u-boot/drivers/net/mscc_eswitch/luton_switch.c

743 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Copyright (c) 2019 Microsemi Corporation
*/
#include <common.h>
#include <config.h>
#include <dm.h>
#include <malloc.h>
#include <dm/of_access.h>
#include <dm/of_addr.h>
#include <fdt_support.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <miiphy.h>
#include <net.h>
#include <wait_bit.h>
#include "mscc_xfer.h"
#include "mscc_mac_table.h"
#include "mscc_miim.h"
#define ANA_PORT_VLAN_CFG(x) (0x00 + 0x80 * (x))
#define ANA_PORT_VLAN_CFG_AWARE_ENA BIT(20)
#define ANA_PORT_VLAN_CFG_POP_CNT(x) ((x) << 18)
#define ANA_PORT_CPU_FWD_CFG(x) (0x50 + 0x80 * (x))
#define ANA_PORT_CPU_FWD_CFG_SRC_COPY_ENA BIT(1)
#define ANA_PORT_PORT_CFG(x) (0x60 + 0x80 * (x))
#define ANA_PORT_PORT_CFG_RECV_ENA BIT(5)
#define ANA_PGID(x) (0x1000 + 4 * (x))
#define SYS_FRM_AGING 0x8300
#define SYS_SYSTEM_RST_CFG 0x81b0
#define SYS_SYSTEM_RST_MEM_INIT BIT(0)
#define SYS_SYSTEM_RST_MEM_ENA BIT(1)
#define SYS_SYSTEM_RST_CORE_ENA BIT(2)
#define SYS_PORT_MODE(x) (0x81bc + 0x4 * (x))
#define SYS_PORT_MODE_INCL_INJ_HDR BIT(0)
#define SYS_SWITCH_PORT_MODE(x) (0x8294 + 0x4 * (x))
#define SYS_SWITCH_PORT_MODE_PORT_ENA BIT(3)
#define SYS_EGR_NO_SHARING 0x8378
#define SYS_SCH_CPU 0x85a0
#define REW_PORT_CFG(x) (0x8 + 0x80 * (x))
#define REW_PORT_CFG_IFH_INSERT_ENA BIT(7)
#define GCB_DEVCPU_RST_SOFT_CHIP_RST 0x90
#define GCB_DEVCPU_RST_SOFT_CHIP_RST_SOFT_PHY BIT(1)
#define GCB_MISC_STAT 0x11c
#define GCB_MISC_STAT_PHY_READY BIT(3)
#define QS_XTR_MAP(x) (0x10 + 4 * (x))
#define QS_XTR_MAP_GRP BIT(4)
#define QS_XTR_MAP_ENA BIT(0)
#define HSIO_PLL5G_CFG_PLL5G_CFG2 0x8
#define HSIO_RCOMP_CFG_CFG0 0x20
#define HSIO_RCOMP_CFG_CFG0_MODE_SEL(x) ((x) << 8)
#define HSIO_RCOMP_CFG_CFG0_RUN_CAL BIT(12)
#define HSIO_RCOMP_STATUS 0x24
#define HSIO_RCOMP_STATUS_BUSY BIT(12)
#define HSIO_RCOMP_STATUS_RCOMP_M GENMASK(3, 0)
#define HSIO_SERDES6G_ANA_CFG_DES_CFG 0x64
#define HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_ANA(x) ((x) << 1)
#define HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_HYST(x) ((x) << 5)
#define HSIO_SERDES6G_ANA_CFG_DES_CFG_MBTR_CTRL(x) ((x) << 10)
#define HSIO_SERDES6G_ANA_CFG_DES_CFG_PHS_CTRL(x) ((x) << 13)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG 0x68
#define HSIO_SERDES6G_ANA_CFG_IB_CFG_RESISTOR_CTRL(x) (x)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG_VBCOM(x) ((x) << 4)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG_VBAC(x) ((x) << 7)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG_RT(x) ((x) << 9)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG_RF(x) ((x) << 14)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1 0x6c
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST BIT(0)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSDC BIT(2)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSAC BIT(3)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ANEG_MODE BIT(6)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_CHF BIT(7)
#define HSIO_SERDES6G_ANA_CFG_IB_CFG1_C(x) ((x) << 8)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG 0x70
#define HSIO_SERDES6G_ANA_CFG_OB_CFG_SR(x) ((x) << 4)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG_SR_H BIT(8)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG_POST0(x) ((x) << 23)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG_POL BIT(29)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG_ENA1V_MODE BIT(30)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG1 0x74
#define HSIO_SERDES6G_ANA_CFG_OB_CFG1_LEV(x) (x)
#define HSIO_SERDES6G_ANA_CFG_OB_CFG1_ENA_CAS(x) ((x) << 6)
#define HSIO_SERDES6G_ANA_CFG_COMMON_CFG 0x7c
#define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_IF_MODE(x) (x)
#define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_ENA_LANE BIT(18)
#define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_SYS_RST BIT(31)
#define HSIO_SERDES6G_ANA_CFG_PLL_CFG 0x80
#define HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_ENA BIT(7)
#define HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_CTRL_DATA(x) ((x) << 8)
#define HSIO_SERDES6G_ANA_CFG_SER_CFG 0x84
#define HSIO_SERDES6G_DIG_CFG_MISC_CFG 0x88
#define HSIO_SERDES6G_DIG_CFG_MISC_CFG_LANE_RST BIT(0)
#define HSIO_MCB_SERDES6G_CFG 0xac
#define HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT BIT(31)
#define HSIO_MCB_SERDES6G_CFG_ADDR(x) (x)
#define DEV_GMII_PORT_MODE_CLK 0x0
#define DEV_GMII_PORT_MODE_CLK_PHY_RST BIT(0)
#define DEV_GMII_MAC_CFG_MAC_ENA 0xc
#define DEV_GMII_MAC_CFG_MAC_ENA_RX_ENA BIT(4)
#define DEV_GMII_MAC_CFG_MAC_ENA_TX_ENA BIT(0)
#define DEV_PORT_MODE_CLK 0x4
#define DEV_PORT_MODE_CLK_PHY_RST BIT(2)
#define DEV_PORT_MODE_CLK_LINK_SPEED_1000 1
#define DEV_MAC_CFG_MAC_ENA 0x10
#define DEV_MAC_CFG_MAC_ENA_RX_ENA BIT(4)
#define DEV_MAC_CFG_MAC_ENA_TX_ENA BIT(0)
#define DEV_MAC_CFG_MAC_IFG 0x24
#define DEV_MAC_CFG_MAC_IFG_TX_IFG(x) ((x) << 8)
#define DEV_MAC_CFG_MAC_IFG_RX_IFG2(x) ((x) << 4)
#define DEV_MAC_CFG_MAC_IFG_RX_IFG1(x) (x)
#define DEV_PCS1G_CFG_PCS1G_CFG 0x40
#define DEV_PCS1G_CFG_PCS1G_CFG_PCS_ENA BIT(0)
#define DEV_PCS1G_CFG_PCS1G_MODE 0x44
#define DEV_PCS1G_CFG_PCS1G_SD 0x48
#define DEV_PCS1G_CFG_PCS1G_ANEG 0x4c
#define DEV_PCS1G_CFG_PCS1G_ANEG_ADV_ABILITY(x) ((x) << 16)
#define IFH_INJ_BYPASS BIT(31)
#define IFH_TAG_TYPE_C 0
#define MAC_VID 1
#define CPU_PORT 26
#define INTERNAL_PORT_MSK 0xFFFFFF
#define IFH_LEN 2
#define ETH_ALEN 6
#define PGID_BROADCAST 28
#define PGID_UNICAST 29
#define PGID_SRC 80
static const char * const regs_names[] = {
"port0", "port1", "port2", "port3", "port4", "port5", "port6", "port7",
"port8", "port9", "port10", "port11", "port12", "port13", "port14",
"port15", "port16", "port17", "port18", "port19", "port20", "port21",
"port22", "port23",
"sys", "ana", "rew", "gcb", "qs", "hsio",
};
#define REGS_NAMES_COUNT ARRAY_SIZE(regs_names) + 1
#define MAX_PORT 24
enum luton_ctrl_regs {
SYS = MAX_PORT,
ANA,
REW,
GCB,
QS,
HSIO
};
#define MIN_INT_PORT 0
#define PORT10 10
#define PORT11 11
#define MAX_INT_PORT 12
#define MIN_EXT_PORT MAX_INT_PORT
#define MAX_EXT_PORT MAX_PORT
#define LUTON_MIIM_BUS_COUNT 2
struct luton_phy_port_t {
size_t phy_addr;
struct mii_dev *bus;
u8 serdes_index;
u8 phy_mode;
};
struct luton_private {
void __iomem *regs[REGS_NAMES_COUNT];
struct mii_dev *bus[LUTON_MIIM_BUS_COUNT];
struct luton_phy_port_t ports[MAX_PORT];
};
static const unsigned long luton_regs_qs[] = {
[MSCC_QS_XTR_RD] = 0x18,
[MSCC_QS_XTR_FLUSH] = 0x28,
[MSCC_QS_XTR_DATA_PRESENT] = 0x2c,
[MSCC_QS_INJ_WR] = 0x3c,
[MSCC_QS_INJ_CTRL] = 0x44,
};
static const unsigned long luton_regs_ana_table[] = {
[MSCC_ANA_TABLES_MACHDATA] = 0x11b0,
[MSCC_ANA_TABLES_MACLDATA] = 0x11b4,
[MSCC_ANA_TABLES_MACACCESS] = 0x11b8,
};
static struct mscc_miim_dev miim[LUTON_MIIM_BUS_COUNT];
static int miim_count = -1;
static void luton_stop(struct udevice *dev)
{
struct luton_private *priv = dev_get_priv(dev);
/*
* Switch core only reset affects VCORE-III bus and MIPS frequency
* and thereby also the DDR SDRAM controller. The workaround is to
* not to redirect any trafic to the CPU after the data transfer.
*/
writel(GENMASK(9, 2), priv->regs[SYS] + SYS_SCH_CPU);
}
static void luton_cpu_capture_setup(struct luton_private *priv)
{
int i;
/* map the 8 CPU extraction queues to CPU port 26 */
writel(0x0, priv->regs[SYS] + SYS_SCH_CPU);
for (i = 0; i <= 1; i++) {
/*
* One to one mapping from CPU Queue number to Group extraction
* number
*/
writel(QS_XTR_MAP_ENA | (QS_XTR_MAP_GRP * i),
priv->regs[QS] + QS_XTR_MAP(i));
/* Enable IFH insertion/parsing on CPU ports */
setbits_le32(priv->regs[REW] + REW_PORT_CFG(CPU_PORT + i),
REW_PORT_CFG_IFH_INSERT_ENA);
/* Enable IFH parsing on CPU port 0 and 1 */
setbits_le32(priv->regs[SYS] + SYS_PORT_MODE(CPU_PORT + i),
SYS_PORT_MODE_INCL_INJ_HDR);
}
/* Make VLAN aware for CPU traffic */
writel(ANA_PORT_VLAN_CFG_AWARE_ENA |
ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID,
priv->regs[ANA] + ANA_PORT_VLAN_CFG(CPU_PORT));
/* Disable learning (only RECV_ENA must be set) */
writel(ANA_PORT_PORT_CFG_RECV_ENA,
priv->regs[ANA] + ANA_PORT_PORT_CFG(CPU_PORT));
/* Enable switching to/from cpu port */
setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(CPU_PORT),
SYS_SWITCH_PORT_MODE_PORT_ENA);
setbits_le32(priv->regs[SYS] + SYS_EGR_NO_SHARING, BIT(CPU_PORT));
}
static void luton_gmii_port_init(struct luton_private *priv, int port)
{
void __iomem *regs = priv->regs[port];
writel(0, regs + DEV_GMII_PORT_MODE_CLK);
/* Enable MAC RX and TX */
writel(DEV_GMII_MAC_CFG_MAC_ENA_RX_ENA |
DEV_GMII_MAC_CFG_MAC_ENA_TX_ENA,
regs + DEV_GMII_MAC_CFG_MAC_ENA);
/* Make VLAN aware for CPU traffic */
writel(ANA_PORT_VLAN_CFG_AWARE_ENA |
ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID,
priv->regs[ANA] + ANA_PORT_VLAN_CFG(port));
/* Enable switching to/from port */
setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port),
SYS_SWITCH_PORT_MODE_PORT_ENA);
}
static void luton_port_init(struct luton_private *priv, int port)
{
void __iomem *regs = priv->regs[port];
writel(0, regs + DEV_PORT_MODE_CLK);
/* Enable MAC RX and TX */
writel(DEV_MAC_CFG_MAC_ENA_RX_ENA |
DEV_MAC_CFG_MAC_ENA_TX_ENA,
regs + DEV_MAC_CFG_MAC_ENA);
/* Make VLAN aware for CPU traffic */
writel(ANA_PORT_VLAN_CFG_AWARE_ENA |
ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID,
priv->regs[ANA] + ANA_PORT_VLAN_CFG(port));
/* Enable switching to/from port */
setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port),
SYS_SWITCH_PORT_MODE_PORT_ENA);
}
static void luton_ext_port_init(struct luton_private *priv, int port)
{
void __iomem *regs = priv->regs[port];
/* Enable PCS */
writel(DEV_PCS1G_CFG_PCS1G_CFG_PCS_ENA,
regs + DEV_PCS1G_CFG_PCS1G_CFG);
/* Disable Signal Detect */
writel(0, regs + DEV_PCS1G_CFG_PCS1G_SD);
/* Enable MAC RX and TX */
writel(DEV_MAC_CFG_MAC_ENA_RX_ENA |
DEV_MAC_CFG_MAC_ENA_TX_ENA,
regs + DEV_MAC_CFG_MAC_ENA);
/* Clear sgmii_mode_ena */
writel(0, regs + DEV_PCS1G_CFG_PCS1G_MODE);
/*
* Clear sw_resolve_ena(bit 0) and set adv_ability to
* something meaningful just in case
*/
writel(DEV_PCS1G_CFG_PCS1G_ANEG_ADV_ABILITY(0x20),
regs + DEV_PCS1G_CFG_PCS1G_ANEG);
/* Set MAC IFG Gaps */
writel(DEV_MAC_CFG_MAC_IFG_TX_IFG(7) |
DEV_MAC_CFG_MAC_IFG_RX_IFG1(1) |
DEV_MAC_CFG_MAC_IFG_RX_IFG2(5),
regs + DEV_MAC_CFG_MAC_IFG);
/* Set link speed and release all resets */
writel(DEV_PORT_MODE_CLK_LINK_SPEED_1000,
regs + DEV_PORT_MODE_CLK);
/* Make VLAN aware for CPU traffic */
writel(ANA_PORT_VLAN_CFG_AWARE_ENA |
ANA_PORT_VLAN_CFG_POP_CNT(1) |
MAC_VID,
priv->regs[ANA] + ANA_PORT_VLAN_CFG(port));
/* Enable switching to/from port */
setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port),
SYS_SWITCH_PORT_MODE_PORT_ENA);
}
static void serdes6g_write(void __iomem *base, u32 addr)
{
u32 data;
writel(HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT |
HSIO_MCB_SERDES6G_CFG_ADDR(addr),
base + HSIO_MCB_SERDES6G_CFG);
do {
data = readl(base + HSIO_MCB_SERDES6G_CFG);
} while (data & HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT);
}
static void serdes6g_setup(void __iomem *base, uint32_t addr,
phy_interface_t interface)
{
writel(HSIO_RCOMP_CFG_CFG0_MODE_SEL(0x3) |
HSIO_RCOMP_CFG_CFG0_RUN_CAL,
base + HSIO_RCOMP_CFG_CFG0);
while (readl(base + HSIO_RCOMP_STATUS) &
HSIO_RCOMP_STATUS_BUSY)
;
writel(HSIO_SERDES6G_ANA_CFG_OB_CFG_SR(0xb) |
HSIO_SERDES6G_ANA_CFG_OB_CFG_SR_H |
HSIO_SERDES6G_ANA_CFG_OB_CFG_POST0(0x10) |
HSIO_SERDES6G_ANA_CFG_OB_CFG_POL |
HSIO_SERDES6G_ANA_CFG_OB_CFG_ENA1V_MODE,
base + HSIO_SERDES6G_ANA_CFG_OB_CFG);
writel(HSIO_SERDES6G_ANA_CFG_OB_CFG1_LEV(0x18) |
HSIO_SERDES6G_ANA_CFG_OB_CFG1_ENA_CAS(0x1),
base + HSIO_SERDES6G_ANA_CFG_OB_CFG1);
writel(HSIO_SERDES6G_ANA_CFG_IB_CFG_RESISTOR_CTRL(0xc) |
HSIO_SERDES6G_ANA_CFG_IB_CFG_VBCOM(0x4) |
HSIO_SERDES6G_ANA_CFG_IB_CFG_VBAC(0x5) |
HSIO_SERDES6G_ANA_CFG_IB_CFG_RT(0xf) |
HSIO_SERDES6G_ANA_CFG_IB_CFG_RF(0x4),
base + HSIO_SERDES6G_ANA_CFG_IB_CFG);
writel(HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST |
HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSDC |
HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSAC |
HSIO_SERDES6G_ANA_CFG_IB_CFG1_ANEG_MODE |
HSIO_SERDES6G_ANA_CFG_IB_CFG1_CHF |
HSIO_SERDES6G_ANA_CFG_IB_CFG1_C(0x4),
base + HSIO_SERDES6G_ANA_CFG_IB_CFG1);
writel(HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_ANA(0x5) |
HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_HYST(0x5) |
HSIO_SERDES6G_ANA_CFG_DES_CFG_MBTR_CTRL(0x2) |
HSIO_SERDES6G_ANA_CFG_DES_CFG_PHS_CTRL(0x6),
base + HSIO_SERDES6G_ANA_CFG_DES_CFG);
writel(HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_ENA |
HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_CTRL_DATA(0x78),
base + HSIO_SERDES6G_ANA_CFG_PLL_CFG);
writel(HSIO_SERDES6G_ANA_CFG_COMMON_CFG_IF_MODE(0x30) |
HSIO_SERDES6G_ANA_CFG_COMMON_CFG_ENA_LANE,
base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG);
/*
* There are 4 serdes6g, configure all except serdes6g0, therefore
* the address is b1110
*/
serdes6g_write(base, addr);
writel(readl(base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG) |
HSIO_SERDES6G_ANA_CFG_COMMON_CFG_SYS_RST,
base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG);
serdes6g_write(base, addr);
clrbits_le32(base + HSIO_SERDES6G_ANA_CFG_IB_CFG1,
HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST);
writel(HSIO_SERDES6G_DIG_CFG_MISC_CFG_LANE_RST,
base + HSIO_SERDES6G_DIG_CFG_MISC_CFG);
serdes6g_write(base, addr);
}
static void serdes_setup(struct luton_private *priv)
{
size_t mask;
int i = 0;
for (i = 0; i < MAX_PORT; ++i) {
if (!priv->ports[i].bus || priv->ports[i].serdes_index == 0xff)
continue;
mask = BIT(priv->ports[i].serdes_index);
serdes6g_setup(priv->regs[HSIO], mask, priv->ports[i].phy_mode);
}
}
static int luton_switch_init(struct luton_private *priv)
{
setbits_le32(priv->regs[HSIO] + HSIO_PLL5G_CFG_PLL5G_CFG2, BIT(1));
clrbits_le32(priv->regs[HSIO] + HSIO_PLL5G_CFG_PLL5G_CFG2, BIT(1));
/* Reset switch & memories */
writel(SYS_SYSTEM_RST_MEM_ENA | SYS_SYSTEM_RST_MEM_INIT,
priv->regs[SYS] + SYS_SYSTEM_RST_CFG);
/* Wait to complete */
if (wait_for_bit_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
SYS_SYSTEM_RST_MEM_INIT, false, 2000, false)) {
printf("Timeout in memory reset\n");
}
/* Enable switch core */
setbits_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG,
SYS_SYSTEM_RST_CORE_ENA);
/* Setup the Serdes macros */
serdes_setup(priv);
return 0;
}
static int luton_initialize(struct luton_private *priv)
{
int ret, i;
/* Initialize switch memories, enable core */
ret = luton_switch_init(priv);
if (ret)
return ret;
/*
* Disable port-to-port by switching
* Put front ports in "port isolation modes" - i.e. they can't send
* to other ports - via the PGID sorce masks.
*/
for (i = 0; i < MAX_PORT; i++)
writel(0, priv->regs[ANA] + ANA_PGID(PGID_SRC + i));
/* Flush queues */
mscc_flush(priv->regs[QS], luton_regs_qs);
/* Setup frame ageing - "2 sec" - The unit is 4ns on Luton*/
writel(2000000000 / 4,
priv->regs[SYS] + SYS_FRM_AGING);
for (i = 0; i < MAX_PORT; i++) {
if (i < PORT10)
luton_gmii_port_init(priv, i);
else
if (i == PORT10 || i == PORT11)
luton_port_init(priv, i);
else
luton_ext_port_init(priv, i);
}
luton_cpu_capture_setup(priv);
return 0;
}
static int luton_write_hwaddr(struct udevice *dev)
{
struct luton_private *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table,
pdata->enetaddr, PGID_UNICAST);
writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
return 0;
}
static int luton_start(struct udevice *dev)
{
struct luton_private *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
const unsigned char mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff,
0xff };
int ret;
ret = luton_initialize(priv);
if (ret)
return ret;
/* Set MAC address tables entries for CPU redirection */
mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table,
mac, PGID_BROADCAST);
writel(BIT(CPU_PORT) | INTERNAL_PORT_MSK,
priv->regs[ANA] + ANA_PGID(PGID_BROADCAST));
mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table,
pdata->enetaddr, PGID_UNICAST);
writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST));
return 0;
}
static int luton_send(struct udevice *dev, void *packet, int length)
{
struct luton_private *priv = dev_get_priv(dev);
u32 ifh[IFH_LEN];
int port = BIT(0); /* use port 0 */
u32 *buf = packet;
ifh[0] = IFH_INJ_BYPASS | port;
ifh[1] = (IFH_TAG_TYPE_C << 16);
return mscc_send(priv->regs[QS], luton_regs_qs,
ifh, IFH_LEN, buf, length);
}
static int luton_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct luton_private *priv = dev_get_priv(dev);
u32 *rxbuf = (u32 *)net_rx_packets[0];
int byte_cnt = 0;
byte_cnt = mscc_recv(priv->regs[QS], luton_regs_qs, rxbuf, IFH_LEN,
true);
*packetp = net_rx_packets[0];
return byte_cnt;
}
static struct mii_dev *get_mdiobus(phys_addr_t base, unsigned long size)
{
int i = 0;
for (i = 0; i < LUTON_MIIM_BUS_COUNT; ++i)
if (miim[i].miim_base == base && miim[i].miim_size == size)
return miim[i].bus;
return NULL;
}
static void add_port_entry(struct luton_private *priv, size_t index,
size_t phy_addr, struct mii_dev *bus,
u8 serdes_index, u8 phy_mode)
{
priv->ports[index].phy_addr = phy_addr;
priv->ports[index].bus = bus;
priv->ports[index].serdes_index = serdes_index;
priv->ports[index].phy_mode = phy_mode;
}
static int luton_probe(struct udevice *dev)
{
struct luton_private *priv = dev_get_priv(dev);
int i, ret;
struct resource res;
fdt32_t faddr;
phys_addr_t addr_base;
unsigned long addr_size;
ofnode eth_node, node, mdio_node;
size_t phy_addr;
struct mii_dev *bus;
struct ofnode_phandle_args phandle;
struct phy_device *phy;
if (!priv)
return -EINVAL;
/* Get registers and map them to the private structure */
for (i = 0; i < ARRAY_SIZE(regs_names); i++) {
priv->regs[i] = dev_remap_addr_name(dev, regs_names[i]);
if (!priv->regs[i]) {
debug
("Error can't get regs base addresses for %s\n",
regs_names[i]);
return -ENOMEM;
}
}
/* Release reset in the CU-PHY */
writel(0, priv->regs[GCB] + GCB_DEVCPU_RST_SOFT_CHIP_RST);
/* Ports with ext phy don't need to reset clk */
for (i = 0; i < MAX_INT_PORT; i++) {
if (i < PORT10)
clrbits_le32(priv->regs[i] + DEV_GMII_PORT_MODE_CLK,
DEV_GMII_PORT_MODE_CLK_PHY_RST);
else
clrbits_le32(priv->regs[i] + DEV_PORT_MODE_CLK,
DEV_PORT_MODE_CLK_PHY_RST);
}
/* Wait for internal PHY to be ready */
if (wait_for_bit_le32(priv->regs[GCB] + GCB_MISC_STAT,
GCB_MISC_STAT_PHY_READY, true, 500, false))
return -EACCES;
/* Initialize miim buses */
memset(&miim, 0x0, sizeof(miim) * LUTON_MIIM_BUS_COUNT);
/* iterate all the ports and find out on which bus they are */
i = 0;
eth_node = dev_read_first_subnode(dev);
for (node = ofnode_first_subnode(eth_node);
ofnode_valid(node);
node = ofnode_next_subnode(node)) {
if (ofnode_read_resource(node, 0, &res))
return -ENOMEM;
i = res.start;
ret = ofnode_parse_phandle_with_args(node, "phy-handle", NULL,
0, 0, &phandle);
if (ret)
continue;
/* Get phy address on mdio bus */
if (ofnode_read_resource(phandle.node, 0, &res))
return -ENOMEM;
phy_addr = res.start;
/* Get mdio node */
mdio_node = ofnode_get_parent(phandle.node);
if (ofnode_read_resource(mdio_node, 0, &res))
return -ENOMEM;
faddr = cpu_to_fdt32(res.start);
addr_base = ofnode_translate_address(mdio_node, &faddr);
addr_size = res.end - res.start;
/* If the bus is new then create a new bus */
if (!get_mdiobus(addr_base, addr_size))
priv->bus[miim_count] =
mscc_mdiobus_init(miim, &miim_count, addr_base,
addr_size);
/* Connect mdio bus with the port */
bus = get_mdiobus(addr_base, addr_size);
/* Get serdes info */
ret = ofnode_parse_phandle_with_args(node, "phys", NULL,
3, 0, &phandle);
if (ret)
add_port_entry(priv, i, phy_addr, bus, 0xff, 0xff);
else
add_port_entry(priv, i, phy_addr, bus, phandle.args[1],
phandle.args[2]);
}
for (i = 0; i < MAX_PORT; i++) {
if (!priv->ports[i].bus)
continue;
phy = phy_connect(priv->ports[i].bus,
priv->ports[i].phy_addr, dev,
PHY_INTERFACE_MODE_NONE);
if (phy && i >= MAX_INT_PORT)
board_phy_config(phy);
}
/*
* coma_mode is need on only one phy, because all the other phys
* will be affected.
*/
mscc_miim_write(priv->ports[0].bus, 0, 0, 31, 0x10);
mscc_miim_write(priv->ports[0].bus, 0, 0, 14, 0x800);
mscc_miim_write(priv->ports[0].bus, 0, 0, 31, 0);
return 0;
}
static int luton_remove(struct udevice *dev)
{
struct luton_private *priv = dev_get_priv(dev);
int i;
for (i = 0; i < LUTON_MIIM_BUS_COUNT; i++) {
mdio_unregister(priv->bus[i]);
mdio_free(priv->bus[i]);
}
return 0;
}
static const struct eth_ops luton_ops = {
.start = luton_start,
.stop = luton_stop,
.send = luton_send,
.recv = luton_recv,
.write_hwaddr = luton_write_hwaddr,
};
static const struct udevice_id mscc_luton_ids[] = {
{.compatible = "mscc,vsc7527-switch", },
{ /* Sentinel */ }
};
U_BOOT_DRIVER(luton) = {
.name = "luton-switch",
.id = UCLASS_ETH,
.of_match = mscc_luton_ids,
.probe = luton_probe,
.remove = luton_remove,
.ops = &luton_ops,
.priv_auto = sizeof(struct luton_private),
.plat_auto = sizeof(struct eth_pdata),
};