// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Copyright (c) 2019 Microsemi Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mscc_xfer.h" #include "mscc_mac_table.h" #include "mscc_miim.h" #define ANA_PORT_VLAN_CFG(x) (0x00 + 0x80 * (x)) #define ANA_PORT_VLAN_CFG_AWARE_ENA BIT(20) #define ANA_PORT_VLAN_CFG_POP_CNT(x) ((x) << 18) #define ANA_PORT_CPU_FWD_CFG(x) (0x50 + 0x80 * (x)) #define ANA_PORT_CPU_FWD_CFG_SRC_COPY_ENA BIT(1) #define ANA_PORT_PORT_CFG(x) (0x60 + 0x80 * (x)) #define ANA_PORT_PORT_CFG_RECV_ENA BIT(5) #define ANA_PGID(x) (0x1000 + 4 * (x)) #define SYS_FRM_AGING 0x8300 #define SYS_SYSTEM_RST_CFG 0x81b0 #define SYS_SYSTEM_RST_MEM_INIT BIT(0) #define SYS_SYSTEM_RST_MEM_ENA BIT(1) #define SYS_SYSTEM_RST_CORE_ENA BIT(2) #define SYS_PORT_MODE(x) (0x81bc + 0x4 * (x)) #define SYS_PORT_MODE_INCL_INJ_HDR BIT(0) #define SYS_SWITCH_PORT_MODE(x) (0x8294 + 0x4 * (x)) #define SYS_SWITCH_PORT_MODE_PORT_ENA BIT(3) #define SYS_EGR_NO_SHARING 0x8378 #define SYS_SCH_CPU 0x85a0 #define REW_PORT_CFG(x) (0x8 + 0x80 * (x)) #define REW_PORT_CFG_IFH_INSERT_ENA BIT(7) #define GCB_DEVCPU_RST_SOFT_CHIP_RST 0x90 #define GCB_DEVCPU_RST_SOFT_CHIP_RST_SOFT_PHY BIT(1) #define GCB_MISC_STAT 0x11c #define GCB_MISC_STAT_PHY_READY BIT(3) #define QS_XTR_MAP(x) (0x10 + 4 * (x)) #define QS_XTR_MAP_GRP BIT(4) #define QS_XTR_MAP_ENA BIT(0) #define HSIO_PLL5G_CFG_PLL5G_CFG2 0x8 #define HSIO_RCOMP_CFG_CFG0 0x20 #define HSIO_RCOMP_CFG_CFG0_MODE_SEL(x) ((x) << 8) #define HSIO_RCOMP_CFG_CFG0_RUN_CAL BIT(12) #define HSIO_RCOMP_STATUS 0x24 #define HSIO_RCOMP_STATUS_BUSY BIT(12) #define HSIO_RCOMP_STATUS_RCOMP_M GENMASK(3, 0) #define HSIO_SERDES6G_ANA_CFG_DES_CFG 0x64 #define HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_ANA(x) ((x) << 1) #define HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_HYST(x) ((x) << 5) #define HSIO_SERDES6G_ANA_CFG_DES_CFG_MBTR_CTRL(x) ((x) << 10) #define HSIO_SERDES6G_ANA_CFG_DES_CFG_PHS_CTRL(x) ((x) << 13) #define HSIO_SERDES6G_ANA_CFG_IB_CFG 0x68 #define HSIO_SERDES6G_ANA_CFG_IB_CFG_RESISTOR_CTRL(x) (x) #define HSIO_SERDES6G_ANA_CFG_IB_CFG_VBCOM(x) ((x) << 4) #define HSIO_SERDES6G_ANA_CFG_IB_CFG_VBAC(x) ((x) << 7) #define HSIO_SERDES6G_ANA_CFG_IB_CFG_RT(x) ((x) << 9) #define HSIO_SERDES6G_ANA_CFG_IB_CFG_RF(x) ((x) << 14) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1 0x6c #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST BIT(0) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSDC BIT(2) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSAC BIT(3) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_ANEG_MODE BIT(6) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_CHF BIT(7) #define HSIO_SERDES6G_ANA_CFG_IB_CFG1_C(x) ((x) << 8) #define HSIO_SERDES6G_ANA_CFG_OB_CFG 0x70 #define HSIO_SERDES6G_ANA_CFG_OB_CFG_SR(x) ((x) << 4) #define HSIO_SERDES6G_ANA_CFG_OB_CFG_SR_H BIT(8) #define HSIO_SERDES6G_ANA_CFG_OB_CFG_POST0(x) ((x) << 23) #define HSIO_SERDES6G_ANA_CFG_OB_CFG_POL BIT(29) #define HSIO_SERDES6G_ANA_CFG_OB_CFG_ENA1V_MODE BIT(30) #define HSIO_SERDES6G_ANA_CFG_OB_CFG1 0x74 #define HSIO_SERDES6G_ANA_CFG_OB_CFG1_LEV(x) (x) #define HSIO_SERDES6G_ANA_CFG_OB_CFG1_ENA_CAS(x) ((x) << 6) #define HSIO_SERDES6G_ANA_CFG_COMMON_CFG 0x7c #define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_IF_MODE(x) (x) #define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_ENA_LANE BIT(18) #define HSIO_SERDES6G_ANA_CFG_COMMON_CFG_SYS_RST BIT(31) #define HSIO_SERDES6G_ANA_CFG_PLL_CFG 0x80 #define HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_ENA BIT(7) #define HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_CTRL_DATA(x) ((x) << 8) #define HSIO_SERDES6G_ANA_CFG_SER_CFG 0x84 #define HSIO_SERDES6G_DIG_CFG_MISC_CFG 0x88 #define HSIO_SERDES6G_DIG_CFG_MISC_CFG_LANE_RST BIT(0) #define HSIO_MCB_SERDES6G_CFG 0xac #define HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT BIT(31) #define HSIO_MCB_SERDES6G_CFG_ADDR(x) (x) #define DEV_GMII_PORT_MODE_CLK 0x0 #define DEV_GMII_PORT_MODE_CLK_PHY_RST BIT(0) #define DEV_GMII_MAC_CFG_MAC_ENA 0xc #define DEV_GMII_MAC_CFG_MAC_ENA_RX_ENA BIT(4) #define DEV_GMII_MAC_CFG_MAC_ENA_TX_ENA BIT(0) #define DEV_PORT_MODE_CLK 0x4 #define DEV_PORT_MODE_CLK_PHY_RST BIT(2) #define DEV_PORT_MODE_CLK_LINK_SPEED_1000 1 #define DEV_MAC_CFG_MAC_ENA 0x10 #define DEV_MAC_CFG_MAC_ENA_RX_ENA BIT(4) #define DEV_MAC_CFG_MAC_ENA_TX_ENA BIT(0) #define DEV_MAC_CFG_MAC_IFG 0x24 #define DEV_MAC_CFG_MAC_IFG_TX_IFG(x) ((x) << 8) #define DEV_MAC_CFG_MAC_IFG_RX_IFG2(x) ((x) << 4) #define DEV_MAC_CFG_MAC_IFG_RX_IFG1(x) (x) #define DEV_PCS1G_CFG_PCS1G_CFG 0x40 #define DEV_PCS1G_CFG_PCS1G_CFG_PCS_ENA BIT(0) #define DEV_PCS1G_CFG_PCS1G_MODE 0x44 #define DEV_PCS1G_CFG_PCS1G_SD 0x48 #define DEV_PCS1G_CFG_PCS1G_ANEG 0x4c #define DEV_PCS1G_CFG_PCS1G_ANEG_ADV_ABILITY(x) ((x) << 16) #define IFH_INJ_BYPASS BIT(31) #define IFH_TAG_TYPE_C 0 #define MAC_VID 1 #define CPU_PORT 26 #define INTERNAL_PORT_MSK 0xFFFFFF #define IFH_LEN 2 #define ETH_ALEN 6 #define PGID_BROADCAST 28 #define PGID_UNICAST 29 #define PGID_SRC 80 static const char * const regs_names[] = { "port0", "port1", "port2", "port3", "port4", "port5", "port6", "port7", "port8", "port9", "port10", "port11", "port12", "port13", "port14", "port15", "port16", "port17", "port18", "port19", "port20", "port21", "port22", "port23", "sys", "ana", "rew", "gcb", "qs", "hsio", }; #define REGS_NAMES_COUNT ARRAY_SIZE(regs_names) + 1 #define MAX_PORT 24 enum luton_ctrl_regs { SYS = MAX_PORT, ANA, REW, GCB, QS, HSIO }; #define MIN_INT_PORT 0 #define PORT10 10 #define PORT11 11 #define MAX_INT_PORT 12 #define MIN_EXT_PORT MAX_INT_PORT #define MAX_EXT_PORT MAX_PORT #define LUTON_MIIM_BUS_COUNT 2 struct luton_phy_port_t { size_t phy_addr; struct mii_dev *bus; u8 serdes_index; u8 phy_mode; }; struct luton_private { void __iomem *regs[REGS_NAMES_COUNT]; struct mii_dev *bus[LUTON_MIIM_BUS_COUNT]; struct luton_phy_port_t ports[MAX_PORT]; }; static const unsigned long luton_regs_qs[] = { [MSCC_QS_XTR_RD] = 0x18, [MSCC_QS_XTR_FLUSH] = 0x28, [MSCC_QS_XTR_DATA_PRESENT] = 0x2c, [MSCC_QS_INJ_WR] = 0x3c, [MSCC_QS_INJ_CTRL] = 0x44, }; static const unsigned long luton_regs_ana_table[] = { [MSCC_ANA_TABLES_MACHDATA] = 0x11b0, [MSCC_ANA_TABLES_MACLDATA] = 0x11b4, [MSCC_ANA_TABLES_MACACCESS] = 0x11b8, }; static struct mscc_miim_dev miim[LUTON_MIIM_BUS_COUNT]; static int miim_count = -1; static void luton_stop(struct udevice *dev) { struct luton_private *priv = dev_get_priv(dev); /* * Switch core only reset affects VCORE-III bus and MIPS frequency * and thereby also the DDR SDRAM controller. The workaround is to * not to redirect any trafic to the CPU after the data transfer. */ writel(GENMASK(9, 2), priv->regs[SYS] + SYS_SCH_CPU); } static void luton_cpu_capture_setup(struct luton_private *priv) { int i; /* map the 8 CPU extraction queues to CPU port 26 */ writel(0x0, priv->regs[SYS] + SYS_SCH_CPU); for (i = 0; i <= 1; i++) { /* * One to one mapping from CPU Queue number to Group extraction * number */ writel(QS_XTR_MAP_ENA | (QS_XTR_MAP_GRP * i), priv->regs[QS] + QS_XTR_MAP(i)); /* Enable IFH insertion/parsing on CPU ports */ setbits_le32(priv->regs[REW] + REW_PORT_CFG(CPU_PORT + i), REW_PORT_CFG_IFH_INSERT_ENA); /* Enable IFH parsing on CPU port 0 and 1 */ setbits_le32(priv->regs[SYS] + SYS_PORT_MODE(CPU_PORT + i), SYS_PORT_MODE_INCL_INJ_HDR); } /* Make VLAN aware for CPU traffic */ writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) | MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(CPU_PORT)); /* Disable learning (only RECV_ENA must be set) */ writel(ANA_PORT_PORT_CFG_RECV_ENA, priv->regs[ANA] + ANA_PORT_PORT_CFG(CPU_PORT)); /* Enable switching to/from cpu port */ setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(CPU_PORT), SYS_SWITCH_PORT_MODE_PORT_ENA); setbits_le32(priv->regs[SYS] + SYS_EGR_NO_SHARING, BIT(CPU_PORT)); } static void luton_gmii_port_init(struct luton_private *priv, int port) { void __iomem *regs = priv->regs[port]; writel(0, regs + DEV_GMII_PORT_MODE_CLK); /* Enable MAC RX and TX */ writel(DEV_GMII_MAC_CFG_MAC_ENA_RX_ENA | DEV_GMII_MAC_CFG_MAC_ENA_TX_ENA, regs + DEV_GMII_MAC_CFG_MAC_ENA); /* Make VLAN aware for CPU traffic */ writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) | MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(port)); /* Enable switching to/from port */ setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port), SYS_SWITCH_PORT_MODE_PORT_ENA); } static void luton_port_init(struct luton_private *priv, int port) { void __iomem *regs = priv->regs[port]; writel(0, regs + DEV_PORT_MODE_CLK); /* Enable MAC RX and TX */ writel(DEV_MAC_CFG_MAC_ENA_RX_ENA | DEV_MAC_CFG_MAC_ENA_TX_ENA, regs + DEV_MAC_CFG_MAC_ENA); /* Make VLAN aware for CPU traffic */ writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) | MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(port)); /* Enable switching to/from port */ setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port), SYS_SWITCH_PORT_MODE_PORT_ENA); } static void luton_ext_port_init(struct luton_private *priv, int port) { void __iomem *regs = priv->regs[port]; /* Enable PCS */ writel(DEV_PCS1G_CFG_PCS1G_CFG_PCS_ENA, regs + DEV_PCS1G_CFG_PCS1G_CFG); /* Disable Signal Detect */ writel(0, regs + DEV_PCS1G_CFG_PCS1G_SD); /* Enable MAC RX and TX */ writel(DEV_MAC_CFG_MAC_ENA_RX_ENA | DEV_MAC_CFG_MAC_ENA_TX_ENA, regs + DEV_MAC_CFG_MAC_ENA); /* Clear sgmii_mode_ena */ writel(0, regs + DEV_PCS1G_CFG_PCS1G_MODE); /* * Clear sw_resolve_ena(bit 0) and set adv_ability to * something meaningful just in case */ writel(DEV_PCS1G_CFG_PCS1G_ANEG_ADV_ABILITY(0x20), regs + DEV_PCS1G_CFG_PCS1G_ANEG); /* Set MAC IFG Gaps */ writel(DEV_MAC_CFG_MAC_IFG_TX_IFG(7) | DEV_MAC_CFG_MAC_IFG_RX_IFG1(1) | DEV_MAC_CFG_MAC_IFG_RX_IFG2(5), regs + DEV_MAC_CFG_MAC_IFG); /* Set link speed and release all resets */ writel(DEV_PORT_MODE_CLK_LINK_SPEED_1000, regs + DEV_PORT_MODE_CLK); /* Make VLAN aware for CPU traffic */ writel(ANA_PORT_VLAN_CFG_AWARE_ENA | ANA_PORT_VLAN_CFG_POP_CNT(1) | MAC_VID, priv->regs[ANA] + ANA_PORT_VLAN_CFG(port)); /* Enable switching to/from port */ setbits_le32(priv->regs[SYS] + SYS_SWITCH_PORT_MODE(port), SYS_SWITCH_PORT_MODE_PORT_ENA); } static void serdes6g_write(void __iomem *base, u32 addr) { u32 data; writel(HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT | HSIO_MCB_SERDES6G_CFG_ADDR(addr), base + HSIO_MCB_SERDES6G_CFG); do { data = readl(base + HSIO_MCB_SERDES6G_CFG); } while (data & HSIO_MCB_SERDES6G_CFG_WR_ONE_SHOT); } static void serdes6g_setup(void __iomem *base, uint32_t addr, phy_interface_t interface) { writel(HSIO_RCOMP_CFG_CFG0_MODE_SEL(0x3) | HSIO_RCOMP_CFG_CFG0_RUN_CAL, base + HSIO_RCOMP_CFG_CFG0); while (readl(base + HSIO_RCOMP_STATUS) & HSIO_RCOMP_STATUS_BUSY) ; writel(HSIO_SERDES6G_ANA_CFG_OB_CFG_SR(0xb) | HSIO_SERDES6G_ANA_CFG_OB_CFG_SR_H | HSIO_SERDES6G_ANA_CFG_OB_CFG_POST0(0x10) | HSIO_SERDES6G_ANA_CFG_OB_CFG_POL | HSIO_SERDES6G_ANA_CFG_OB_CFG_ENA1V_MODE, base + HSIO_SERDES6G_ANA_CFG_OB_CFG); writel(HSIO_SERDES6G_ANA_CFG_OB_CFG1_LEV(0x18) | HSIO_SERDES6G_ANA_CFG_OB_CFG1_ENA_CAS(0x1), base + HSIO_SERDES6G_ANA_CFG_OB_CFG1); writel(HSIO_SERDES6G_ANA_CFG_IB_CFG_RESISTOR_CTRL(0xc) | HSIO_SERDES6G_ANA_CFG_IB_CFG_VBCOM(0x4) | HSIO_SERDES6G_ANA_CFG_IB_CFG_VBAC(0x5) | HSIO_SERDES6G_ANA_CFG_IB_CFG_RT(0xf) | HSIO_SERDES6G_ANA_CFG_IB_CFG_RF(0x4), base + HSIO_SERDES6G_ANA_CFG_IB_CFG); writel(HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST | HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSDC | HSIO_SERDES6G_ANA_CFG_IB_CFG1_ENA_OFFSAC | HSIO_SERDES6G_ANA_CFG_IB_CFG1_ANEG_MODE | HSIO_SERDES6G_ANA_CFG_IB_CFG1_CHF | HSIO_SERDES6G_ANA_CFG_IB_CFG1_C(0x4), base + HSIO_SERDES6G_ANA_CFG_IB_CFG1); writel(HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_ANA(0x5) | HSIO_SERDES6G_ANA_CFG_DES_CFG_BW_HYST(0x5) | HSIO_SERDES6G_ANA_CFG_DES_CFG_MBTR_CTRL(0x2) | HSIO_SERDES6G_ANA_CFG_DES_CFG_PHS_CTRL(0x6), base + HSIO_SERDES6G_ANA_CFG_DES_CFG); writel(HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_ENA | HSIO_SERDES6G_ANA_CFG_PLL_CFG_FSM_CTRL_DATA(0x78), base + HSIO_SERDES6G_ANA_CFG_PLL_CFG); writel(HSIO_SERDES6G_ANA_CFG_COMMON_CFG_IF_MODE(0x30) | HSIO_SERDES6G_ANA_CFG_COMMON_CFG_ENA_LANE, base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG); /* * There are 4 serdes6g, configure all except serdes6g0, therefore * the address is b1110 */ serdes6g_write(base, addr); writel(readl(base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG) | HSIO_SERDES6G_ANA_CFG_COMMON_CFG_SYS_RST, base + HSIO_SERDES6G_ANA_CFG_COMMON_CFG); serdes6g_write(base, addr); clrbits_le32(base + HSIO_SERDES6G_ANA_CFG_IB_CFG1, HSIO_SERDES6G_ANA_CFG_IB_CFG1_RST); writel(HSIO_SERDES6G_DIG_CFG_MISC_CFG_LANE_RST, base + HSIO_SERDES6G_DIG_CFG_MISC_CFG); serdes6g_write(base, addr); } static void serdes_setup(struct luton_private *priv) { size_t mask; int i = 0; for (i = 0; i < MAX_PORT; ++i) { if (!priv->ports[i].bus || priv->ports[i].serdes_index == 0xff) continue; mask = BIT(priv->ports[i].serdes_index); serdes6g_setup(priv->regs[HSIO], mask, priv->ports[i].phy_mode); } } static int luton_switch_init(struct luton_private *priv) { setbits_le32(priv->regs[HSIO] + HSIO_PLL5G_CFG_PLL5G_CFG2, BIT(1)); clrbits_le32(priv->regs[HSIO] + HSIO_PLL5G_CFG_PLL5G_CFG2, BIT(1)); /* Reset switch & memories */ writel(SYS_SYSTEM_RST_MEM_ENA | SYS_SYSTEM_RST_MEM_INIT, priv->regs[SYS] + SYS_SYSTEM_RST_CFG); /* Wait to complete */ if (wait_for_bit_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG, SYS_SYSTEM_RST_MEM_INIT, false, 2000, false)) { printf("Timeout in memory reset\n"); } /* Enable switch core */ setbits_le32(priv->regs[SYS] + SYS_SYSTEM_RST_CFG, SYS_SYSTEM_RST_CORE_ENA); /* Setup the Serdes macros */ serdes_setup(priv); return 0; } static int luton_initialize(struct luton_private *priv) { int ret, i; /* Initialize switch memories, enable core */ ret = luton_switch_init(priv); if (ret) return ret; /* * Disable port-to-port by switching * Put front ports in "port isolation modes" - i.e. they can't send * to other ports - via the PGID sorce masks. */ for (i = 0; i < MAX_PORT; i++) writel(0, priv->regs[ANA] + ANA_PGID(PGID_SRC + i)); /* Flush queues */ mscc_flush(priv->regs[QS], luton_regs_qs); /* Setup frame ageing - "2 sec" - The unit is 4ns on Luton*/ writel(2000000000 / 4, priv->regs[SYS] + SYS_FRM_AGING); for (i = 0; i < MAX_PORT; i++) { if (i < PORT10) luton_gmii_port_init(priv, i); else if (i == PORT10 || i == PORT11) luton_port_init(priv, i); else luton_ext_port_init(priv, i); } luton_cpu_capture_setup(priv); return 0; } static int luton_write_hwaddr(struct udevice *dev) { struct luton_private *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_platdata(dev); mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table, pdata->enetaddr, PGID_UNICAST); writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST)); return 0; } static int luton_start(struct udevice *dev) { struct luton_private *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_platdata(dev); const unsigned char mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; int ret; ret = luton_initialize(priv); if (ret) return ret; /* Set MAC address tables entries for CPU redirection */ mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table, mac, PGID_BROADCAST); writel(BIT(CPU_PORT) | INTERNAL_PORT_MSK, priv->regs[ANA] + ANA_PGID(PGID_BROADCAST)); mscc_mac_table_add(priv->regs[ANA], luton_regs_ana_table, pdata->enetaddr, PGID_UNICAST); writel(BIT(CPU_PORT), priv->regs[ANA] + ANA_PGID(PGID_UNICAST)); return 0; } static int luton_send(struct udevice *dev, void *packet, int length) { struct luton_private *priv = dev_get_priv(dev); u32 ifh[IFH_LEN]; int port = BIT(0); /* use port 0 */ u32 *buf = packet; ifh[0] = IFH_INJ_BYPASS | port; ifh[1] = (IFH_TAG_TYPE_C << 16); return mscc_send(priv->regs[QS], luton_regs_qs, ifh, IFH_LEN, buf, length); } static int luton_recv(struct udevice *dev, int flags, uchar **packetp) { struct luton_private *priv = dev_get_priv(dev); u32 *rxbuf = (u32 *)net_rx_packets[0]; int byte_cnt = 0; byte_cnt = mscc_recv(priv->regs[QS], luton_regs_qs, rxbuf, IFH_LEN, true); *packetp = net_rx_packets[0]; return byte_cnt; } static struct mii_dev *get_mdiobus(phys_addr_t base, unsigned long size) { int i = 0; for (i = 0; i < LUTON_MIIM_BUS_COUNT; ++i) if (miim[i].miim_base == base && miim[i].miim_size == size) return miim[i].bus; return NULL; } static void add_port_entry(struct luton_private *priv, size_t index, size_t phy_addr, struct mii_dev *bus, u8 serdes_index, u8 phy_mode) { priv->ports[index].phy_addr = phy_addr; priv->ports[index].bus = bus; priv->ports[index].serdes_index = serdes_index; priv->ports[index].phy_mode = phy_mode; } static int luton_probe(struct udevice *dev) { struct luton_private *priv = dev_get_priv(dev); int i, ret; struct resource res; fdt32_t faddr; phys_addr_t addr_base; unsigned long addr_size; ofnode eth_node, node, mdio_node; size_t phy_addr; struct mii_dev *bus; struct ofnode_phandle_args phandle; struct phy_device *phy; if (!priv) return -EINVAL; /* Get registers and map them to the private structure */ for (i = 0; i < ARRAY_SIZE(regs_names); i++) { priv->regs[i] = dev_remap_addr_name(dev, regs_names[i]); if (!priv->regs[i]) { debug ("Error can't get regs base addresses for %s\n", regs_names[i]); return -ENOMEM; } } /* Release reset in the CU-PHY */ writel(0, priv->regs[GCB] + GCB_DEVCPU_RST_SOFT_CHIP_RST); /* Ports with ext phy don't need to reset clk */ for (i = 0; i < MAX_INT_PORT; i++) { if (i < PORT10) clrbits_le32(priv->regs[i] + DEV_GMII_PORT_MODE_CLK, DEV_GMII_PORT_MODE_CLK_PHY_RST); else clrbits_le32(priv->regs[i] + DEV_PORT_MODE_CLK, DEV_PORT_MODE_CLK_PHY_RST); } /* Wait for internal PHY to be ready */ if (wait_for_bit_le32(priv->regs[GCB] + GCB_MISC_STAT, GCB_MISC_STAT_PHY_READY, true, 500, false)) return -EACCES; /* Initialize miim buses */ memset(&miim, 0x0, sizeof(miim) * LUTON_MIIM_BUS_COUNT); /* iterate all the ports and find out on which bus they are */ i = 0; eth_node = dev_read_first_subnode(dev); for (node = ofnode_first_subnode(eth_node); ofnode_valid(node); node = ofnode_next_subnode(node)) { if (ofnode_read_resource(node, 0, &res)) return -ENOMEM; i = res.start; ret = ofnode_parse_phandle_with_args(node, "phy-handle", NULL, 0, 0, &phandle); if (ret) continue; /* Get phy address on mdio bus */ if (ofnode_read_resource(phandle.node, 0, &res)) return -ENOMEM; phy_addr = res.start; /* Get mdio node */ mdio_node = ofnode_get_parent(phandle.node); if (ofnode_read_resource(mdio_node, 0, &res)) return -ENOMEM; faddr = cpu_to_fdt32(res.start); addr_base = ofnode_translate_address(mdio_node, &faddr); addr_size = res.end - res.start; /* If the bus is new then create a new bus */ if (!get_mdiobus(addr_base, addr_size)) priv->bus[miim_count] = mscc_mdiobus_init(miim, &miim_count, addr_base, addr_size); /* Connect mdio bus with the port */ bus = get_mdiobus(addr_base, addr_size); /* Get serdes info */ ret = ofnode_parse_phandle_with_args(node, "phys", NULL, 3, 0, &phandle); if (ret) add_port_entry(priv, i, phy_addr, bus, 0xff, 0xff); else add_port_entry(priv, i, phy_addr, bus, phandle.args[1], phandle.args[2]); } for (i = 0; i < MAX_PORT; i++) { if (!priv->ports[i].bus) continue; phy = phy_connect(priv->ports[i].bus, priv->ports[i].phy_addr, dev, PHY_INTERFACE_MODE_NONE); if (phy && i >= MAX_INT_PORT) board_phy_config(phy); } /* * coma_mode is need on only one phy, because all the other phys * will be affected. */ mscc_miim_write(priv->ports[0].bus, 0, 0, 31, 0x10); mscc_miim_write(priv->ports[0].bus, 0, 0, 14, 0x800); mscc_miim_write(priv->ports[0].bus, 0, 0, 31, 0); return 0; } static int luton_remove(struct udevice *dev) { struct luton_private *priv = dev_get_priv(dev); int i; for (i = 0; i < LUTON_MIIM_BUS_COUNT; i++) { mdio_unregister(priv->bus[i]); mdio_free(priv->bus[i]); } return 0; } static const struct eth_ops luton_ops = { .start = luton_start, .stop = luton_stop, .send = luton_send, .recv = luton_recv, .write_hwaddr = luton_write_hwaddr, }; static const struct udevice_id mscc_luton_ids[] = { {.compatible = "mscc,vsc7527-switch", }, { /* Sentinel */ } }; U_BOOT_DRIVER(luton) = { .name = "luton-switch", .id = UCLASS_ETH, .of_match = mscc_luton_ids, .probe = luton_probe, .remove = luton_remove, .ops = &luton_ops, .priv_auto = sizeof(struct luton_private), .plat_auto = sizeof(struct eth_pdata), };