arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* AM625: SoC specific initialization
|
|
|
|
*
|
|
|
|
* Copyright (C) 2020-2022 Texas Instruments Incorporated - https://www.ti.com/
|
|
|
|
* Suman Anna <s-anna@ti.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <spl.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/arch/hardware.h>
|
2023-04-06 16:38:16 +00:00
|
|
|
#include "sysfw-loader.h"
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
#include "common.h"
|
|
|
|
#include <dm.h>
|
|
|
|
#include <dm/uclass-internal.h>
|
|
|
|
#include <dm/pinctrl.h>
|
|
|
|
|
2023-05-16 23:06:21 +00:00
|
|
|
#define RTC_BASE_ADDRESS 0x2b1f0000
|
|
|
|
#define REG_K3RTC_S_CNT_LSW (RTC_BASE_ADDRESS + 0x18)
|
|
|
|
#define REG_K3RTC_KICK0 (RTC_BASE_ADDRESS + 0x70)
|
|
|
|
#define REG_K3RTC_KICK1 (RTC_BASE_ADDRESS + 0x74)
|
|
|
|
|
|
|
|
/* Magic values for lock/unlock */
|
|
|
|
#define K3RTC_KICK0_UNLOCK_VALUE 0x83e70b13
|
|
|
|
#define K3RTC_KICK1_UNLOCK_VALUE 0x95a4f1e0
|
|
|
|
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
/*
|
|
|
|
* This uninitialized global variable would normal end up in the .bss section,
|
|
|
|
* but the .bss is cleared between writing and reading this variable, so move
|
|
|
|
* it to the .data section.
|
|
|
|
*/
|
|
|
|
u32 bootindex __section(".data");
|
|
|
|
static struct rom_extended_boot_data bootdata __section(".data");
|
|
|
|
|
|
|
|
static void store_boot_info_from_rom(void)
|
|
|
|
{
|
|
|
|
bootindex = *(u32 *)(CONFIG_SYS_K3_BOOT_PARAM_TABLE_INDEX);
|
2022-11-22 19:28:11 +00:00
|
|
|
memcpy(&bootdata, (uintptr_t *)ROM_EXTENDED_BOOT_DATA_INFO,
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
sizeof(struct rom_extended_boot_data));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ctrl_mmr_unlock(void)
|
|
|
|
{
|
|
|
|
/* Unlock all WKUP_CTRL_MMR0 module registers */
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 0);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 1);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 2);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 3);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 4);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 5);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 6);
|
|
|
|
mmr_unlock(WKUP_CTRL_MMR0_BASE, 7);
|
|
|
|
|
|
|
|
/* Unlock all CTRL_MMR0 module registers */
|
|
|
|
mmr_unlock(CTRL_MMR0_BASE, 0);
|
|
|
|
mmr_unlock(CTRL_MMR0_BASE, 1);
|
|
|
|
mmr_unlock(CTRL_MMR0_BASE, 2);
|
|
|
|
mmr_unlock(CTRL_MMR0_BASE, 4);
|
|
|
|
mmr_unlock(CTRL_MMR0_BASE, 6);
|
|
|
|
|
|
|
|
/* Unlock all MCU_CTRL_MMR0 module registers */
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 0);
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 1);
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 2);
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 3);
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 4);
|
|
|
|
mmr_unlock(MCU_CTRL_MMR0_BASE, 6);
|
|
|
|
|
|
|
|
/* Unlock PADCFG_CTRL_MMR padconf registers */
|
|
|
|
mmr_unlock(PADCFG_MMR0_BASE, 1);
|
|
|
|
mmr_unlock(PADCFG_MMR1_BASE, 1);
|
|
|
|
}
|
|
|
|
|
2022-07-01 12:30:11 +00:00
|
|
|
static __maybe_unused void enable_mcu_esm_reset(void)
|
|
|
|
{
|
|
|
|
/* Set CTRLMMR_MCU_RST_CTRL:MCU_ESM_ERROR_RST_EN_Z to '0' (low active) */
|
|
|
|
u32 stat = readl(CTRLMMR_MCU_RST_CTRL);
|
|
|
|
|
|
|
|
stat &= RST_CTRL_ESM_ERROR_RST_EN_Z_MASK;
|
|
|
|
writel(stat, CTRLMMR_MCU_RST_CTRL);
|
|
|
|
}
|
|
|
|
|
2023-05-16 23:06:21 +00:00
|
|
|
/*
|
|
|
|
* RTC Erratum i2327 Workaround for Silicon Revision 1
|
|
|
|
*
|
|
|
|
* Due to a bug in initial synchronization out of cold power on,
|
|
|
|
* IRQ status can get locked infinitely if we do not unlock RTC
|
|
|
|
*
|
|
|
|
* This workaround *must* be applied within 1 second of power on,
|
|
|
|
* So, this is closest point to be able to guarantee the max
|
|
|
|
* timing.
|
|
|
|
*
|
|
|
|
* https://www.ti.com/lit/er/sprz487c/sprz487c.pdf
|
|
|
|
*/
|
2023-08-25 18:02:58 +00:00
|
|
|
static __maybe_unused void rtc_erratumi2327_init(void)
|
2023-05-16 23:06:21 +00:00
|
|
|
{
|
|
|
|
u32 counter;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If counter has gone past 1, nothing we can do, leave
|
|
|
|
* system locked! This is the only way we know if RTC
|
|
|
|
* can be used for all practical purposes.
|
|
|
|
*/
|
|
|
|
counter = readl(REG_K3RTC_S_CNT_LSW);
|
|
|
|
if (counter > 1)
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Need to set this up at the very start
|
|
|
|
* MUST BE DONE under 1 second of boot.
|
|
|
|
*/
|
|
|
|
writel(K3RTC_KICK0_UNLOCK_VALUE, REG_K3RTC_KICK0);
|
|
|
|
writel(K3RTC_KICK1_UNLOCK_VALUE, REG_K3RTC_KICK1);
|
|
|
|
}
|
|
|
|
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
void board_init_f(ulong dummy)
|
|
|
|
{
|
|
|
|
struct udevice *dev;
|
|
|
|
int ret;
|
|
|
|
|
2023-08-25 18:02:57 +00:00
|
|
|
if (IS_ENABLED(CONFIG_CPU_V7R)) {
|
|
|
|
setup_k3_mpu_regions();
|
|
|
|
rtc_erratumi2327_init();
|
|
|
|
}
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Cannot delay this further as there is a chance that
|
|
|
|
* K3_BOOT_PARAM_TABLE_INDEX can be over written by SPL MALLOC section.
|
|
|
|
*/
|
|
|
|
store_boot_info_from_rom();
|
|
|
|
|
|
|
|
ctrl_mmr_unlock();
|
|
|
|
|
|
|
|
/* Init DM early */
|
|
|
|
spl_early_init();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process pinctrl for the serial0 and serial3, aka WKUP_UART0 and
|
|
|
|
* MAIN_UART1 modules and continue regardless of the result of pinctrl.
|
|
|
|
* Do this without probing the device, but instead by searching the
|
|
|
|
* device that would request the given sequence number if probed. The
|
|
|
|
* UARTs will be used by the DM firmware and TIFS firmware images
|
|
|
|
* respectively and the firmware depend on SPL to initialize the pin
|
|
|
|
* settings.
|
|
|
|
*/
|
|
|
|
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 0, &dev);
|
|
|
|
if (!ret)
|
|
|
|
pinctrl_select_state(dev, "default");
|
|
|
|
|
|
|
|
ret = uclass_find_device_by_seq(UCLASS_SERIAL, 3, &dev);
|
|
|
|
if (!ret)
|
|
|
|
pinctrl_select_state(dev, "default");
|
|
|
|
|
|
|
|
preloader_console_init();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Allow establishing an early console as required for example when
|
|
|
|
* doing a UART-based boot. Note that this console may not "survive"
|
|
|
|
* through a SYSFW PM-init step and will need a re-init in some way
|
|
|
|
* due to changing module clock frequencies.
|
|
|
|
*/
|
2023-08-25 18:02:57 +00:00
|
|
|
if (IS_ENABLED(CONFIG_K3_EARLY_CONS))
|
|
|
|
early_console_init();
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Configure and start up system controller firmware. Provide
|
|
|
|
* the U-Boot console init function to the SYSFW post-PM configuration
|
|
|
|
* callback hook, effectively switching on (or over) the console
|
|
|
|
* output.
|
|
|
|
*/
|
2023-08-25 18:02:57 +00:00
|
|
|
if (IS_ENABLED(CONFIG_K3_LOAD_SYSFW)) {
|
|
|
|
ret = is_rom_loaded_sysfw(&bootdata);
|
|
|
|
if (!ret)
|
|
|
|
panic("ROM has not loaded TIFS firmware\n");
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
|
2023-08-25 18:02:57 +00:00
|
|
|
k3_sysfw_loader(true, NULL, NULL);
|
|
|
|
}
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Force probe of clk_k3 driver here to ensure basic default clock
|
|
|
|
* configuration is always done.
|
|
|
|
*/
|
|
|
|
if (IS_ENABLED(CONFIG_SPL_CLK_K3)) {
|
|
|
|
ret = uclass_get_device_by_driver(UCLASS_CLK,
|
|
|
|
DM_DRIVER_GET(ti_clk),
|
|
|
|
&dev);
|
|
|
|
if (ret)
|
|
|
|
printf("Failed to initialize clk-k3!\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Output System Firmware version info */
|
|
|
|
k3_sysfw_print_ver();
|
|
|
|
|
2022-07-01 12:30:11 +00:00
|
|
|
if (IS_ENABLED(CONFIG_ESM_K3)) {
|
|
|
|
/* Probe/configure ESM0 */
|
|
|
|
ret = uclass_get_device_by_name(UCLASS_MISC, "esm@420000", &dev);
|
|
|
|
if (ret)
|
|
|
|
printf("esm main init failed: %d\n", ret);
|
|
|
|
|
|
|
|
/* Probe/configure MCUESM */
|
|
|
|
ret = uclass_get_device_by_name(UCLASS_MISC, "esm@4100000", &dev);
|
|
|
|
if (ret)
|
|
|
|
printf("esm mcu init failed: %d\n", ret);
|
|
|
|
|
|
|
|
enable_mcu_esm_reset();
|
|
|
|
}
|
|
|
|
|
2023-08-25 18:02:57 +00:00
|
|
|
if (IS_ENABLED(CONFIG_K3_AM64_DDRSS)) {
|
|
|
|
ret = uclass_get_device(UCLASS_RAM, 0, &dev);
|
|
|
|
if (ret)
|
|
|
|
panic("DRAM init failed: %d\n", ret);
|
|
|
|
}
|
2023-11-13 19:07:21 +00:00
|
|
|
spl_enable_cache();
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device)
|
|
|
|
{
|
|
|
|
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
|
2022-12-20 18:38:18 +00:00
|
|
|
u32 bootmode = (devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_BOOTMODE_SHIFT;
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
u32 bootmode_cfg = (devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_SHIFT;
|
|
|
|
|
2022-12-20 18:38:18 +00:00
|
|
|
switch (bootmode) {
|
|
|
|
case BOOT_DEVICE_EMMC:
|
2023-12-08 07:53:05 +00:00
|
|
|
if (IS_ENABLED(CONFIG_SUPPORT_EMMC_BOOT))
|
|
|
|
return MMCSD_MODE_EMMCBOOT;
|
2023-08-25 18:03:00 +00:00
|
|
|
if (IS_ENABLED(CONFIG_SPL_FS_FAT) || IS_ENABLED(CONFIG_SPL_FS_EXT4))
|
|
|
|
return MMCSD_MODE_FS;
|
2022-12-20 18:38:18 +00:00
|
|
|
return MMCSD_MODE_EMMCBOOT;
|
|
|
|
case BOOT_DEVICE_MMC:
|
|
|
|
if (bootmode_cfg & MAIN_DEVSTAT_PRIMARY_MMC_FS_RAW_MASK)
|
|
|
|
return MMCSD_MODE_RAW;
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
default:
|
2022-12-20 18:38:18 +00:00
|
|
|
return MMCSD_MODE_FS;
|
arm: mach-k3: Introduce the basic files to support AM62
The AM62 SoC family is the follow on AM335x built on K3 Multicore SoC
architecture platform, providing ultra-low-power modes, dual display,
multi-sensor edge compute, security and other BOM-saving integration.
The AM62 SoC targets broad market to enable applications such as
Industrial HMI, PLC/CNC/Robot control, Medical Equipment, Building
Automation, Appliances and more.
Some highlights of this SoC are:
* Quad-Cortex-A53s (running up to 1.4GHz) in a single cluster.
Pin-to-pin compatible options for single and quad core are available.
* Cortex-M4F for general-purpose or safety usage.
* Dual display support, providing 24-bit RBG parallel interface and
OLDI/LVDS-4 Lane x2, up to 200MHz pixel clock support for 2K display
resolution.
* Selectable GPUsupport, up to 8GFLOPS, providing better user experience
in 3D graphic display case and Android.
* PRU(Programmable Realtime Unit) support for customized programmable
interfaces/IOs.
* Integrated Giga-bit Ethernet switch supporting up to a total of two
external ports (TSN capable).
* 9xUARTs, 5xSPI, 6xI2C, 2xUSB2, 3xCAN-FD, 3x eMMC and SD, GPMC for
NAND/FPGA connection, OSPI memory controller, 3xMcASP for audio,
1x CSI-RX-4L for Camera, eCAP/eQEP, ePWM, among other peripherals.
* Dedicated Centralized System Controller for Security, Power, and
Resource Management.
* Multiple low power modes support, ex: Deep sleep,Standby, MCU-only,
enabling battery powered system design.
AM625 is the first device of the family. Add DT bindings for the same.
More details can be found in the Technical Reference Manual:
https://www.ti.com/lit/pdf/spruiv7
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Gowtham Tammana <g-tammana@ti.com>
Signed-off-by: Aswath Govindraju <a-govindraju@ti.com>
Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2022-05-25 08:08:42 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 __get_backup_bootmedia(u32 devstat)
|
|
|
|
{
|
|
|
|
u32 bkup_bootmode = (devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_MASK) >>
|
|
|
|
MAIN_DEVSTAT_BACKUP_BOOTMODE_SHIFT;
|
|
|
|
u32 bkup_bootmode_cfg =
|
|
|
|
(devstat & MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_MASK) >>
|
|
|
|
MAIN_DEVSTAT_BACKUP_BOOTMODE_CFG_SHIFT;
|
|
|
|
|
|
|
|
switch (bkup_bootmode) {
|
|
|
|
case BACKUP_BOOT_DEVICE_UART:
|
|
|
|
return BOOT_DEVICE_UART;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_USB:
|
|
|
|
return BOOT_DEVICE_USB;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_ETHERNET:
|
|
|
|
return BOOT_DEVICE_ETHERNET;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_MMC:
|
|
|
|
if (bkup_bootmode_cfg)
|
|
|
|
return BOOT_DEVICE_MMC2;
|
|
|
|
return BOOT_DEVICE_MMC1;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_SPI:
|
|
|
|
return BOOT_DEVICE_SPI;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_I2C:
|
|
|
|
return BOOT_DEVICE_I2C;
|
|
|
|
|
|
|
|
case BACKUP_BOOT_DEVICE_DFU:
|
|
|
|
if (bkup_bootmode_cfg & MAIN_DEVSTAT_BACKUP_USB_MODE_MASK)
|
|
|
|
return BOOT_DEVICE_USB;
|
|
|
|
return BOOT_DEVICE_DFU;
|
|
|
|
};
|
|
|
|
|
|
|
|
return BOOT_DEVICE_RAM;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 __get_primary_bootmedia(u32 devstat)
|
|
|
|
{
|
|
|
|
u32 bootmode = (devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_BOOTMODE_SHIFT;
|
|
|
|
u32 bootmode_cfg = (devstat & MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_BOOTMODE_CFG_SHIFT;
|
|
|
|
|
|
|
|
switch (bootmode) {
|
|
|
|
case BOOT_DEVICE_OSPI:
|
|
|
|
fallthrough;
|
|
|
|
case BOOT_DEVICE_QSPI:
|
|
|
|
fallthrough;
|
|
|
|
case BOOT_DEVICE_XSPI:
|
|
|
|
fallthrough;
|
|
|
|
case BOOT_DEVICE_SPI:
|
|
|
|
return BOOT_DEVICE_SPI;
|
|
|
|
|
|
|
|
case BOOT_DEVICE_ETHERNET_RGMII:
|
|
|
|
fallthrough;
|
|
|
|
case BOOT_DEVICE_ETHERNET_RMII:
|
|
|
|
return BOOT_DEVICE_ETHERNET;
|
|
|
|
|
|
|
|
case BOOT_DEVICE_EMMC:
|
|
|
|
return BOOT_DEVICE_MMC1;
|
|
|
|
|
|
|
|
case BOOT_DEVICE_MMC:
|
|
|
|
if ((bootmode_cfg & MAIN_DEVSTAT_PRIMARY_MMC_PORT_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_MMC_PORT_SHIFT)
|
|
|
|
return BOOT_DEVICE_MMC2;
|
|
|
|
return BOOT_DEVICE_MMC1;
|
|
|
|
|
|
|
|
case BOOT_DEVICE_DFU:
|
|
|
|
if ((bootmode_cfg & MAIN_DEVSTAT_PRIMARY_USB_MODE_MASK) >>
|
|
|
|
MAIN_DEVSTAT_PRIMARY_USB_MODE_SHIFT)
|
|
|
|
return BOOT_DEVICE_USB;
|
|
|
|
return BOOT_DEVICE_DFU;
|
|
|
|
|
|
|
|
case BOOT_DEVICE_NOBOOT:
|
|
|
|
return BOOT_DEVICE_RAM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bootmode;
|
|
|
|
}
|
|
|
|
|
|
|
|
u32 spl_boot_device(void)
|
|
|
|
{
|
|
|
|
u32 devstat = readl(CTRLMMR_MAIN_DEVSTAT);
|
|
|
|
u32 bootmedia;
|
|
|
|
|
|
|
|
if (bootindex == K3_PRIMARY_BOOTMODE)
|
|
|
|
bootmedia = __get_primary_bootmedia(devstat);
|
|
|
|
else
|
|
|
|
bootmedia = __get_backup_bootmedia(devstat);
|
|
|
|
|
|
|
|
debug("am625_init: %s: devstat = 0x%x bootmedia = 0x%x bootindex = %d\n",
|
|
|
|
__func__, devstat, bootmedia, bootindex);
|
|
|
|
|
|
|
|
return bootmedia;
|
|
|
|
}
|