5.5 KiB
Common tools for writing lints
You may need following tooltips to catch up with common operations.
Useful Rustc dev guide links:
Retrieving the type of an expression
Sometimes you may want to retrieve the type Ty
of an expression Expr
, for example to answer following questions:
- which type does this expression correspond to (using its
TyKind
)? - is it a sized type?
- is it a primitive type?
- does it implement a trait?
This operation is performed using the expr_ty()
method from the TypeckTables
struct,
that gives you access to the underlying structure TyS
.
Example of use:
impl LateLintPass<'_, '_> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'_, '_>, expr: &Expr<'_>) {
// Get type of `expr`
let ty = cx.tables.expr_ty(expr);
// Match its kind to enter its type
match ty.kind {
ty::Adt(adt_def, _) if adt_def.is_struct() => println!("Our `expr` is a struct!"),
_ => ()
}
}
}
Similarly in TypeckTables
methods, you have the pat_ty()
method
to retrieve a type from a pattern.
Two noticeable items here:
cx
is the lint contextLateContext
. The two most useful data structures in this context aretcx
andtables
, allowing us to jump to type definitions and other compilation stages such as HIR.tables
isTypeckTables
and is created by type checking step, it includes useful information such as types of expressions, ways to resolve methods and so on.
Checking if a type implements a specific trait
There are two ways to do this, depending if the target trait is part of lang items.
use crate::utils::{implements_trait, match_trait_method, paths};
impl LateLintPass<'_, '_> for MyStructLint {
fn check_expr(&mut self, cx: &LateContext<'_, '_>, expr: &Expr<'_>) {
// 1. Using expression and Clippy's convenient method
// we use `match_trait_method` function from Clippy's toolbox
if match_trait_method(cx, expr, &paths::INTO) {
// `expr` implements `Into` trait
}
// 2. Using type context `TyCtxt`
let ty = cx.tables.expr_ty(expr);
if cx.tcx.lang_items()
// we are looking for the `DefId` of `Drop` trait in lang items
.drop_trait()
// then we use it with our type `ty` by calling `implements_trait` from Clippy's utils
.map_or(false, |id| implements_trait(cx, ty, id, &[])) {
// `expr` implements `Drop` trait
}
}
}
Prefer using lang items, if the target trait is available there.
A list of defined paths for Clippy can be found in paths.rs
We access lang items through the type context tcx
. tcx
is of type TyCtxt
and is defined in the rustc_middle
crate.
Dealing with macros
There are several helpers in Clippy's utils to deal with macros:
in_macro()
: detect if the given span is expanded by a macro
You may want to use this for example to not start linting in any macro.
macro_rules! foo {
($param:expr) => {
match $param {
"bar" => println!("whatever"),
_ => ()
}
};
}
foo!("bar");
// if we lint the `match` of `foo` call and test its span
assert_eq!(in_macro(match_span), true);
in_external_macro()
: detect if the given span is from an external macro, defined in a foreign crate
You may want to use it for example to not start linting in macros from other crates
#[macro_use]
extern crate a_crate_with_macros;
// `foo` is defined in `a_crate_with_macros`
foo!("bar");
// if we lint the `match` of `foo` call and test its span
assert_eq!(in_external_macro(cx.sess(), match_span), true);
differing_macro_contexts()
: returns true if the two given spans are not from the same context
macro_rules! m {
($a:expr, $b:expr) => {
if $a.is_some() {
$b;
}
}
}
let x: Option<u32> = Some(42);
m!(x, x.unwrap());
// These spans are not from the same context
// x.is_some() is from inside the macro
// x.unwrap() is from outside the macro
assert_eq!(differing_macro_contexts(x_is_some_span, x_unwrap_span), true);