u-boot/board/amirix/ap1000/powerspan.c

751 lines
19 KiB
C
Raw Normal View History

/**
* @file powerspan.c Source file for PowerSpan II code.
*/
/*
* (C) Copyright 2005
* AMIRIX Systems Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <asm/processor.h>
#include "powerspan.h"
#define tolower(x) x
#include "ap1000.h"
#ifdef INCLUDE_PCI
/** Write one byte with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write1 (unsigned long addr, unsigned char val)
{
volatile unsigned char *p = (volatile unsigned char *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write1: addr=%08x val=%02x\n", addr, val);
}
#endif
*p = val;
PSII_SYNC ();
}
/** Read one byte with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned char read1 (unsigned long addr)
{
unsigned char val;
volatile unsigned char *p = (volatile unsigned char *) addr;
val = *p;
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read1: addr=%08x val=%02x\n", addr, val);
}
#endif
return val;
}
/** Write one 2-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write2 (unsigned long addr, unsigned short val)
{
volatile unsigned short *p = (volatile unsigned short *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write2: addr=%08x val=%04x -> *p=%04x\n", addr, val,
((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8));
}
#endif
*p = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC ();
}
/** Read one 2-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned short read2 (unsigned long addr)
{
unsigned short val;
volatile unsigned short *p = (volatile unsigned short *) addr;
val = *p;
val = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read2: addr=%08x *p=%04x -> val=%04x\n", addr, *p,
val);
}
#endif
return val;
}
/** Write one 4-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write4 (unsigned long addr, unsigned long val)
{
volatile unsigned long *p = (volatile unsigned long *) addr;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("write4: addr=%08x val=%08x -> *p=%08x\n", addr, val,
((val & 0xFF000000) >> 24) |
((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) |
((val & 0x0000FF00) << 8));
}
#endif
*p = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC ();
}
/** Read one 4-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned long read4 (unsigned long addr)
{
unsigned long val;
volatile unsigned long *p = (volatile unsigned long *) addr;
val = *p;
val = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("read4: addr=%08x *p=%08x -> val=%08x\n", addr, *p,
val);
}
#endif
return val;
}
int PCIReadConfig (int bus, int dev, int fn, int reg, int width,
unsigned long *val)
{
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4 (REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC ();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width) {
case 4:
*(unsigned int *) val = read4 (conDataReg);
break;
case 2:
*(unsigned short *) val = read2 (conDataReg);
break;
case 1:
*(unsigned char *) val = read1 (conDataReg);
break;
default:
ret_val = ILLEGAL_REG_OFFSET;
break;
}
PSII_SYNC ();
/* clear any pending master aborts */
status = read4 (REG_P1_CSR);
if (status & CLEAR_MASTER_ABORT) {
ret_val = NO_DEVICE_FOUND;
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int PCIWriteConfig (int bus, int dev, int fn, int reg, int width,
unsigned long val)
{
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4 (REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC ();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width) {
case 4:
write4 (conDataReg, val);
break;
case 2:
write2 (conDataReg, val);
break;
case 1:
write1 (conDataReg, val);
break;
default:
ret_val = ILLEGAL_REG_OFFSET;
break;
}
PSII_SYNC ();
/* clear any pending master aborts */
status = read4 (REG_P1_CSR);
if (status & CLEAR_MASTER_ABORT) {
ret_val = NO_DEVICE_FOUND;
write4 (REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int pci_read_config_byte (int bus, int dev, int fn, int reg,
unsigned char *val)
{
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig (bus, dev, fn, reg, 1, &read_val);
*val = read_val & 0xFF;
return ret_val;
}
int pci_write_config_byte (int bus, int dev, int fn, int reg,
unsigned char val)
{
return PCIWriteConfig (bus, dev, fn, reg, 1, val);
}
int pci_read_config_word (int bus, int dev, int fn, int reg,
unsigned short *val)
{
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig (bus, dev, fn, reg, 2, &read_val);
*val = read_val & 0xFFFF;
return ret_val;
}
int pci_write_config_word (int bus, int dev, int fn, int reg,
unsigned short val)
{
return PCIWriteConfig (bus, dev, fn, reg, 2, val);
}
int pci_read_config_dword (int bus, int dev, int fn, int reg,
unsigned long *val)
{
return PCIReadConfig (bus, dev, fn, reg, 4, val);
}
int pci_write_config_dword (int bus, int dev, int fn, int reg,
unsigned long val)
{
return PCIWriteConfig (bus, dev, fn, reg, 4, val);
}
#endif /* INCLUDE_PCI */
int I2CAccess (unsigned char theI2CAddress, unsigned char theDevCode,
unsigned char theChipSel, unsigned char *theValue, int RWFlag)
{
int ret_val = 0;
unsigned int reg_value;
reg_value = PowerSpanRead (REG_I2C_CSR);
if (reg_value & I2C_CSR_ACT) {
printf ("Error: I2C busy\n");
ret_val = I2C_BUSY;
} else {
reg_value = ((theI2CAddress & 0xFF) << 24)
| ((theDevCode & 0x0F) << 12)
| ((theChipSel & 0x07) << 9)
| I2C_CSR_ERR;
if (RWFlag == I2C_WRITE) {
reg_value |= I2C_CSR_RW | ((*theValue & 0xFF) << 16);
}
PowerSpanWrite (REG_I2C_CSR, reg_value);
udelay (1);
do {
reg_value = PowerSpanRead (REG_I2C_CSR);
if ((reg_value & I2C_CSR_ACT) == 0) {
if (reg_value & I2C_CSR_ERR) {
ret_val = I2C_ERR;
} else {
*theValue =
(reg_value & I2C_CSR_DATA) >>
16;
}
}
} while (reg_value & I2C_CSR_ACT);
}
return ret_val;
}
int EEPROMRead (unsigned char theI2CAddress, unsigned char *theValue)
{
return I2CAccess (theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL,
theValue, I2C_READ);
}
int EEPROMWrite (unsigned char theI2CAddress, unsigned char theValue)
{
return I2CAccess (theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL,
&theValue, I2C_WRITE);
}
int do_eeprom (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char cmd;
int ret_val = 0;
unsigned int address = 0;
unsigned char value = 1;
unsigned char read_value;
int ii;
int error = 0;
unsigned char *mem_ptr;
unsigned char default_eeprom[] = EEPROM_DEFAULT;
if (argc < 2) {
goto usage;
}
cmd = argv[1][0];
if (argc > 2) {
address = simple_strtoul (argv[2], NULL, 16);
if (argc > 3) {
value = simple_strtoul (argv[3], NULL, 16) & 0xFF;
}
}
switch (cmd) {
case 'r':
if (address > 256) {
printf ("Illegal Address\n");
goto usage;
}
printf ("@0x%x: ", address);
for (ii = 0; ii < value; ii++) {
if (EEPROMRead (address + ii, &read_value) !=
0) {
printf ("Read Error\n");
} else {
printf ("0x%02x ", read_value);
}
if (((ii + 1) % 16) == 0) {
printf ("\n");
}
}
printf ("\n");
break;
case 'w':
if (address > 256) {
printf ("Illegal Address\n");
goto usage;
}
if (argc < 4) {
goto usage;
}
if (EEPROMWrite (address, value) != 0) {
printf ("Write Error\n");
}
break;
case 'g':
if (argc != 3) {
goto usage;
}
mem_ptr = (unsigned char *) address;
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMRead (ii, &read_value) != 0) {
printf ("Read Error\n");
error = 1;
} else {
*mem_ptr = read_value;
mem_ptr++;
}
}
break;
case 'p':
if (argc != 3) {
goto usage;
}
mem_ptr = (unsigned char *) address;
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMWrite (ii, *mem_ptr) != 0) {
printf ("Write Error\n");
error = 1;
}
mem_ptr++;
}
break;
case 'd':
if (argc != 2) {
goto usage;
}
for (ii = 0; ((ii < EEPROM_LENGTH) && (error == 0));
ii++) {
if (EEPROMWrite (ii, default_eeprom[ii]) != 0) {
printf ("Write Error\n");
error = 1;
}
}
break;
default:
goto usage;
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}
U_BOOT_CMD (eeprom, 4, 0, do_eeprom,
"read/write/copy to/from the PowerSpan II eeprom",
"eeprom r OFF [NUM]\n"
" - read NUM words starting at OFF\n"
"eeprom w OFF VAL\n"
" - write word VAL at offset OFF\n"
"eeprom g ADD\n"
" - store contents of eeprom at address ADD\n"
"eeprom p ADD\n"
" - put data stored at address ADD into the eeprom\n"
"eeprom d\n" " - return eeprom to default contents\n");
unsigned int PowerSpanRead (unsigned int theOffset)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int ret_val;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanRead: offset=%08x ", theOffset);
}
#endif
ret_val = *ptr;
PSII_SYNC ();
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("value=%08x\n", ret_val);
}
#endif
return ret_val;
}
void PowerSpanWrite (unsigned int theOffset, unsigned int theValue)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanWrite: offset=%08x val=%02x\n", theOffset,
theValue);
}
#endif
*ptr = theValue;
PSII_SYNC ();
}
/**
* Sets the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be set in the register.
*/
void PowerSpanSetBits (unsigned int theOffset, unsigned int theMask)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanSetBits: offset=%08x mask=%02x\n",
theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC ();
register_value |= theMask;
*ptr = register_value;
PSII_SYNC ();
}
/**
* Clears the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be cleared in the register.
*/
void PowerSpanClearBits (unsigned int theOffset, unsigned int theMask)
{
volatile unsigned int *ptr =
(volatile unsigned int *) (PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if (gVerbosityLevel > 1) {
printf ("PowerSpanClearBits: offset=%08x mask=%02x\n",
theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC ();
register_value &= ~theMask;
*ptr = register_value;
PSII_SYNC ();
}
/**
* Configures a slave image on the local bus, based on the parameters and some hardcoded system values.
* Slave Images are images that cause the PowerSpan II to be a master on the PCI bus. Thus, they
* are outgoing from the standpoint of the local bus.
* @param theImageIndex [IN] the PowerSpan II image to set (assumed to be 0-7).
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: PB_SIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetSlaveImage (int theImageIndex, unsigned int theBlockSize,
int theMemIOFlag, int theEndianness,
unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr)
{
unsigned int reg_offset = theImageIndex * PB_SLAVE_IMAGE_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits ((REGS_PB_SLAVE_CSR + reg_offset),
PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value = PB_SLAVE_CSR_TA_EN | theEndianness | (theBlockSize << 24);
if (theMemIOFlag == PB_SLAVE_USE_MEM_IO) {
reg_value |= PB_SLAVE_CSR_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
MD_EN = 0
MODE = 0
PRKEEP = 0
RD_AMT = 0
*/
PowerSpanWrite ((REGS_PB_SLAVE_CSR + reg_offset), reg_value);
/* these values are not checked by software */
PowerSpanWrite ((REGS_PB_SLAVE_BADDR + reg_offset), theLocalBaseAddr);
PowerSpanWrite ((REGS_PB_SLAVE_TADDR + reg_offset), thePCIBaseAddr);
/* Enable the Slave Image */
PowerSpanSetBits ((REGS_PB_SLAVE_CSR + reg_offset),
PB_SLAVE_CSR_IMG_EN);
return 0;
}
/**
* Configures a target image on the local bus, based on the parameters and some hardcoded system values.
* Target Images are used when the PowerSpan II is acting as a target for an access. Thus, they
* are incoming from the standpoint of the local bus.
* In order to behave better on the host PCI bus, if thePCIBaseAddr is NULL (0x00000000), then the PCI
* base address will not be updated; makes sense given that the hosts own memory should be mapped to
* PCI address 0x00000000.
* @param theImageIndex [IN] the PowerSpan II image to set.
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: Px_TIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetTargetImage (int theImageIndex, unsigned int theBlockSize,
int theMemIOFlag, int theEndianness,
unsigned int theLocalBaseAddr,
unsigned int thePCIBaseAddr)
{
unsigned int csr_reg_offset = theImageIndex * P1_TGT_IMAGE_OFF;
unsigned int pci_reg_offset = theImageIndex * P1_BST_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits ((REGS_P1_TGT_CSR + csr_reg_offset),
PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value =
PX_TGT_CSR_TA_EN | PX_TGT_CSR_BAR_EN | (theBlockSize << 24) |
PX_TGT_CSR_RTT_READ | PX_TGT_CSR_WTT_WFLUSH | theEndianness;
if (theMemIOFlag == PX_TGT_USE_MEM_IO) {
reg_value |= PX_TGT_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
BAR_EN = 1
MD_EN = 0
MODE = 0
DEST = 0
RTT = 01010
GBL = 0
CI = 0
WTT = 00010
PRKEEP = 0
MRA = 0
RD_AMT = 0
*/
PowerSpanWrite ((REGS_P1_TGT_CSR + csr_reg_offset), reg_value);
PowerSpanWrite ((REGS_P1_TGT_TADDR + csr_reg_offset),
theLocalBaseAddr);
if (thePCIBaseAddr != (unsigned int) NULL) {
PowerSpanWrite ((REGS_P1_BST + pci_reg_offset),
thePCIBaseAddr);
}
/* Enable the Slave Image */
PowerSpanSetBits ((REGS_P1_TGT_CSR + csr_reg_offset),
PB_SLAVE_CSR_IMG_EN);
return 0;
}
int do_bridge (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
char cmd;
int ret_val = 1;
unsigned int image_index;
unsigned int block_size;
unsigned int mem_io;
unsigned int local_addr;
unsigned int pci_addr;
int endianness;
if (argc != 8) {
goto usage;
}
cmd = argv[1][0];
image_index = simple_strtoul (argv[2], NULL, 16);
block_size = simple_strtoul (argv[3], NULL, 16);
mem_io = simple_strtoul (argv[4], NULL, 16);
endianness = argv[5][0];
local_addr = simple_strtoul (argv[6], NULL, 16);
pci_addr = simple_strtoul (argv[7], NULL, 16);
switch (cmd) {
case 'i':
if (tolower (endianness) == 'b') {
endianness = PX_TGT_CSR_BIG_END;
} else if (tolower (endianness) == 'l') {
endianness = PX_TGT_CSR_TRUE_LEND;
} else {
goto usage;
}
SetTargetImage (image_index, block_size, mem_io,
endianness, local_addr, pci_addr);
break;
case 'o':
if (tolower (endianness) == 'b') {
endianness = PB_SLAVE_CSR_BIG_END;
} else if (tolower (endianness) == 'l') {
endianness = PB_SLAVE_CSR_TRUE_LEND;
} else {
goto usage;
}
SetSlaveImage (image_index, block_size, mem_io,
endianness, local_addr, pci_addr);
break;
default:
goto usage;
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}