u-boot/drivers/mtd/nand/raw/mxc_nand.c

1310 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2004-2007 Freescale Semiconductor, Inc.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
* Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
*/
#include <common.h>
#include <log.h>
#include <nand.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/mtd/rawnand.h>
#include <asm/io.h>
#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
#include <asm/arch/imx-regs.h>
#endif
#include "mxc_nand.h"
#define DRIVER_NAME "mxc_nand"
struct mxc_nand_host {
struct nand_chip *nand;
struct mxc_nand_regs __iomem *regs;
#ifdef MXC_NFC_V3_2
struct mxc_nand_ip_regs __iomem *ip_regs;
#endif
int spare_only;
int status_request;
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
};
static struct mxc_nand_host mxc_host;
static struct mxc_nand_host *host = &mxc_host;
/* Define delays in microsec for NAND device operations */
#define TROP_US_DELAY 2000
/* Macros to get byte and bit positions of ECC */
#define COLPOS(x) ((x) >> 3)
#define BITPOS(x) ((x) & 0xf)
/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1
/* OOB placement block for use with hardware ecc generation */
#if defined(MXC_NFC_V1)
#ifndef CFG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = { {0, 5}, {11, 5}, }
};
#else
static struct nand_ecclayout nand_hw_eccoob2k = {
.eccbytes = 20,
.eccpos = {
6, 7, 8, 9, 10,
22, 23, 24, 25, 26,
38, 39, 40, 41, 42,
54, 55, 56, 57, 58,
},
.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
};
#endif
#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
#ifndef CFG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 9,
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {2, 5} }
};
#else
static struct nand_ecclayout nand_hw_eccoob2k = {
.eccbytes = 36,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
};
#endif
#endif
static int is_16bit_nand(void)
{
#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
return 1;
#else
return 0;
#endif
}
static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
{
uint32_t *d = dest;
size >>= 2;
while (size--)
__raw_writel(__raw_readl(source++), d++);
return dest;
}
/*
* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit.
*/
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
uint16_t param)
{
uint32_t tmp;
while (max_retries-- > 0) {
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
tmp = readnfc(&host->regs->config2);
if (tmp & NFC_V1_V2_CONFIG2_INT) {
tmp &= ~NFC_V1_V2_CONFIG2_INT;
writenfc(tmp, &host->regs->config2);
#elif defined(MXC_NFC_V3_2)
tmp = readnfc(&host->ip_regs->ipc);
if (tmp & NFC_V3_IPC_INT) {
tmp &= ~NFC_V3_IPC_INT;
writenfc(tmp, &host->ip_regs->ipc);
#endif
break;
}
udelay(1);
}
if (max_retries < 0) {
pr_debug("%s(%d): INT not set\n",
__func__, param);
}
}
/*
* This function issues the specified command to the NAND device and
* waits for completion.
*/
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
pr_debug("send_cmd(host, 0x%x)\n", cmd);
writenfc(cmd, &host->regs->flash_cmd);
writenfc(NFC_CMD, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, cmd);
}
/*
* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command.
*/
static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
pr_debug("send_addr(host, 0x%x)\n", addr);
writenfc(addr, &host->regs->flash_addr);
writenfc(NFC_ADDR, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, addr);
}
/*
* This function requests the NANDFC to initiate the transfer
* of data currently in the NANDFC RAM buffer to the NAND device.
*/
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
if (spare_only)
pr_debug("send_prog_page (%d)\n", spare_only);
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
int i;
/*
* The controller copies the 64 bytes of spare data from
* the first 16 bytes of each of the 4 64 byte spare buffers.
* Copy the contiguous data starting in spare_area[0] to
* the four spare area buffers.
*/
for (i = 1; i < 4; i++) {
void __iomem *src = &host->regs->spare_area[0][i * 16];
void __iomem *dst = &host->regs->spare_area[i][0];
mxc_nand_memcpy32(dst, src, 16);
}
}
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
writenfc(buf_id, &host->regs->buf_addr);
#elif defined(MXC_NFC_V3_2)
uint32_t tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
tmp |= NFC_V3_CONFIG1_RBA(buf_id);
writenfc(tmp, &host->regs->config1);
#endif
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readnfc(&host->regs->config1);
if (spare_only)
config1 |= NFC_CONFIG1_SP_EN;
else
config1 &= ~NFC_CONFIG1_SP_EN;
writenfc(config1, &host->regs->config1);
}
writenfc(NFC_INPUT, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
}
/*
* Requests NANDFC to initiate the transfer of data from the
* NAND device into in the NANDFC ram buffer.
*/
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
pr_debug("send_read_page (%d)\n", spare_only);
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
writenfc(buf_id, &host->regs->buf_addr);
#elif defined(MXC_NFC_V3_2)
uint32_t tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
tmp |= NFC_V3_CONFIG1_RBA(buf_id);
writenfc(tmp, &host->regs->config1);
#endif
/* Configure spare or page+spare access */
if (!host->pagesize_2k) {
uint32_t config1 = readnfc(&host->regs->config1);
if (spare_only)
config1 |= NFC_CONFIG1_SP_EN;
else
config1 &= ~NFC_CONFIG1_SP_EN;
writenfc(config1, &host->regs->config1);
}
writenfc(NFC_OUTPUT, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
int i;
/*
* The controller copies the 64 bytes of spare data to
* the first 16 bytes of each of the 4 spare buffers.
* Make the data contiguous starting in spare_area[0].
*/
for (i = 1; i < 4; i++) {
void __iomem *src = &host->regs->spare_area[i][0];
void __iomem *dst = &host->regs->spare_area[0][i * 16];
mxc_nand_memcpy32(dst, src, 16);
}
}
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host)
{
uint32_t tmp;
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
/* NANDFC buffer 0 is used for device ID output */
writenfc(0x0, &host->regs->buf_addr);
#elif defined(MXC_NFC_V3_2)
tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
writenfc(tmp, &host->regs->config1);
#endif
/* Read ID into main buffer */
tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_CONFIG1_SP_EN;
writenfc(tmp, &host->regs->config1);
writenfc(NFC_ID, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
}
/*
* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status.
*/
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
void __iomem *main_buf = host->regs->main_area[1];
uint32_t store;
#endif
uint32_t ret, tmp;
/* Issue status request to NAND device */
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
/* store the main area1 first word, later do recovery */
store = readl(main_buf);
/* NANDFC buffer 1 is used for device status */
writenfc(1, &host->regs->buf_addr);
#endif
/* Read status into main buffer */
tmp = readnfc(&host->regs->config1);
tmp &= ~NFC_CONFIG1_SP_EN;
writenfc(tmp, &host->regs->config1);
writenfc(NFC_STATUS, &host->regs->operation);
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, 0);
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
/*
* Status is placed in first word of main buffer
* get status, then recovery area 1 data
*/
ret = readw(main_buf);
writel(store, main_buf);
#elif defined(MXC_NFC_V3_2)
ret = readnfc(&host->regs->config1) >> 16;
#endif
return ret;
}
/* This function is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
uint16_t tmp = readnfc(&host->regs->config1);
if (on)
tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
else
tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
writenfc(tmp, &host->regs->config1);
#elif defined(MXC_NFC_V3_2)
uint32_t tmp = readnfc(&host->ip_regs->config2);
if (on)
tmp |= NFC_V3_CONFIG2_ECC_EN;
else
tmp &= ~NFC_V3_CONFIG2_ECC_EN;
writenfc(tmp, &host->ip_regs->config2);
#endif
}
#ifdef CONFIG_MXC_NAND_HWECC
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *bufpoi = buf;
int i, toread;
pr_debug("%s: Reading OOB area of page %u to oob %p\n",
__func__, page, buf);
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
for (i = 0; i < chip->ecc.steps; i++) {
toread = min_t(int, length, chip->ecc.prepad);
if (toread) {
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
bufpoi += chip->ecc.bytes;
host->col_addr += chip->ecc.bytes;
length -= chip->ecc.bytes;
toread = min_t(int, length, chip->ecc.postpad);
if (toread) {
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
}
if (length > 0)
chip->read_buf(mtd, bufpoi, length);
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READOOB,
mtd->writesize + chip->ecc.prepad, page);
bufpoi = buf + chip->ecc.prepad;
length = mtd->oobsize - chip->ecc.prepad;
for (i = 0; i < chip->ecc.steps; i++) {
toread = min_t(int, length, chip->ecc.bytes);
chip->read_buf(mtd, bufpoi, toread);
bufpoi += eccpitch;
length -= eccpitch;
host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
}
_mxc_nand_enable_hwecc(mtd, 1);
return 1;
}
static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf,
int oob_required,
int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *oob = chip->oob_poi;
int steps, size;
int n;
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
host->col_addr = n * eccsize;
chip->read_buf(mtd, buf, eccsize);
buf += eccsize;
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->read_buf(mtd, oob, size);
_mxc_nand_enable_hwecc(mtd, 1);
return 0;
}
static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf,
int oob_required,
int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
int n, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
pr_debug("Reading page %u to buf %p oob %p\n",
page, buf, oob);
/* first read the data area and the available portion of OOB */
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
int stat;
host->col_addr = n * eccsize;
chip->read_buf(mtd, p, eccsize);
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
n = mtd->oobsize - (oob - chip->oob_poi);
if (n)
chip->read_buf(mtd, oob, n);
/* Then switch ECC off and read the OOB area to get the ECC code */
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
eccsteps = chip->ecc.steps;
oob = chip->oob_poi + chip->ecc.prepad;
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
host->col_addr = mtd->writesize +
n * eccpitch +
chip->ecc.prepad;
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes + chip->ecc.postpad;
}
_mxc_nand_enable_hwecc(mtd, 1);
return 0;
}
static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int length = mtd->oobsize;
int i, len, status, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
for (i = 0; i < steps; i++) {
len = min_t(int, length, eccpitch);
chip->write_buf(mtd, bufpoi, len);
bufpoi += len;
length -= len;
host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
}
if (length > 0)
chip->write_buf(mtd, bufpoi, length);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required, int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *oob = chip->oob_poi;
int steps, size;
int n;
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
host->col_addr = n * eccsize;
chip->write_buf(mtd, buf, eccsize);
buf += eccsize;
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
host->col_addr += eccbytes;
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->write_buf(mtd, oob, size);
return 0;
}
static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required, int page)
{
struct mxc_nand_host *host = nand_get_controller_data(chip);
int i, n, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
for (i = n = 0;
eccsteps;
n++, eccsteps--, i += eccbytes, p += eccsize) {
host->col_addr = n * eccsize;
chip->write_buf(mtd, p, eccsize);
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->write_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
return 0;
}
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint32_t ecc_status = readl(&host->regs->ecc_status_result);
int subpages = mtd->writesize / nand_chip->subpagesize;
int pg2blk_shift = nand_chip->phys_erase_shift -
nand_chip->page_shift;
do {
if ((ecc_status & 0xf) > 4) {
static int last_bad = -1;
if (last_bad != host->page_addr >> pg2blk_shift) {
last_bad = host->page_addr >> pg2blk_shift;
printk(KERN_DEBUG
"MXC_NAND: HWECC uncorrectable ECC error"
" in block %u page %u subpage %d\n",
last_bad, host->page_addr,
mtd->writesize / nand_chip->subpagesize
- subpages);
}
return -EBADMSG;
}
ecc_status >>= 4;
subpages--;
} while (subpages > 0);
return 0;
}
#else
#define mxc_nand_read_page_syndrome NULL
#define mxc_nand_read_page_raw_syndrome NULL
#define mxc_nand_read_oob_syndrome NULL
#define mxc_nand_write_page_syndrome NULL
#define mxc_nand_write_page_raw_syndrome NULL
#define mxc_nand_write_oob_syndrome NULL
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -EBADMSG;
}
return 0;
}
#endif
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
#endif
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint8_t ret = 0;
uint16_t col;
uint16_t __iomem *main_buf =
(uint16_t __iomem *)host->regs->main_area[0];
uint16_t __iomem *spare_buf =
(uint16_t __iomem *)host->regs->spare_area[0];
union {
uint16_t word;
uint8_t bytes[2];
} nfc_word;
/* Check for status request */
if (host->status_request)
return get_dev_status(host) & 0xFF;
/* Get column for 16-bit access */
col = host->col_addr >> 1;
/* If we are accessing the spare region */
if (host->spare_only)
nfc_word.word = readw(&spare_buf[col]);
else
nfc_word.word = readw(&main_buf[col]);
/* Pick upper/lower byte of word from RAM buffer */
ret = nfc_word.bytes[host->col_addr & 0x1];
/* Update saved column address */
if (nand_chip->options & NAND_BUSWIDTH_16)
host->col_addr += 2;
else
host->col_addr++;
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
uint16_t col, ret;
uint16_t __iomem *p;
pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
if (col < mtd->writesize) {
p = (uint16_t __iomem *)(host->regs->main_area[0] +
(col >> 1));
} else {
p = (uint16_t __iomem *)(host->regs->spare_area[0] +
((col - mtd->writesize) >> 1));
}
if (col & 1) {
union {
uint16_t word;
uint8_t bytes[2];
} nfc_word[3];
nfc_word[0].word = readw(p);
nfc_word[1].word = readw(p + 1);
nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
ret = nfc_word[2].word;
} else {
ret = readw(p);
}
/* Update saved column address */
host->col_addr = col + 2;
return ret;
}
/*
* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash
*/
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int n, col, i = 0;
pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
while (n > 0) {
void __iomem *p;
if (col < mtd->writesize) {
p = host->regs->main_area[0] + (col & ~3);
} else {
p = host->regs->spare_area[0] -
mtd->writesize + (col & ~3);
}
pr_debug("%s:%d: p = %p\n", __func__,
__LINE__, p);
if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
union {
uint32_t word;
uint8_t bytes[4];
} nfc_word;
nfc_word.word = readl(p);
nfc_word.bytes[col & 3] = buf[i++];
n--;
col++;
writel(nfc_word.word, p);
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
__func__, __LINE__, n, m, i, col);
mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/*
* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
int n, col, i = 0;
pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
len);
col = host->col_addr;
/* Adjust saved column address */
if (col < mtd->writesize && host->spare_only)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
while (n > 0) {
void __iomem *p;
if (col < mtd->writesize) {
p = host->regs->main_area[0] + (col & ~3);
} else {
p = host->regs->spare_area[0] -
mtd->writesize + (col & ~3);
}
if (((col | (int)&buf[i]) & 3) || n < 4) {
union {
uint32_t word;
uint8_t bytes[4];
} nfc_word;
nfc_word.word = readl(p);
buf[i++] = nfc_word.bytes[col & 3];
n--;
col++;
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
host->col_addr = col;
}
/*
* This function is used by upper layer for select and
* deselect of the NAND chip
*/
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
switch (chip) {
case -1:
/* TODO: Disable the NFC clock */
if (host->clk_act)
host->clk_act = 0;
break;
case 0:
/* TODO: Enable the NFC clock */
if (!host->clk_act)
host->clk_act = 1;
break;
default:
break;
}
}
/*
* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash
*/
void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_STATUS:
host->col_addr = 0;
host->status_request = true;
break;
case NAND_CMD_READ0:
host->page_addr = page_addr;
host->col_addr = column;
host->spare_only = false;
break;
case NAND_CMD_READOOB:
host->col_addr = column;
host->spare_only = true;
if (host->pagesize_2k)
command = NAND_CMD_READ0; /* only READ0 is valid */
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
/*
* before sending SEQIN command for partial write,
* we need read one page out. FSL NFC does not support
* partial write. It always sends out 512+ecc+512+ecc
* for large page nand flash. But for small page nand
* flash, it does support SPARE ONLY operation.
*/
if (host->pagesize_2k) {
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
}
host->col_addr = column - mtd->writesize;
host->spare_only = true;
/* Set program pointer to spare region */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READOOB);
} else {
host->spare_only = false;
host->col_addr = column;
/* Set program pointer to page start */
if (!host->pagesize_2k)
send_cmd(host, NAND_CMD_READ0);
}
break;
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k && is_mxc_nfc_1()) {
/* data in 4 areas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
send_prog_page(host, 3, host->spare_only);
}
break;
}
/* Write out the command to the device. */
send_cmd(host, command);
/* Write out column address, if necessary */
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers perform
* a read/write buffer operation, we will use the saved
* column address to index into the full page.
*/
send_addr(host, 0);
if (host->pagesize_2k)
/* another col addr cycle for 2k page */
send_addr(host, 0);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
u32 page_mask = nand_chip->pagemask;
do {
send_addr(host, page_addr & 0xFF);
page_addr >>= 8;
page_mask >>= 8;
} while (page_mask);
}
/* Command post-processing step */
switch (command) {
case NAND_CMD_RESET:
break;
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
if (host->pagesize_2k) {
/* send read confirm command */
send_cmd(host, NAND_CMD_READSTART);
/* read for each AREA */
send_read_page(host, 0, host->spare_only);
if (is_mxc_nfc_1()) {
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
}
} else {
send_read_page(host, 0, host->spare_only);
}
break;
case NAND_CMD_READID:
host->col_addr = 0;
send_read_id(host);
break;
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
break;
case NAND_CMD_ERASE2:
break;
}
}
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
#endif
int board_nand_init(struct nand_chip *this)
{
struct mtd_info *mtd;
#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
uint32_t tmp;
#endif
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
this->bbt_options |= NAND_BBT_USE_FLASH;
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
#endif
/* structures must be linked */
mtd = &this->mtd;
host->nand = this;
/* 5 us command delay time */
this->chip_delay = 5;
nand_set_controller_data(this, host);
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->select_chip = mxc_nand_select_chip;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
#ifdef MXC_NFC_V3_2
host->ip_regs =
(struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
#endif
host->clk_act = 1;
#ifdef CONFIG_MXC_NAND_HWECC
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
this->ecc.mode = NAND_ECC_HW_SYNDROME;
this->ecc.read_page = mxc_nand_read_page_syndrome;
this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
this->ecc.read_oob = mxc_nand_read_oob_syndrome;
this->ecc.write_page = mxc_nand_write_page_syndrome;
this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
this->ecc.write_oob = mxc_nand_write_oob_syndrome;
this->ecc.bytes = 9;
this->ecc.prepad = 7;
} else {
this->ecc.mode = NAND_ECC_HW;
}
if (is_mxc_nfc_1())
this->ecc.strength = 1;
else
this->ecc.strength = 4;
host->pagesize_2k = 0;
this->ecc.size = 512;
_mxc_nand_enable_hwecc(mtd, 1);
#else
this->ecc.layout = &nand_soft_eccoob;
this->ecc.mode = NAND_ECC_SOFT;
_mxc_nand_enable_hwecc(mtd, 0);
#endif
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* NAND bus width determines access functions used by upper layer */
if (is_16bit_nand())
this->options |= NAND_BUSWIDTH_16;
#ifdef CFG_SYS_NAND_LARGEPAGE
host->pagesize_2k = 1;
this->ecc.layout = &nand_hw_eccoob2k;
#else
host->pagesize_2k = 0;
this->ecc.layout = &nand_hw_eccoob;
#endif
#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
#ifdef MXC_NFC_V2_1
tmp = readnfc(&host->regs->config1);
tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
writenfc(tmp, &host->regs->config1);
if (host->pagesize_2k)
writenfc(64/2, &host->regs->spare_area_size);
else
writenfc(16/2, &host->regs->spare_area_size);
#endif
/*
* preset operation
* Unlock the internal RAM Buffer
*/
writenfc(0x2, &host->regs->config);
/* Blocks to be unlocked */
writenfc(0x0, &host->regs->unlockstart_blkaddr);
/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
* unlockend_blkaddr, but the magic 0x4000 does not always work
* when writing more than some 32 megabytes (on 2k page nands)
* However 0xFFFF doesn't seem to have this kind
* of limitation (tried it back and forth several times).
* The linux kernel driver sets this to 0xFFFF for the v2 controller
* only, but probably this was not tested there for v1.
* The very same limitation seems to apply to this kernel driver.
* This might be NAND chip specific and the i.MX31 datasheet is
* extremely vague about the semantics of this register.
*/
writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
/* Unlock Block Command for given address range */
writenfc(0x4, &host->regs->wrprot);
#elif defined(MXC_NFC_V3_2)
writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
/* Unlock the internal RAM Buffer */
writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
&host->ip_regs->wrprot);
/* Blocks to be unlocked */
for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
writenfc(0x0 | 0xFFFF << 16,
&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
writenfc(0, &host->ip_regs->ipc);
tmp = readnfc(&host->ip_regs->config2);
tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
if (host->pagesize_2k) {
tmp |= NFC_V3_CONFIG2_SPAS(64/2);
tmp |= NFC_V3_CONFIG2_PS_2048;
} else {
tmp |= NFC_V3_CONFIG2_SPAS(16/2);
tmp |= NFC_V3_CONFIG2_PS_512;
}
writenfc(tmp, &host->ip_regs->config2);
tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
if (!(this->options & NAND_BUSWIDTH_16))
tmp |= NFC_V3_CONFIG3_FW8;
writenfc(tmp, &host->ip_regs->config3);
writenfc(0, &host->ip_regs->delay_line);
#endif
return 0;
}