u-boot/drivers/net/keystone_net.c

1172 lines
27 KiB
C
Raw Normal View History

/*
* Ethernet driver for TI K2HK EVM.
*
* (C) Copyright 2012-2014
* Texas Instruments Incorporated, <www.ti.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <console.h>
#include <dm.h>
#include <dm/lists.h>
#include <net.h>
#include <phy.h>
#include <errno.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/ti-common/keystone_nav.h>
#include <asm/ti-common/keystone_net.h>
#include <asm/ti-common/keystone_serdes.h>
#include <asm/arch/psc_defs.h>
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_DM_ETH
unsigned int emac_open;
static struct mii_dev *mdio_bus;
static unsigned int sys_has_mdio = 1;
#endif
#ifdef KEYSTONE2_EMAC_GIG_ENABLE
#define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x)
#else
#define emac_gigabit_enable(x) /* no gigabit to enable */
#endif
#define RX_BUFF_NUMS 24
#define RX_BUFF_LEN 1520
#define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN
#define SGMII_ANEG_TIMEOUT 4000
static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16);
#ifndef CONFIG_DM_ETH
struct rx_buff_desc net_rx_buffs = {
.buff_ptr = rx_buffs,
.num_buffs = RX_BUFF_NUMS,
.buff_len = RX_BUFF_LEN,
.rx_flow = 22,
};
#endif
#ifdef CONFIG_DM_ETH
enum link_type {
LINK_TYPE_SGMII_MAC_TO_MAC_AUTO = 0,
LINK_TYPE_SGMII_MAC_TO_PHY_MODE = 1,
LINK_TYPE_SGMII_MAC_TO_MAC_FORCED_MODE = 2,
LINK_TYPE_SGMII_MAC_TO_FIBRE_MODE = 3,
LINK_TYPE_SGMII_MAC_TO_PHY_NO_MDIO_MODE = 4,
LINK_TYPE_RGMII_LINK_MAC_PHY = 5,
LINK_TYPE_RGMII_LINK_MAC_MAC_FORCED = 6,
LINK_TYPE_RGMII_LINK_MAC_PHY_NO_MDIO = 7,
LINK_TYPE_10G_MAC_TO_PHY_MODE = 10,
LINK_TYPE_10G_MAC_TO_MAC_FORCED_MODE = 11,
};
#define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \
((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8))
#ifdef CONFIG_KSNET_NETCP_V1_0
#define EMAC_EMACSW_BASE_OFS 0x90800
#define EMAC_EMACSW_PORT_BASE_OFS (EMAC_EMACSW_BASE_OFS + 0x60)
/* CPSW Switch slave registers */
#define CPGMACSL_REG_SA_LO 0x10
#define CPGMACSL_REG_SA_HI 0x14
#define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \
(x) * 0x30)
#elif defined CONFIG_KSNET_NETCP_V1_5
#define EMAC_EMACSW_PORT_BASE_OFS 0x222000
/* CPSW Switch slave registers */
#define CPGMACSL_REG_SA_LO 0x308
#define CPGMACSL_REG_SA_HI 0x30c
#define DEVICE_EMACSW_BASE(base, x) ((base) + EMAC_EMACSW_PORT_BASE_OFS + \
(x) * 0x1000)
#endif
struct ks2_eth_priv {
struct udevice *dev;
struct phy_device *phydev;
struct mii_dev *mdio_bus;
int phy_addr;
phy_interface_t phy_if;
int sgmii_link_type;
void *mdio_base;
struct rx_buff_desc net_rx_buffs;
struct pktdma_cfg *netcp_pktdma;
void *hd;
int slave_port;
enum link_type link_type;
bool emac_open;
bool has_mdio;
};
#endif
/* MDIO */
static int keystone2_mdio_reset(struct mii_dev *bus)
{
u_int32_t clkdiv;
struct mdio_regs *adap_mdio = bus->priv;
clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1;
writel((clkdiv & 0xffff) | MDIO_CONTROL_ENABLE |
MDIO_CONTROL_FAULT | MDIO_CONTROL_FAULT_ENABLE,
&adap_mdio->control);
while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE)
;
return 0;
}
/**
* keystone2_mdio_read - read a PHY register via MDIO interface.
* Blocks until operation is complete.
*/
static int keystone2_mdio_read(struct mii_dev *bus,
int addr, int devad, int reg)
{
int tmp;
struct mdio_regs *adap_mdio = bus->priv;
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
writel(MDIO_USERACCESS0_GO | MDIO_USERACCESS0_WRITE_READ |
((reg & 0x1f) << 21) | ((addr & 0x1f) << 16),
&adap_mdio->useraccess0);
/* Wait for command to complete */
while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO)
;
if (tmp & MDIO_USERACCESS0_ACK)
return tmp & 0xffff;
return -1;
}
/**
* keystone2_mdio_write - write to a PHY register via MDIO interface.
* Blocks until operation is complete.
*/
static int keystone2_mdio_write(struct mii_dev *bus,
int addr, int devad, int reg, u16 val)
{
struct mdio_regs *adap_mdio = bus->priv;
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
writel(MDIO_USERACCESS0_GO | MDIO_USERACCESS0_WRITE_WRITE |
((reg & 0x1f) << 21) | ((addr & 0x1f) << 16) |
(val & 0xffff), &adap_mdio->useraccess0);
/* Wait for command to complete */
while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO)
;
return 0;
}
#ifndef CONFIG_DM_ETH
static void __attribute__((unused))
keystone2_eth_gigabit_enable(struct eth_device *dev)
{
u_int16_t data;
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
if (sys_has_mdio) {
data = keystone2_mdio_read(mdio_bus, eth_priv->phy_addr,
MDIO_DEVAD_NONE, 0);
/* speed selection MSB */
if (!(data & (1 << 6)))
return;
}
/*
* Check if link detected is giga-bit
* If Gigabit mode detected, enable gigbit in MAC
*/
writel(readl(DEVICE_EMACSL_BASE(eth_priv->slave_port - 1) +
CPGMACSL_REG_CTL) |
EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
DEVICE_EMACSL_BASE(eth_priv->slave_port - 1) + CPGMACSL_REG_CTL);
}
#else
static void __attribute__((unused))
keystone2_eth_gigabit_enable(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
u_int16_t data;
if (priv->has_mdio) {
data = keystone2_mdio_read(priv->mdio_bus, priv->phy_addr,
MDIO_DEVAD_NONE, 0);
/* speed selection MSB */
if (!(data & (1 << 6)))
return;
}
/*
* Check if link detected is giga-bit
* If Gigabit mode detected, enable gigbit in MAC
*/
writel(readl(DEVICE_EMACSL_BASE(priv->slave_port - 1) +
CPGMACSL_REG_CTL) |
EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE,
DEVICE_EMACSL_BASE(priv->slave_port - 1) + CPGMACSL_REG_CTL);
}
#endif
#ifdef CONFIG_SOC_K2G
int keystone_rgmii_config(struct phy_device *phy_dev)
{
unsigned int i, status;
i = 0;
do {
if (i > SGMII_ANEG_TIMEOUT) {
puts(" TIMEOUT !\n");
phy_dev->link = 0;
return 0;
}
if (ctrlc()) {
puts("user interrupt!\n");
phy_dev->link = 0;
return -EINTR;
}
if ((i++ % 500) == 0)
printf(".");
udelay(1000); /* 1 ms */
status = readl(RGMII_STATUS_REG);
} while (!(status & RGMII_REG_STATUS_LINK));
puts(" done\n");
return 0;
}
#else
int keystone_sgmii_config(struct phy_device *phy_dev, int port, int interface)
{
unsigned int i, status, mask;
unsigned int mr_adv_ability, control;
switch (interface) {
case SGMII_LINK_MAC_MAC_AUTONEG:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = (SGMII_REG_CONTROL_MASTER |
SGMII_REG_CONTROL_AUTONEG);
break;
case SGMII_LINK_MAC_PHY:
case SGMII_LINK_MAC_PHY_FORCED:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
break;
case SGMII_LINK_MAC_MAC_FORCED:
mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE |
SGMII_REG_MR_ADV_LINK |
SGMII_REG_MR_ADV_FULL_DUPLEX |
SGMII_REG_MR_ADV_GIG_MODE);
control = SGMII_REG_CONTROL_MASTER;
break;
case SGMII_LINK_MAC_FIBER:
mr_adv_ability = 0x20;
control = SGMII_REG_CONTROL_AUTONEG;
break;
default:
mr_adv_ability = SGMII_REG_MR_ADV_ENABLE;
control = SGMII_REG_CONTROL_AUTONEG;
}
__raw_writel(0, SGMII_CTL_REG(port));
/*
* Wait for the SerDes pll to lock,
* but don't trap if lock is never read
*/
for (i = 0; i < 1000; i++) {
udelay(2000);
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & SGMII_REG_STATUS_LOCK) != 0)
break;
}
__raw_writel(mr_adv_ability, SGMII_MRADV_REG(port));
__raw_writel(control, SGMII_CTL_REG(port));
mask = SGMII_REG_STATUS_LINK;
if (control & SGMII_REG_CONTROL_AUTONEG)
mask |= SGMII_REG_STATUS_AUTONEG;
status = __raw_readl(SGMII_STATUS_REG(port));
if ((status & mask) == mask)
return 0;
printf("\n%s Waiting for SGMII auto negotiation to complete",
phy_dev->dev->name);
while ((status & mask) != mask) {
/*
* Timeout reached ?
*/
if (i > SGMII_ANEG_TIMEOUT) {
puts(" TIMEOUT !\n");
phy_dev->link = 0;
return 0;
}
if (ctrlc()) {
puts("user interrupt!\n");
phy_dev->link = 0;
return -EINTR;
}
if ((i++ % 500) == 0)
printf(".");
udelay(1000); /* 1 ms */
status = __raw_readl(SGMII_STATUS_REG(port));
}
puts(" done\n");
return 0;
}
#endif
int mac_sl_reset(u32 port)
{
u32 i, v;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
/* Set the soft reset bit */
writel(CPGMAC_REG_RESET_VAL_RESET,
DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
/* Wait for the bit to clear */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
return GMACSL_RET_OK;
}
/* Timeout on the reset */
return GMACSL_RET_WARN_RESET_INCOMPLETE;
}
int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg)
{
u32 v, i;
int ret = GMACSL_RET_OK;
if (port >= DEVICE_N_GMACSL_PORTS)
return GMACSL_RET_INVALID_PORT;
if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) {
cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN;
ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG;
}
/* Must wait if the device is undergoing reset */
for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) {
v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET);
if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) !=
CPGMAC_REG_RESET_VAL_RESET)
break;
}
if (i == DEVICE_EMACSL_RESET_POLL_COUNT)
return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE;
writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN);
writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL);
#ifndef CONFIG_SOC_K2HK
/* Map RX packet flow priority to 0 */
writel(0, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RX_PRI_MAP);
#endif
return ret;
}
int ethss_config(u32 ctl, u32 max_pkt_size)
{
u32 i;
/* Max length register */
writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN);
/* Control register */
writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL);
/* All statistics enabled by default */
writel(CPSW_REG_VAL_STAT_ENABLE_ALL,
DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN);
/* Reset and enable the ALE */
writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE |
CPSW_REG_VAL_ALE_CTL_BYPASS,
DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL);
/* All ports put into forward mode */
for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++)
writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE,
DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i));
return 0;
}
int ethss_start(void)
{
int i;
struct mac_sl_cfg cfg;
cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER;
cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) {
mac_sl_reset(i);
mac_sl_config(i, &cfg);
}
return 0;
}
int ethss_stop(void)
{
int i;
for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++)
mac_sl_reset(i);
return 0;
}
struct ks2_serdes ks2_serdes_sgmii_156p25mhz = {
.clk = SERDES_CLOCK_156P25M,
.rate = SERDES_RATE_5G,
.rate_mode = SERDES_QUARTER_RATE,
.intf = SERDES_PHY_SGMII,
.loopback = 0,
};
#ifndef CONFIG_SOC_K2G
static void keystone2_net_serdes_setup(void)
{
ks2_serdes_init(CONFIG_KSNET_SERDES_SGMII_BASE,
&ks2_serdes_sgmii_156p25mhz,
CONFIG_KSNET_SERDES_LANES_PER_SGMII);
#if defined(CONFIG_SOC_K2E) || defined(CONFIG_SOC_K2L)
ks2_serdes_init(CONFIG_KSNET_SERDES_SGMII2_BASE,
&ks2_serdes_sgmii_156p25mhz,
CONFIG_KSNET_SERDES_LANES_PER_SGMII);
#endif
/* wait till setup */
udelay(5000);
}
#endif
#ifndef CONFIG_DM_ETH
int keystone2_eth_read_mac_addr(struct eth_device *dev)
{
struct eth_priv_t *eth_priv;
u32 maca = 0;
u32 macb = 0;
eth_priv = (struct eth_priv_t *)dev->priv;
/* Read the e-fuse mac address */
if (eth_priv->slave_port == 1) {
maca = __raw_readl(MAC_ID_BASE_ADDR);
macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
}
dev->enetaddr[0] = (macb >> 8) & 0xff;
dev->enetaddr[1] = (macb >> 0) & 0xff;
dev->enetaddr[2] = (maca >> 24) & 0xff;
dev->enetaddr[3] = (maca >> 16) & 0xff;
dev->enetaddr[4] = (maca >> 8) & 0xff;
dev->enetaddr[5] = (maca >> 0) & 0xff;
return 0;
}
int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num)
{
if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE)
num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE;
return ksnav_send(&netcp_pktdma, buffer,
num_bytes, (slave_port_num) << 16);
}
/* Eth device open */
static int keystone2_eth_open(struct eth_device *dev, bd_t *bis)
{
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
struct phy_device *phy_dev = eth_priv->phy_dev;
debug("+ emac_open\n");
net_rx_buffs.rx_flow = eth_priv->rx_flow;
sys_has_mdio =
(eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0;
if (sys_has_mdio)
keystone2_mdio_reset(mdio_bus);
#ifdef CONFIG_SOC_K2G
keystone_rgmii_config(phy_dev);
#else
keystone_sgmii_config(phy_dev, eth_priv->slave_port - 1,
eth_priv->sgmii_link_type);
#endif
udelay(10000);
/* On chip switch configuration */
ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);
/* TODO: add error handling code */
if (qm_init()) {
printf("ERROR: qm_init()\n");
return -1;
}
if (ksnav_init(&netcp_pktdma, &net_rx_buffs)) {
qm_close();
printf("ERROR: netcp_init()\n");
return -1;
}
/*
* Streaming switch configuration. If not present this
* statement is defined to void in target.h.
* If present this is usually defined to a series of register writes
*/
hw_config_streaming_switch();
if (sys_has_mdio) {
keystone2_mdio_reset(mdio_bus);
phy_startup(phy_dev);
if (phy_dev->link == 0) {
ksnav_close(&netcp_pktdma);
qm_close();
return -1;
}
}
emac_gigabit_enable(dev);
ethss_start();
debug("- emac_open\n");
emac_open = 1;
return 0;
}
/* Eth device close */
void keystone2_eth_close(struct eth_device *dev)
{
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
struct phy_device *phy_dev = eth_priv->phy_dev;
debug("+ emac_close\n");
if (!emac_open)
return;
ethss_stop();
ksnav_close(&netcp_pktdma);
qm_close();
phy_shutdown(phy_dev);
emac_open = 0;
debug("- emac_close\n");
}
/*
* This function sends a single packet on the network and returns
* positive number (number of bytes transmitted) or negative for error
*/
static int keystone2_eth_send_packet(struct eth_device *dev,
void *packet, int length)
{
int ret_status = -1;
struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv;
struct phy_device *phy_dev = eth_priv->phy_dev;
genphy_update_link(phy_dev);
if (phy_dev->link == 0)
return -1;
if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0)
return ret_status;
return length;
}
/*
* This function handles receipt of a packet from the network
*/
static int keystone2_eth_rcv_packet(struct eth_device *dev)
{
void *hd;
int pkt_size;
u32 *pkt;
hd = ksnav_recv(&netcp_pktdma, &pkt, &pkt_size);
if (hd == NULL)
return 0;
net_process_received_packet((uchar *)pkt, pkt_size);
ksnav_release_rxhd(&netcp_pktdma, hd);
return pkt_size;
}
#ifdef CONFIG_MCAST_TFTP
static int keystone2_eth_bcast_addr(struct eth_device *dev, u32 ip, u8 set)
{
return 0;
}
#endif
/*
* This function initializes the EMAC hardware.
*/
int keystone2_emac_initialize(struct eth_priv_t *eth_priv)
{
int res;
struct eth_device *dev;
struct phy_device *phy_dev;
struct mdio_regs *adap_mdio = (struct mdio_regs *)EMAC_MDIO_BASE_ADDR;
dev = malloc(sizeof(struct eth_device));
if (dev == NULL)
return -1;
memset(dev, 0, sizeof(struct eth_device));
strcpy(dev->name, eth_priv->int_name);
dev->priv = eth_priv;
keystone2_eth_read_mac_addr(dev);
dev->iobase = 0;
dev->init = keystone2_eth_open;
dev->halt = keystone2_eth_close;
dev->send = keystone2_eth_send_packet;
dev->recv = keystone2_eth_rcv_packet;
#ifdef CONFIG_MCAST_TFTP
dev->mcast = keystone2_eth_bcast_addr;
#endif
eth_register(dev);
/* Register MDIO bus if it's not registered yet */
if (!mdio_bus) {
mdio_bus = mdio_alloc();
mdio_bus->read = keystone2_mdio_read;
mdio_bus->write = keystone2_mdio_write;
mdio_bus->reset = keystone2_mdio_reset;
mdio_bus->priv = (void *)EMAC_MDIO_BASE_ADDR;
strcpy(mdio_bus->name, "ethernet-mdio");
res = mdio_register(mdio_bus);
if (res)
return res;
}
#ifndef CONFIG_SOC_K2G
keystone2_net_serdes_setup();
#endif
/* Create phy device and bind it with driver */
#ifdef CONFIG_KSNET_MDIO_PHY_CONFIG_ENABLE
phy_dev = phy_connect(mdio_bus, eth_priv->phy_addr,
dev, eth_priv->phy_if);
phy_config(phy_dev);
#else
phy_dev = phy_find_by_mask(mdio_bus, 1 << eth_priv->phy_addr,
eth_priv->phy_if);
phy_dev->dev = dev;
#endif
eth_priv->phy_dev = phy_dev;
return 0;
}
#else
static int ks2_eth_start(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
#ifdef CONFIG_SOC_K2G
keystone_rgmii_config(priv->phydev);
#else
keystone_sgmii_config(priv->phydev, priv->slave_port - 1,
priv->sgmii_link_type);
#endif
udelay(10000);
/* On chip switch configuration */
ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE);
qm_init();
if (ksnav_init(priv->netcp_pktdma, &priv->net_rx_buffs)) {
error("ksnav_init failed\n");
goto err_knav_init;
}
/*
* Streaming switch configuration. If not present this
* statement is defined to void in target.h.
* If present this is usually defined to a series of register writes
*/
hw_config_streaming_switch();
if (priv->has_mdio) {
keystone2_mdio_reset(priv->mdio_bus);
phy_startup(priv->phydev);
if (priv->phydev->link == 0) {
error("phy startup failed\n");
goto err_phy_start;
}
}
emac_gigabit_enable(dev);
ethss_start();
priv->emac_open = true;
return 0;
err_phy_start:
ksnav_close(priv->netcp_pktdma);
err_knav_init:
qm_close();
return -EFAULT;
}
static int ks2_eth_send(struct udevice *dev, void *packet, int length)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
genphy_update_link(priv->phydev);
if (priv->phydev->link == 0)
return -1;
if (length < EMAC_MIN_ETHERNET_PKT_SIZE)
length = EMAC_MIN_ETHERNET_PKT_SIZE;
return ksnav_send(priv->netcp_pktdma, (u32 *)packet,
length, (priv->slave_port) << 16);
}
static int ks2_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
int pkt_size;
u32 *pkt = NULL;
priv->hd = ksnav_recv(priv->netcp_pktdma, &pkt, &pkt_size);
if (priv->hd == NULL)
return -EAGAIN;
*packetp = (uchar *)pkt;
return pkt_size;
}
static int ks2_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
ksnav_release_rxhd(priv->netcp_pktdma, priv->hd);
return 0;
}
static void ks2_eth_stop(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
if (!priv->emac_open)
return;
ethss_stop();
ksnav_close(priv->netcp_pktdma);
qm_close();
phy_shutdown(priv->phydev);
priv->emac_open = false;
}
int ks2_eth_read_rom_hwaddr(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
u32 maca = 0;
u32 macb = 0;
/* Read the e-fuse mac address */
if (priv->slave_port == 1) {
maca = __raw_readl(MAC_ID_BASE_ADDR);
macb = __raw_readl(MAC_ID_BASE_ADDR + 4);
}
pdata->enetaddr[0] = (macb >> 8) & 0xff;
pdata->enetaddr[1] = (macb >> 0) & 0xff;
pdata->enetaddr[2] = (maca >> 24) & 0xff;
pdata->enetaddr[3] = (maca >> 16) & 0xff;
pdata->enetaddr[4] = (maca >> 8) & 0xff;
pdata->enetaddr[5] = (maca >> 0) & 0xff;
return 0;
}
int ks2_eth_write_hwaddr(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
writel(mac_hi(pdata->enetaddr),
DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) +
CPGMACSL_REG_SA_HI);
writel(mac_lo(pdata->enetaddr),
DEVICE_EMACSW_BASE(pdata->iobase, priv->slave_port - 1) +
CPGMACSL_REG_SA_LO);
return 0;
}
static int ks2_eth_probe(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus;
int ret;
priv->dev = dev;
/* These clock enables has to be moved to common location */
if (cpu_is_k2g())
writel(KS2_ETHERNET_RGMII, KS2_ETHERNET_CFG);
/* By default, select PA PLL clock as PA clock source */
#ifndef CONFIG_SOC_K2G
if (psc_enable_module(KS2_LPSC_PA))
return -EACCES;
#endif
if (psc_enable_module(KS2_LPSC_CPGMAC))
return -EACCES;
if (psc_enable_module(KS2_LPSC_CRYPTO))
return -EACCES;
if (cpu_is_k2e() || cpu_is_k2l())
pll_pa_clk_sel();
priv->net_rx_buffs.buff_ptr = rx_buffs;
priv->net_rx_buffs.num_buffs = RX_BUFF_NUMS;
priv->net_rx_buffs.buff_len = RX_BUFF_LEN;
if (priv->slave_port == 1) {
/*
* Register MDIO bus for slave 0 only, other slave have
* to re-use the same
*/
mdio_bus = mdio_alloc();
if (!mdio_bus) {
error("MDIO alloc failed\n");
return -ENOMEM;
}
priv->mdio_bus = mdio_bus;
mdio_bus->read = keystone2_mdio_read;
mdio_bus->write = keystone2_mdio_write;
mdio_bus->reset = keystone2_mdio_reset;
mdio_bus->priv = priv->mdio_base;
sprintf(mdio_bus->name, "ethernet-mdio");
ret = mdio_register(mdio_bus);
if (ret) {
error("MDIO bus register failed\n");
return ret;
}
} else {
/* Get the MDIO bus from slave 0 device */
struct ks2_eth_priv *parent_priv;
parent_priv = dev_get_priv(dev->parent);
priv->mdio_bus = parent_priv->mdio_bus;
}
#ifndef CONFIG_SOC_K2G
keystone2_net_serdes_setup();
#endif
priv->netcp_pktdma = &netcp_pktdma;
if (priv->has_mdio) {
priv->phydev = phy_connect(priv->mdio_bus, priv->phy_addr,
dev, priv->phy_if);
phy_config(priv->phydev);
}
return 0;
}
int ks2_eth_remove(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
free(priv->phydev);
mdio_unregister(priv->mdio_bus);
mdio_free(priv->mdio_bus);
return 0;
}
static const struct eth_ops ks2_eth_ops = {
.start = ks2_eth_start,
.send = ks2_eth_send,
.recv = ks2_eth_recv,
.free_pkt = ks2_eth_free_pkt,
.stop = ks2_eth_stop,
.read_rom_hwaddr = ks2_eth_read_rom_hwaddr,
.write_hwaddr = ks2_eth_write_hwaddr,
};
static int ks2_eth_bind_slaves(struct udevice *dev, int gbe, int *gbe_0)
{
const void *fdt = gd->fdt_blob;
struct udevice *sl_dev;
int interfaces;
int sec_slave;
int slave;
int ret;
char *slave_name;
interfaces = fdt_subnode_offset(fdt, gbe, "interfaces");
fdt_for_each_subnode(slave, fdt, interfaces) {
int slave_no;
slave_no = fdtdec_get_int(fdt, slave, "slave-port", -ENOENT);
if (slave_no == -ENOENT)
continue;
if (slave_no == 0) {
/* This is the current eth device */
*gbe_0 = slave;
} else {
/* Slave devices to be registered */
slave_name = malloc(20);
snprintf(slave_name, 20, "netcp@slave-%d", slave_no);
ret = device_bind_driver_to_node(dev, "eth_ks2_sl",
slave_name, slave,
&sl_dev);
if (ret) {
error("ks2_net - not able to bind slave interfaces\n");
return ret;
}
}
}
sec_slave = fdt_subnode_offset(fdt, gbe, "secondary-slave-ports");
fdt_for_each_subnode(slave, fdt, sec_slave) {
int slave_no;
slave_no = fdtdec_get_int(fdt, slave, "slave-port", -ENOENT);
if (slave_no == -ENOENT)
continue;
/* Slave devices to be registered */
slave_name = malloc(20);
snprintf(slave_name, 20, "netcp@slave-%d", slave_no);
ret = device_bind_driver_to_node(dev, "eth_ks2_sl", slave_name,
slave, &sl_dev);
if (ret) {
error("ks2_net - not able to bind slave interfaces\n");
return ret;
}
}
return 0;
}
static int ks2_eth_parse_slave_interface(int netcp, int slave,
struct ks2_eth_priv *priv,
struct eth_pdata *pdata)
{
const void *fdt = gd->fdt_blob;
int mdio;
int phy;
int dma_count;
u32 dma_channel[8];
priv->slave_port = fdtdec_get_int(fdt, slave, "slave-port", -1);
priv->net_rx_buffs.rx_flow = priv->slave_port * 8;
/* U-Boot slave port number starts with 1 instead of 0 */
priv->slave_port += 1;
dma_count = fdtdec_get_int_array_count(fdt, netcp,
"ti,navigator-dmas",
dma_channel, 8);
if (dma_count > (2 * priv->slave_port)) {
int dma_idx;
dma_idx = priv->slave_port * 2 - 1;
priv->net_rx_buffs.rx_flow = dma_channel[dma_idx];
}
priv->link_type = fdtdec_get_int(fdt, slave, "link-interface", -1);
phy = fdtdec_lookup_phandle(fdt, slave, "phy-handle");
if (phy >= 0) {
priv->phy_addr = fdtdec_get_int(fdt, phy, "reg", -1);
mdio = fdt_parent_offset(fdt, phy);
if (mdio < 0) {
error("mdio dt not found\n");
return -ENODEV;
}
priv->mdio_base = (void *)fdtdec_get_addr(fdt, mdio, "reg");
}
if (priv->link_type == LINK_TYPE_SGMII_MAC_TO_PHY_MODE) {
priv->phy_if = PHY_INTERFACE_MODE_SGMII;
pdata->phy_interface = priv->phy_if;
priv->sgmii_link_type = SGMII_LINK_MAC_PHY;
priv->has_mdio = true;
} else if (priv->link_type == LINK_TYPE_RGMII_LINK_MAC_PHY) {
priv->phy_if = PHY_INTERFACE_MODE_RGMII;
pdata->phy_interface = priv->phy_if;
priv->has_mdio = true;
}
return 0;
}
static int ks2_sl_eth_ofdata_to_platdata(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
const void *fdt = gd->fdt_blob;
int slave = dev_of_offset(dev);
int interfaces;
int gbe;
int netcp_devices;
int netcp;
interfaces = fdt_parent_offset(fdt, slave);
gbe = fdt_parent_offset(fdt, interfaces);
netcp_devices = fdt_parent_offset(fdt, gbe);
netcp = fdt_parent_offset(fdt, netcp_devices);
ks2_eth_parse_slave_interface(netcp, slave, priv, pdata);
pdata->iobase = fdtdec_get_addr(fdt, netcp, "reg");
return 0;
}
static int ks2_eth_ofdata_to_platdata(struct udevice *dev)
{
struct ks2_eth_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
const void *fdt = gd->fdt_blob;
int gbe_0 = -ENODEV;
int netcp_devices;
int gbe;
netcp_devices = fdt_subnode_offset(fdt, dev_of_offset(dev),
"netcp-devices");
gbe = fdt_subnode_offset(fdt, netcp_devices, "gbe");
ks2_eth_bind_slaves(dev, gbe, &gbe_0);
ks2_eth_parse_slave_interface(dev_of_offset(dev), gbe_0, priv, pdata);
pdata->iobase = dev_get_addr(dev);
return 0;
}
static const struct udevice_id ks2_eth_ids[] = {
{ .compatible = "ti,netcp-1.0" },
{ }
};
U_BOOT_DRIVER(eth_ks2_slave) = {
.name = "eth_ks2_sl",
.id = UCLASS_ETH,
.ofdata_to_platdata = ks2_sl_eth_ofdata_to_platdata,
.probe = ks2_eth_probe,
.remove = ks2_eth_remove,
.ops = &ks2_eth_ops,
.priv_auto_alloc_size = sizeof(struct ks2_eth_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
U_BOOT_DRIVER(eth_ks2) = {
.name = "eth_ks2",
.id = UCLASS_ETH,
.of_match = ks2_eth_ids,
.ofdata_to_platdata = ks2_eth_ofdata_to_platdata,
.probe = ks2_eth_probe,
.remove = ks2_eth_remove,
.ops = &ks2_eth_ops,
.priv_auto_alloc_size = sizeof(struct ks2_eth_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif