2023-04-17 09:11:58 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
|
|
|
* Functional tests for UCLASS_FFA class
|
|
|
|
*
|
|
|
|
* Copyright 2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Abdellatif El Khlifi <abdellatif.elkhlifi@arm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <common.h>
|
|
|
|
#include <blk.h>
|
|
|
|
#include <console.h>
|
|
|
|
#include <dm.h>
|
|
|
|
#include <mapmem.h>
|
|
|
|
#include <dm/test.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <test/test.h>
|
|
|
|
#include <test/ut.h>
|
2023-06-12 08:09:16 +00:00
|
|
|
#include <nvmxip.h>
|
2023-04-17 09:11:58 +00:00
|
|
|
|
|
|
|
/* NVMXIP devices described in the device tree */
|
|
|
|
#define SANDBOX_NVMXIP_DEVICES 2
|
|
|
|
|
|
|
|
/* reference device tree data for the probed devices */
|
|
|
|
static struct nvmxip_plat nvmqspi_refdata[SANDBOX_NVMXIP_DEVICES] = {
|
|
|
|
{0x08000000, 9, 4096}, {0x08200000, 9, 2048}
|
|
|
|
};
|
|
|
|
|
|
|
|
#define NVMXIP_BLK_START_PATTERN 0x1122334455667788ULL
|
|
|
|
#define NVMXIP_BLK_END_PATTERN 0xa1a2a3a4a5a6a7a8ULL
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dm_nvmxip_flash_sanity() - check flash data
|
|
|
|
* @uts: test state
|
|
|
|
* @device_idx: the NVMXIP device index
|
|
|
|
* @buffer: the user buffer where the blocks data is copied to
|
|
|
|
*
|
|
|
|
* Mode 1: When buffer is NULL, initialize the flash with pattern data at the start
|
|
|
|
* and at the end of each block. This pattern data will be used to check data consistency
|
|
|
|
* when verifying the data read.
|
|
|
|
* Mode 2: When the user buffer is provided in the argument (not NULL), compare the data
|
|
|
|
* of the start and the end of each block in the user buffer with the expected pattern data.
|
|
|
|
* Return an error when the check fails.
|
|
|
|
*
|
|
|
|
* Return:
|
|
|
|
*
|
|
|
|
* 0 on success. Otherwise, failure
|
|
|
|
*/
|
|
|
|
static int dm_nvmxip_flash_sanity(struct unit_test_state *uts, u8 device_idx, void *buffer)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
u64 *ptr;
|
|
|
|
u8 *base;
|
|
|
|
unsigned long blksz;
|
|
|
|
|
|
|
|
blksz = BIT(nvmqspi_refdata[device_idx].lba_shift);
|
|
|
|
|
|
|
|
if (!buffer) {
|
|
|
|
/* Mode 1: point at the flash start address. Pattern data will be written */
|
|
|
|
base = map_sysmem(nvmqspi_refdata[device_idx].phys_base, 0);
|
|
|
|
} else {
|
|
|
|
/* Mode 2: point at the user buffer containing the data read and to be verified */
|
|
|
|
base = buffer;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nvmqspi_refdata[device_idx].lba ; i++) {
|
|
|
|
ptr = (u64 *)(base + i * blksz);
|
|
|
|
|
|
|
|
/* write an 8 bytes pattern at the start of the current block */
|
|
|
|
if (!buffer)
|
|
|
|
*ptr = NVMXIP_BLK_START_PATTERN;
|
|
|
|
else
|
|
|
|
ut_asserteq_64(NVMXIP_BLK_START_PATTERN, *ptr);
|
|
|
|
|
|
|
|
ptr = (u64 *)((u8 *)ptr + blksz - sizeof(u64));
|
|
|
|
|
|
|
|
/* write an 8 bytes pattern at the end of the current block */
|
|
|
|
if (!buffer)
|
|
|
|
*ptr = NVMXIP_BLK_END_PATTERN;
|
|
|
|
else
|
|
|
|
ut_asserteq_64(NVMXIP_BLK_END_PATTERN, *ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!buffer)
|
|
|
|
unmap_sysmem(base);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* dm_test_nvmxip() - check flash data
|
|
|
|
* @uts: test state
|
|
|
|
* Return:
|
|
|
|
*
|
|
|
|
* CMD_RET_SUCCESS on success. Otherwise, failure
|
|
|
|
*/
|
|
|
|
static int dm_test_nvmxip(struct unit_test_state *uts)
|
|
|
|
{
|
|
|
|
struct nvmxip_plat *plat_data = NULL;
|
|
|
|
struct udevice *dev = NULL, *bdev = NULL;
|
|
|
|
u8 device_idx;
|
|
|
|
void *buffer = NULL;
|
|
|
|
unsigned long flashsz;
|
|
|
|
|
|
|
|
/* set the flash content first for both devices */
|
|
|
|
dm_nvmxip_flash_sanity(uts, 0, NULL);
|
|
|
|
dm_nvmxip_flash_sanity(uts, 1, NULL);
|
|
|
|
|
|
|
|
/* probing all NVM XIP QSPI devices */
|
|
|
|
for (device_idx = 0, uclass_first_device(UCLASS_NVMXIP, &dev);
|
|
|
|
dev;
|
|
|
|
uclass_next_device(&dev), device_idx++) {
|
|
|
|
plat_data = dev_get_plat(dev);
|
|
|
|
|
|
|
|
/* device tree entries checks */
|
|
|
|
ut_assertok(nvmqspi_refdata[device_idx].phys_base != plat_data->phys_base);
|
|
|
|
ut_assertok(nvmqspi_refdata[device_idx].lba_shift != plat_data->lba_shift);
|
|
|
|
ut_assertok(nvmqspi_refdata[device_idx].lba != plat_data->lba);
|
|
|
|
|
|
|
|
/* before reading all the flash blocks, let's calculate the flash size */
|
|
|
|
flashsz = plat_data->lba << plat_data->lba_shift;
|
|
|
|
|
|
|
|
/* allocate the user buffer where to copy the blocks data to */
|
|
|
|
buffer = calloc(flashsz, 1);
|
|
|
|
ut_assertok(!buffer);
|
|
|
|
|
|
|
|
/* the block device is the child of the parent device probed with DT */
|
|
|
|
ut_assertok(device_find_first_child(dev, &bdev));
|
|
|
|
|
|
|
|
/* reading all the flash blocks */
|
|
|
|
ut_asserteq(plat_data->lba, blk_read(bdev, 0, plat_data->lba, buffer));
|
|
|
|
|
|
|
|
/* compare the data read from flash with the expected data */
|
|
|
|
dm_nvmxip_flash_sanity(uts, device_idx, buffer);
|
|
|
|
|
|
|
|
free(buffer);
|
|
|
|
}
|
|
|
|
|
|
|
|
ut_assertok(device_idx != SANDBOX_NVMXIP_DEVICES);
|
|
|
|
|
|
|
|
return CMD_RET_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
DM_TEST(dm_test_nvmxip, UT_TESTF_SCAN_FDT | UT_TESTF_CONSOLE_REC);
|