rust-clippy/clippy_lints/src/non_copy_const.rs
2018-08-29 11:08:29 -07:00

269 lines
9.9 KiB
Rust

//! Checks for uses of const which the type is not Freeze (Cell-free).
//!
//! This lint is **deny** by default.
use rustc::lint::{LateContext, LateLintPass, Lint, LintArray, LintPass};
use rustc::{declare_tool_lint, lint_array};
use rustc::hir::*;
use rustc::hir::def::Def;
use rustc::ty::{self, TypeFlags};
use rustc::ty::adjustment::Adjust;
use rustc_errors::Applicability;
use rustc_typeck::hir_ty_to_ty;
use syntax_pos::{DUMMY_SP, Span};
use std::ptr;
use crate::utils::{in_constant, in_macro, is_copy, span_lint_and_then};
/// **What it does:** Checks for declaration of `const` items which is interior
/// mutable (e.g. contains a `Cell`, `Mutex`, `AtomicXxxx` etc).
///
/// **Why is this bad?** Consts are copied everywhere they are referenced, i.e.
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` should better be replaced by a `static` item if a global
/// variable is wanted, or replaced by a `const fn` if a constructor is wanted.
///
/// **Known problems:** A "non-constant" const item is a legacy way to supply an
/// initialized value to downstream `static` items (e.g. the
/// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit,
/// and this lint should be suppressed.
///
/// **Example:**
/// ```rust
/// use std::sync::atomic::{Ordering::SeqCst, AtomicUsize};
///
/// // Bad.
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
///
/// // Good.
/// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15);
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
declare_clippy_lint! {
pub DECLARE_INTERIOR_MUTABLE_CONST,
correctness,
"declaring const with interior mutability"
}
/// **What it does:** Checks if `const` items which is interior mutable (e.g.
/// contains a `Cell`, `Mutex`, `AtomicXxxx` etc) has been borrowed directly.
///
/// **Why is this bad?** Consts are copied everywhere they are referenced, i.e.
/// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
/// or `AtomicXxxx` will be created, which defeats the whole purpose of using
/// these types in the first place.
///
/// The `const` value should be stored inside a `static` item.
///
/// **Known problems:** None
///
/// **Example:**
/// ```rust
/// use std::sync::atomic::{Ordering::SeqCst, AtomicUsize};
/// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
///
/// // Bad.
/// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
/// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
///
/// // Good.
/// static STATIC_ATOM: AtomicUsize = CONST_ATOM;
/// STATIC_ATOM.store(9, SeqCst);
/// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
/// ```
declare_clippy_lint! {
pub BORROW_INTERIOR_MUTABLE_CONST,
correctness,
"referencing const with interior mutability"
}
#[derive(Copy, Clone)]
enum Source {
Item {
item: Span,
},
Assoc {
item: Span,
ty: Span,
},
Expr {
expr: Span,
},
}
impl Source {
fn lint(&self) -> (&'static Lint, &'static str, Span) {
match self {
Source::Item { item } | Source::Assoc { item, .. } => (
DECLARE_INTERIOR_MUTABLE_CONST,
"a const item should never be interior mutable",
*item,
),
Source::Expr { expr } => (
BORROW_INTERIOR_MUTABLE_CONST,
"a const item with interior mutability should not be borrowed",
*expr,
),
}
}
}
fn verify_ty_bound<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
ty: ty::Ty<'tcx>,
source: Source,
) {
if ty.is_freeze(cx.tcx, cx.param_env, DUMMY_SP) || is_copy(cx, ty) {
// an UnsafeCell is !Copy, and an UnsafeCell is also the only type which
// is !Freeze, thus if our type is Copy we can be sure it must be Freeze
// as well.
return;
}
let (lint, msg, span) = source.lint();
span_lint_and_then(cx, lint, span, msg, |db| {
if in_macro(span) {
return; // Don't give suggestions into macros.
}
match source {
Source::Item { .. } => {
let const_kw_span = span.from_inner_byte_pos(0, 5);
db.span_suggestion_with_applicability(
const_kw_span,
"make this a static item",
"static".to_string(),
Applicability::MachineApplicable,
);
}
Source::Assoc { ty: ty_span, .. } => {
if ty.flags.contains(TypeFlags::HAS_FREE_LOCAL_NAMES) {
db.span_help(ty_span, &format!("consider requiring `{}` to be `Copy`", ty));
}
}
Source::Expr { .. } => {
db.help(
"assign this const to a local or static variable, and use the variable here",
);
}
}
});
}
pub struct NonCopyConst;
impl LintPass for NonCopyConst {
fn get_lints(&self) -> LintArray {
lint_array!(DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonCopyConst {
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, it: &'tcx Item) {
if let ItemKind::Const(hir_ty, ..) = &it.node {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
verify_ty_bound(cx, ty, Source::Item { item: it.span });
}
}
fn check_trait_item(&mut self, cx: &LateContext<'a, 'tcx>, trait_item: &'tcx TraitItem) {
if let TraitItemKind::Const(hir_ty, ..) = &trait_item.node {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
verify_ty_bound(cx, ty, Source::Assoc { ty: hir_ty.span, item: trait_item.span });
}
}
fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, impl_item: &'tcx ImplItem) {
if let ImplItemKind::Const(hir_ty, ..) = &impl_item.node {
let item_node_id = cx.tcx.hir.get_parent_node(impl_item.id);
let item = cx.tcx.hir.expect_item(item_node_id);
// ensure the impl is an inherent impl.
if let ItemKind::Impl(_, _, _, _, None, _, _) = item.node {
let ty = hir_ty_to_ty(cx.tcx, hir_ty);
verify_ty_bound(cx, ty, Source::Assoc { ty: hir_ty.span, item: impl_item.span });
}
}
}
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
if let ExprKind::Path(qpath) = &expr.node {
// Only lint if we use the const item inside a function.
if in_constant(cx, expr.id) {
return;
}
// make sure it is a const item.
match cx.tables.qpath_def(qpath, expr.hir_id) {
Def::Const(_) | Def::AssociatedConst(_) => {},
_ => return,
};
// climb up to resolve any field access and explicit referencing.
let mut cur_expr = expr;
let mut dereferenced_expr = expr;
let mut needs_check_adjustment = true;
loop {
let parent_id = cx.tcx.hir.get_parent_node(cur_expr.id);
if parent_id == cur_expr.id {
break;
}
if let Some(Node::Expr(parent_expr)) = cx.tcx.hir.find(parent_id) {
match &parent_expr.node {
ExprKind::AddrOf(..) => {
// `&e` => `e` must be referenced
needs_check_adjustment = false;
}
ExprKind::Field(..) => {
dereferenced_expr = parent_expr;
needs_check_adjustment = true;
}
ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => {
// `e[i]` => desugared to `*Index::index(&e, i)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
}
ExprKind::Unary(UnDeref, _) => {
// `*e` => desugared to `*Deref::deref(&e)`,
// meaning `e` must be referenced.
// no need to go further up since a method call is involved now.
needs_check_adjustment = false;
break;
}
_ => break,
}
cur_expr = parent_expr;
} else {
break;
}
}
let ty = if needs_check_adjustment {
let adjustments = cx.tables.expr_adjustments(dereferenced_expr);
if let Some(i) = adjustments.iter().position(|adj| match adj.kind {
Adjust::Borrow(_) | Adjust::Deref(_) => true,
_ => false,
}) {
if i == 0 {
cx.tables.expr_ty(dereferenced_expr)
} else {
adjustments[i - 1].target
}
} else {
// No borrow adjustments = the entire const is moved.
return;
}
} else {
cx.tables.expr_ty(dereferenced_expr)
};
verify_ty_bound(cx, ty, Source::Expr { expr: expr.span });
}
}
}