS_PREFETCH_CONTROL_REG (MV_MBUS_REGS_OFFSET + 0x42c)
#define REG_PM_STAT_MASK_ADDR 0x2210C
#define REG_PM_STAT_MASK_CPU0_IDLE_MASK_OFFS 16
#define REG_PM_EVENT_STAT_MASK_ADDR 0x22120
#define REG_PM_EVENT_STAT_MASK_DFS_DONE_OFFS 17
#define REG_PM_CTRL_CONFIG_ADDR 0x22104
#define REG_PM_CTRL_CONFIG_DFS_REQ_OFFS 18
#define REG_FABRIC_LOCAL_IRQ_MASK_ADDR 0x218C4
#define REG_FABRIC_LOCAL_IRQ_PMU_MASK_OFFS 18
/* Controller revision info */
#define PCI_CLASS_CODE_AND_REVISION_ID 0x008
#define PCCRIR_REVID_OFFS 0 /* Revision ID */
#define PCCRIR_REVID_MASK (0xff << PCCRIR_REVID_OFFS)
/* Power Management Clock Gating Control Register */
#define MV_PEX_IF_REGS_OFFSET(if) \
(if < 8 ? (0x40000 + ((if) / 4) * 0x40000 + ((if) % 4) * 0x4000) \
: (0x42000 + ((if) % 8) * 0x40000))
#define MV_PEX_IF_REGS_BASE(unit) (MV_PEX_IF_REGS_OFFSET(unit))
#define POWER_MNG_CTRL_REG 0x18220
#define PEX_DEVICE_AND_VENDOR_ID 0x000
#define PEX_CFG_DIRECT_ACCESS(if, reg) (MV_PEX_IF_REGS_BASE(if) + (reg))
#define PMC_PEXSTOPCLOCK_OFFS(port) ((port) < 8 ? (5 + (port)) : (18 + (port)))
#define PMC_PEXSTOPCLOCK_MASK(port) (1 << PMC_PEXSTOPCLOCK_OFFS(port))
#define PMC_PEXSTOPCLOCK_EN(port) (1 << PMC_PEXSTOPCLOCK_OFFS(port))
#define PMC_PEXSTOPCLOCK_STOP(port) (0 << PMC_PEXSTOPCLOCK_OFFS(port))
/* TWSI */
#define TWSI_DATA_ADDR_MASK 0x7
#define TWSI_DATA_ADDR_OFFS 1
/* General */
#define MAX_CS 4
/* Frequencies */
#define FAB_OPT 21
#define CLK_CPU 12
#define CLK_VCO (2 * CLK_CPU)
#define CLK_DDR 12
/* Cpu Frequencies: */
#define CLK_CPU_1000 0
#define CLK_CPU_1066 1
#define CLK_CPU_1200 2
#define CLK_CPU_1333 3
#define CLK_CPU_1500 4
#define CLK_CPU_1666 5
#define CLK_CPU_1800 6
#define CLK_CPU_2000 7
#define CLK_CPU_600 8
#define CLK_CPU_667 9
#define CLK_CPU_800 0xa
/* Extra Cpu Frequencies: */
#define CLK_CPU_1600 11
#define CLK_CPU_2133 12
#define CLK_CPU_2200 13
#define CLK_CPU_2400 14
/* DDR3 Frequencies: */
#define DDR_100 0
#define DDR_300 1
#define DDR_333 1
#define DDR_360 2
#define DDR_400 3
#define DDR_444 4
#define DDR_500 5
#define DDR_533 6
#define DDR_600 7
#define DDR_640 8
#define DDR_666 8
#define DDR_720 9
#define DDR_750 9
#define DDR_800 10
#define DDR_833 11
#define DDR_HCLK 20
#define DDR_S 12
#define DDR_S_1TO1 13
#define MARGIN_FREQ DDR_400
#define DFS_MARGIN DDR_100
#define ODT_OPT 16
#define ODT20 0x200
#define ODT30 0x204
#define ODT40 0x44
#define ODT120 0x40
#define ODT120D 0x400
#define MRS_DELAY 100
#define SDRAM_WL_SW_OFFS 0x100
#define SDRAM_RL_OFFS 0x0
#define SDRAM_PBS_I_OFFS 0x140
#define SDRAM_PBS_II_OFFS 0x180
#define SDRAM_PBS_NEXT_OFFS (SDRAM_PBS_II_OFFS - SDRAM_PBS_I_OFFS)
#define SDRAM_PBS_TX_OFFS 0x180
#define SDRAM_PBS_TX_DM_OFFS 576
#define SDRAM_DQS_RX_OFFS 1024
#define SDRAM_DQS_TX_OFFS 2048
#define SDRAM_DQS_RX_SPECIAL_OFFS 5120
#define LEN_STD_PATTERN 16
#define LEN_KILLER_PATTERN 128
#define LEN_SPECIAL_PATTERN 128
#define LEN_PBS_PATTERN 16
#endif /* __DDR3_AXP_H */